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Abstract

Formation control and coordination of a group of
agents is now an active area of research. While
most researchers address the problem of control-
ling a set of agents to a given formation, no sat-
isfactory results exist regarding the interplay be-
tween the formation configuration, its implemen-
tation at the level of feedback controllers and
the required exchange of information between the
agents. We present a methodology that allows
to decide when a given formation specification is
implementable by local controllers, that is, con-
trollers using only partial state information. The
existence of such decentralized implementation is
clearly useful as it simplifies control design and re-
duces communication needs between the agents.

1 Introduction

Control and coordination of multi-agent and un-
manned systems is a rapidly growing area of re-
search. The thrust comes from potential appli-
cations (see for example [9] and the references
therein) as well as the need to perform complex
missions with simple and inexpensive systems.
One of the important problems if this area is that

pal@isr.ist.utl.pt

of controlling the individual agents to a specific
formation. Many different approaches have been
reported for this problem [2, 4, 8, 10, 3, 7, 6] but
in all of them it is assumed that the formation
is given. However there is a strong coupling be-
tween the formation topology, its implementabil-
ity at the level of feedback controllers and the
necessary information exchange. Attempts to un-
derstand these interactions have not yet appeared
in the literature, except for [5], where it is shown
that for autonomous formation flight, redundancy
requirements in communication channels, impose
constraints at the level of the formation topology.

As the number of agents increase, the interac-
tion between inter-agent communication, forma-
tion topology and its feedback implementation
also increase in complexity. It is therefore nec-
essary to develop a systematic way of determin-
ing when can the constrains be implementable by
feedback control laws requiring only local infor-
mation. This leads to simpler control laws and to
a reduction in the communication flow between
the agents. Furthermore, it is also important to
determine if the agents need to coordinate their
actions to enforce the formation constraints or if
each agents can become responsible for enforcing
a constraint, independently of the other agents
actions. These two problems are formally ad-
dressed in this paper and computationally sim-
ple solutions are proposed. We also model the



sensing capabilities of each agent explicitly and
determine when the previous problem has a solu-
tion under the agents sensing constraints.

2 Formation Graphs

In this section we introduce the notion of forma-
tion graphs. We assume that the reader is famil-

iar with several differential geometric concepts at
the level of [1].

Given n heterogeneous agents, we denote the
state of agent ¢ by z; ranging in manifold M;.
Each agent is modeled by a control system de-
scribing its kinematics:

!
where u; are control inputs and X vector fields in
T M;. Note that agent ¢ is allowed to move in all
directions that can be written as linear combina-
tions (with smooth real valued maps as scalars)
of the vector fields X, therefore all possible direc-
tions of motion are captured by the distribution
D; C TM; given by the span of all vector fields
X;. Distribution D; can also be modeled by a

dual object, namely KC;, the annihilating codistri-
bution of D; defined as:

Ki={aeT*'M : a(X)=0 for every X € D;}
(2.2)

We now combine each agent kinematics with

inter-agent constraints in a formation graph:

Definition 2.1 (Formation Graph) A forma-
tion graph F = (V, E,C) consists of:

e A finite set V of n vertices, where n 1is the
number of agents in the formation. Fach
vertexr v; 1S a codistribution modeling agent
i kinematics, as described in (2.2).

e A binary relation E CV x V representing a
bond or link between the agents.

o A family of constraints C' indexed by the set
E, C = {ce}eecr. For each edge e = (v;,v}),
ce 15 a function c(x;, z;) defining the forma-
tion constraints between agents v and j. The
constraint is enforced when c(z;,z;) = 0.

We shall consider directed graphs where an edge
e = (v;, vj) represents an edge from v; to v;. Such
an edge, denotes a constraint between agent ¢ and
j that must be enforced by agent 7, independently
of agent j actions. Clearly, it is not possible to
decide a priori, how to direct the arrows in a for-
mation. The initial specification will be given
by two arrows with opposite direction between
agents, symbolizing the fact that the constraint
responsibilities have not been assigned. These ar-
rows represent an undirected edge which will be
represented graphically by a straight line.

In this paper we will solve the problem of deter-
mining if a given constraint between two agents
can be realized by a directed edge, thereby de-
centralizing the feedback implementation of that
constraint. More specifically we will solve:

Problem 2.2 Given a formation graph F, de-
termine if it 1s possible to replace a pair of edges
(vi,vj) and (vj,v;) by a single one.

Once we can determine if a given constraint is de-
centralizable, we can analyze all the formation by
recursively applying the solution of Problem 2.2.
When each agent has limited sensory informa-
tion, there are additional constraints that must
be taken into account. We thus solve the follow-
ing version of Problem 2.2:

Problem 2.3 Given a formation graph F, de-
termine if it is possible to replace an undirected
edges (vi,vj) by a directed one, while respecting
the observation capabilities of agents i and j.

3 Decentralization with full obser-
vations

To simplify the exposition we start by considering
a formation with two agents as displayed in Fig-
ure 1. Our goal is to determine if it is possible for
agent ¢ to be the single responsible for constraint
ce- To formalize this problem, we denote by Djs
the set of vector fields in T'M; x T'M; represent-
ing directions of motion satisfying the kinematics
of each agent, as well as the formation constraint
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Figure 1: Formation constituted by two agents
and a single edge.

ce- We also introduce the set 0 x 7'M}, represent-
ing the tangent space of M;, but regarded as a
subspace of T'M; x TMj, that is, a vector field
X in 0 x TM; has coordinates X = [0 X;|” for
X, € TM;. The kinematics of agent j, defined
by the distribution D; is also regarded as a sub-
space of T'M; x TM; and is denoted by 0 x D;.
The question we are trying to solve can now be
put in the following terms: is the set Djs such
that its projection on 0 x T'M; is 0 x D;7 If this
is the case, then agent ¢ can be assigned the re-
sponsibility of the constraint, as for any direction
of motion X; € D; for agent j, there exists a di-
rection of motion [X; X;]T € Dj¥ projecting on
X;. The vector field [X; X;|T provides direction
of motion X; for agent ¢ allowing him to fulfill
the constraint imposed by c.. Unfortunately, the
computation of the set Dt is something too ex-
pensive to be performed for each edge. We thus
seek a simple test to the above question. For this
we review from [11] how to model all formation
constraints in a single object €. Since K; and K;
model the kinematics of agents ¢ and 7, on the
product of the state spaces M; x M; we can con-
struct another codistribution X;; capturing both
K; and K;. We denote the natural projections
from M; x M; to M; and M; by m; and 7}, respec-
tively, and define:

K:,'j = W:K:z + 7T;-(K:j

If we regard K; and K; as matrices, where each
line represents the coefficients of one-forms in /C;
and /C;, respectively, the construction of &C;; sim-
ply amounts to constructing the matrix:

K; ©
0 K;

where 0 denotes a matrix of zeros of appropriate
dimension. To obtain €2 we need to capture /C;;

and also the constraints defined by c.. A direction
of motion for agents 7 and j, represented by vector
field Y € K;;, satisfies the formation constraints
ce if the trajectories of the agents satisfy:

Ce(@i(t), (1)) = 0

for all t. Time differentiation of the previous ex-
pression provides Lyc, = 0 = dc.(Y'), where Lyc,
is the Lie derivative of ¢, along Y and d is the ex-
terior derivative! of ¢, (which is simply the gradi-
ent regarded as a row vector). We thus see that
the formation constraints can be modeled by the
one-form dec, which combined with £;; will give:

Q = ICz'j + dce

In coordinates, € is the matrix obtained from the
matrix of K;; by adding the additional lines rep-
resenting dc,.

We now return to the solution of the decentral-
ization problem with a preparatory lemma:

Lemma 3.1 Let F be a formation graph model-
ing a formation with two agents (i and j) and a
single constraint c. associated with the undirected
edge e = (v;,v;). Then moxra; (Dj5) = 0 x Dj iff
the exists a map f : OxTM; — TM; xTM; such
that moxrn; © f = idoxrn; and f*Q2 C K;, where
ToxTm; the natural projection from TM; x T M;
to 0 x T'M;.

Proof: Assume that moxru, (Djf) = 0xD;. Then
for every X; € 0x Dy, there exists a ¥ € Dj¥ such
that o7, (V) = Xj. Let {Xj,X?, ., X7} be
a basis for 0xD; and let {Y', Y% ... Y"} be a set
of linearly independent vector fields in Djf such
that WOXTMj(Yl) = X; for | = 1,2,...,7?,. We
then define f on the basis of 0x D; by f(X}) = V!
which extends uniquely to a pointwise linear map
from 0 x TM; to TM; x TM;. We now show
that f has the desired properties. Computing
moxm; © f(Xj) we obtain w7, (Y) = Xj, by
definition of f, which shows mox7as;0f = tdoxrs; -
Let now w € 2. We want to show that f*w € KC;,

'In case c. is not real valued, dc, is interpreted as a
vector valued one-form.



that is (f*w)(X;) = 0 for every X; € 0 x D;.
Computing (f)(X;) we get w(f(X;)) = w(Y)
and since Y € Djs we conclude that w(Y) = 0,
that is f*w € K;.

For the converse assume the existence of the map
f. Since every vector Y in Djf respects the
kinematics of both agents, we necessarily have
ToxT M; (Y) €0 x Dj which shows TOxT M; (ch;) -
0 x D;. We now show the reverse inclusion. Let
X; € O x Dj, since f(X;) € Djs we have:

Toxrm; © f(Xj) € moxrnm; (Dj5)

<:>Xj € WOXTMj(DZ'C;) (31)

which shows 0 x D; C Toxr; (DJ) and allows to
conclude o7 ; (DU) =0x D as desired. O

To state our main result in a concise way, we
need some additional notation. Given a one-form
w € 2, which we may write as w = a(x;, z;)dz; +
b(z;, z;)dz; for smooth real valued maps a and b,
we denote by wl; the form a(z;,z;)dz; and simi-
larly by wl|; the form b(z;,z;)dz;. Decentraliza-
tion can now be characterized by:

Theorem 3.2 Let F' be a formation graph mod-
eling a formation with two agents (i and j) and a
single constraint c. associated with the undirected
edge e = (v;,v;). The constraint c, can be re-
alized as a directed edge from v; to v; (agent i
has the responsibility of enforcing the constraint)
iff the following condition holds for any w € €,
smooth real valued maps r; and one-forms oy € €2,
o Fw,l=1,2...k:

wa|z = (32)

k k
E rioql; then w — E rioy € Kj
=1 =1

Proof: Assume that decentralization is possible.
Then by Lemma 3.1 we know that there exists
amap f: 0xTM; — TM; x TM; such that
7TO><TM]- o} f = idOXTMj and f*Q g ICj. We start

by showing that f*3, § € (2 admits a simple form.

[ (B) (Bl + Bl;)
= f (Bl + f(8l;)
= f*(ﬁlz)+f Toxra; (B7)
F*(Bls) + (moxrag; © £)*(Bl;)
= f*(Bli) + (idoxrn,)"(Bl;)
= f*(Bl:) + Bl; (3.3)

Let now w € Q and oy € Q for | = 1,2,...,k.
Since f*w € K; and f*oy € K; it follows by linear-
ity that f*(w—3"1_, req) € K;. However by (3.3)
Fr(w =20, mion) = f*(wli — Yo, rioals) +wl; —
Zle ricy|; and since w — Zle riog = 0, by as-
sumption, we have f*(w — Zle roy) = wlj —
S, riul; € K as desired.

For the converse, assume that the condition in the
Theorem holds. We will construct a map f with
the conditions specified by Lemma 3.1. Instead
of defining f we will equivalently define f* and
in virtue of (3.3) it suffices to define f* on f|; to
define it for § € Q. Let {wy,ws,...,w,} be a ba-
sis for Q. Then we define f*w;|; to be —w;|; and
it follows by (3.3) that f*w; = —wi|; + wi|; =
0 € K. For w,, with n = 2,3,...,p we de-
fine f*wyl|; to be —wy|; if wyl; is linearly indepen-
dent of the one-forms w1 |;, wol;, - - -, wn_1l;, other-
wise f*wy|; is already defined to be f*(>_, riwil).
As f* was defined on a basis of €2 it extends
uniquely by linearity to all of ). Let us now show
that f has the desired properties. The equality
Toxrm; © [ = idoxrn; holds by construction so
that we only have to show that f*2 C K;. For
wy it holds by definition of f* and for w,, we have
[fwn € K; if wyl; is linearly independent of the
forms w1 |;, waliy - - -, wp_1];- Otherwise we have:

ffon = ffwnli +wal;
= £ rwls) +wnl;
!
= _Zrlwl‘j+wn‘j
!
= —Zlel+wn € ’Cj (34)
!

where the last equality holds in virtue of assump-
tion (3.2). O



Figure 2: Formation where agents within larger
circle are considered as a macro-agent.

We have thus solved Problem 2.2. For more de-
tails on how to use the previous result in real ap-
plications we urge the reader to consult Section 5
where we present several examples. We also note
that condition 3.2 is simple to check in applica-
tions since it amounts to determine linear inde-
pendence of one-forms and this can be efficiently
done in a symbolic algebra computer package.

3.1 From two agents to acyclic formations

We now briefly describe how Theorem 3.2 can
be applied to acyclic formations containing more
then two agents. Given one such formation, to
analyze a specific undirected edge e = (vq, ),
one regards all the agents to which there exists
a path in the formation graph from v, passing
trough edge e, as leaders of agent a. Further-
more, the leaders and the formation constraints
between then, can be regarded as a macro-agent,
see for example Figure 2. This means that in this
context, the codistribution:

E W;’Ci-i— E dCel
el e'cE’

represents the kinematics of such a macro-agent
on the state space:

M =] M

iel
where I is the set of leaders and E' the set of
edges between them. This reformulation allows to

cast any acyclic formation in the setup required to
apply Theorem 3.2 by considering the formation

with the macro agent and agent a and the sin-
gle edge e between then. Note that if one wants
to determine if several undirected edges linking
agent a to other agents can be decentralized, one
has to consider as leaders, the union of the leader
obtained by each edge as a macro-agent, as well
as to consider the several edges as a single con-
straint between the two agents.

4 Decentralization with partial
observations

When the formation agents only have restricted
access to state information, additional constraints
must be taken into account to determine how the
edges can be implemented at the level of con-
trollers. In this section we extend the results of
the previous section to explicitly accommodate
partial observations. Towards this objective, we
equip each agent ¢ with an observation function
hi : [Lier My — O;. Here, [],.; M; represents the
state space of all agents in the formation, and O;
the observation space. Given a constraint c., with
e = (v;,v;), agent ¢ must be able to observe the
constraint, in order to enforce it. By observing
the constraint we mean:

Definition 4.1 Let e = (v;,v;) be an edge be-
tween agent © and j, and c. the associated con-
straint. We say that constraint c. s observable
by agent v iff there exist a map ¢, : O; — R”
making the following diagram commutative:

M;x M; —C% . Rr

h; ‘Mi X M Ce

O (4.1)

or equivalently c. = C¢ 0 hi|n,xm;-

The previous definition formalizes the intuitive
idea that the constraint is observable if agent i
by making use of its observation space O; can
determine if the constraint is satisfied or not.
This is the case when the constraint ¢, can be



defined on the observation space as C., agree-
ing with the original constraint in the sense that
Ce = Ce O |, x M; - Observational constraints can
be characterized as follows?:

Proposition 4.2 Let e = (v;,v;) be an edge be-
tween agent v and j, and c. the associated con-
straint. Assume that c. is a constant rank map
and h;| M; 1S a surjective, constant rank map,
then constraint c. is observable by agent i iff:

KeT(Thi‘MixMj) - Ker(Tce) (42)

Proof: Assume that the constraint is observable,
then there exists a map ¢, such that ¢, = ¢, o
hil s x ;- Tt follows by differentiation that T'c, =
Te, o Thz|MZ><M] and if X € KET(Thi|MiXMj),
then:

Th/i|Mi><Mj 'X =
@Tc_eoTh”MixMj'X =0
STe,- X = 0

which shows that X € Ker(Tc.), that is
Ker(Thi|m,xm;) € Ker(Tc.). To show the con-
verse we note that since c, and h;|n,« M; are
constant rank maps their preimages ¢;'(a) and
hil uf w; (@) define submanifolds of M; x M; for
each regular value ¢ € R". Since Ker(Tc.) and
Ker(Ti|m;xm;) are the tangent spaces to those
manifolds, inclusion (4.2) implies that:
s, (@) € ' (a) (43)
and this allows to define ¢ by ¢.(0) = c.(o') for
any o € hi|1741i><Mj (0) which satisfies ¢, = ¢ o
hi|az;xag; in virtue of (4.3). O
The previous Proposition combined with Theo-

rem 3.2 allows to give the following solution to
Problem 2.3:

2We can regard O; as the quotient manifold induced
by the surjection h;|a;x M;- In this case it suffices to

ensure that hi|ar, <, (Ti, Tj) = hilm;xm; (7}, 7)) implies

ce(zi,Tj) = ce(x}, ;) to ensure the existence of the map

C.. However this condition may be more difficult to check
in concrete applications.

Theorem 4.3 Let F' be a formation graph mod-
eling a formation with two agents (i and j) and
a single constraint c, associated with the single
edge e = (vi,v;). If agent i has partial observa-
tions defined by h; the constraint c. can be real-
ized as a directed edge from v; to v; (agent i has
the responsibility of enforcing the constraint) iff
the following conditions hold for any w € 2, any
smooth real valued maps r;, and any one-forms
€, qFwandl=1,2,... k:

if w|; = Zle rioyl; then w — Zle riog € K;
and Ker(Thg|u;xn;) € Ker(Tc,).

The previous result can also be applied to forma-
tion with more then two agents, by considering
macro-agents as described in the previous section.

5 Examples

In this section we present several examples to il-
lustrate the results of the previous sections. Con-
sider a unicycle type robot with kinematics de-
scribed by:

iy vcosf
3'{ = |vsinf
0 U

where (z,y) represents the coordinates of the
robot center of mass in same inertial frame, and
0 represents the robot heading angle. As inputs,
(u,v) represent linear and angular velocity, re-
spectively. This kinematics model can equiva-
lently be described as the kernel of the following
one-form:

sin @ dz — cosf dy (5.1)
which, thus, defines the codistribution C; of any
agent ¢ of unicycle type. Consider now the forma-
tion displayed on the left of Figure 3. We assume
that all the agents have kinematics defined by
codistributions of the form (5.1). The constraint
associated to edge e, is given by ¢, = 1 —23— K,
where K is a positive scalar while the constraint
associated to edge ey is given by c., = yo—ys — K.
To determine if edge e; can be decentralized one



€1 €1 €3

Figure 3: Tree agents in different formations.

computes the codistribution 2 which is given by:

Q = mK+mKs +de,
Q = span{w;,wq, w3}

wy = sin#; dx; — cos b dy
wy = sinf3dxs — cosfsdys
ws = dx; —dxs

We can see by inspection, that wq|s, we|s and
ws|s are linearly independent. Theorem 3.2 now
ensures that the edge is decentralizable. Simi-
larly one can show that the edge es is decen-
tralizable. To determine if both edges are de-
centralizable, that is, if agent 3 has the ca-
pability of fullfiling the constraints associated
with edges e; and ey, one considers agent 1 and
2 as a macro-agent. In this case () is given
by Q@ = span{wi,ws,ws,ws,ws} where w; =
sin 61 dxy —cos 61 dy;, wy = sin Oy dzy — cos Oy dys,
w3y = sin 93 dIg — COS 03 dyg, Wyp = dLEl — dﬂ?g and
ws = dys — dys. Applying Theorem 3.2 one de-
termines that ws|s = cosf3ws|3 — sin f3wy|3 and
w3 — €08 B3ws + sin fzwy = — cos Bz3dyy + sin f3dx,
which cannot be written as a linear combination
of wy and ws. This implies, by Theorem 3.2, that
edges e; and e; cannot be decentralized simul-
taneously. This agrees with our intuition, since
if agents 1 and 2 move arbitrarily, then agent 3
cannot enforce both constraints.

Consider now the formation displayed in the right
of Figure 3 that represents the previous situation
with the added edge e3 between agents 1 and 2
and the associated constraint:

- |:.T1—.I2—K:|
Y1— Y2 — K

€3

In this case we consider that agent 3 has only
access to partial information modeled by the ob-
servation map hs(x1, Y1, 01, T2, Yo, 02, T3,ys, 03) =
(1,91, X2, 02, 13,y3). Although edges e; and ey
can be simultaneously decentralized if one con-
sider full information, the same is no longer true
in this case since Ker(Ths|yxa,) = Ker(Ths) is
not contained in Ker(T'ce,e,), where we have de-
note by ce,., the constraint induced by c., and c,,
between agent 3 and the macro-agent constituted
by agents 1 and 2 on state space M = M; x M.
However, replacing constraint c., by the con-
straint:

|:$1 — X3 — K:|

1 —ys— K

renders the edges decentralizable and does not
change the trajectories of the individual agents.
This observation motivates another interesting
problem: given a formation, determine new inter-
agent constraints, that maximize decentralization
and do not change the agents individual trajec-
tories.

Consider now a formation between a mobile robot
of unicycle type and an aircraft, as displayed in
Figure 4. We consider that the aircraft is working
in a degraded mode of operation due to a failure
in the rudder. As such, its motion is restricted
to a vertical plane where a unicycle type model
is valid. These considerations lead to the codis-
tribution Ky = span{sin 6,dy; — cosb1dz;, dz; }.
We will consider that agent 2, the mobile robot,
is of unicycle type an moves on a horizontal sur-
face. This leads to the codistribution Ky =
span{sin fadys — cos Oodzs, dzo}. The two agents
have to satisfy the formation constraint given
by ce = (z1 — x2)? + (21 — 20)? — K? which
forces then keep a fixed distance of K on the
vertical plane defined by 3, = ¢, ¢ € R. We
will first try to determine if the constraint can
be implemented by a directed edge from agent
2 (the mobile robot) to agent 1 (the aircraft).
Computing €2 one determines that if 6, = 0
we have (deg)ls = —2(21 — 22)(dzs)|e + 2(z1 —
x9)(sin Oadys — cos Bydxs)|o. Theorem 3.2 now im-
plies that we must have dey + 2(21 — 22)(d22) —
2(x1 —x9)(sin ody, — cos Bodzy) € Ky which holds
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Figure 4: A mobile robot and an aircraft in for-
mation.

only for #; = 7/2 4+ vr, v € Z. We then see
that the constraint is not decentralizable for all
state space configurations of the agents. Trying
to decentralize the constraint as an arrow from
agent 1 to agent 2 produces similar results, which
shows that this constraint requires coordination
among the agents to be implemented. Since no
decentralized solution is possible, complex coor-
dination mechanisms are necessary as opposed to
simple feedback control laws.

6 Conclusions

In this paper we began to explore the connections
between formation topology, low level implemen-
tation and sensing requirements. We studied the
problem of determining in which conditions it is
possible to implement a given constraint between
agents as a directed edge, thereby assigning the
responsibilities of the constraint enforcement to a
single agent. Simple sufficient and necessary con-
ditions were given for edge decentralization. Fur-
thermore we also solve this problem in the pres-
ence of partial observations. Many other interest-
ing problems remain to be addressed, in partic-
ular the problem of determining new constraints
allowing for a more decentralized implementation
and yet providing similar trajectories for the in-
dividual agents.
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