Proceedings of the 10th Mediterranean Conference
on Control and Automation - MED2002
Lisbon, Portugal, July 9-12, 2002.

SMALL SATELLITES ATTITUDE
DETERMINATION USING A PREDICTIVE
ALGORITHM FOR ATTITUDE
STABILIZATION AND SPIN CONTROL

S. Marques, P. Tabuada, P. Lima

Instituto de Sistemas e Robdtica
Instituto Superior Técnico

fax:

+351218418291

e-mail: {sm3, pal, tabuada}@isr.ist.utl.pt

Keywords: Small satellites, attitude determina-
tion and control, extended Kalman filter, non-
linear time-varying control

Abstract

This paper presents results of closed loop attitude
estimation for small satellites, based on Extended
Kalman filter and Singular Value Decomposition
methods. The controller is based on an algorithm
for attitude stabilization and spin control of small
satellites using only electromagnetic actuation.
Both estimators use the measurement of two sen-
sors: magnetometer and Sun sensor. The point-
by-point attitude determination methods, which
include the SVD, are based on the measurements
of at least two attitude sensors in a single point
in time. So a problem arises when only one mea-
surement is available. In this case, a solution to
estimate the attitude until the SVD is fully oper-
ational again is presented. The control algorithm
takes advantage of the time-varying nature of the
problem (the geomagnetic field changes through-
out the orbit) by using the most appropriate con-
trol effort (according to an energy-based crite-
rion) given the geomanetic fied and the satellite
angular velocity at each actuation instant. Re-
sults of simulations with the predictive controller
in the loop for both the extended Kalman filter
and the SVD attitude estimators are presented.

1 Introduction

Small satellites are nowadays an easy and inex-
pensive way to gain access to space and all the
advantages a satellite can provide (e.g. telecom-
munications, environment monitoring, scientific
research). Since these LEO (Low Earth Orbit)
satellites have high levels of autonomy, attitude
control is a key factor to support an orbit ma-
neuver and to accomplish the satellite mission.
However, due to their low budget, they suffer
structure restrictions such as limited mass and
volume, low cost to launch and low cost com-
ponents. Usually, none of the reduced and in-
expensive attitude sensors directly provides ei-
ther the attitude or the angular velocity, except
for Star sensors and gyros, but, even when these
sensors are on-board, they are not available dur-
ing the whole orbit and they often fail to work.
Thus, having an efficient and reliable attitude
determination algorithm feeding the controller
is essential in autonomous spacecrafts such as
small satellites. Satellite attitude determination
methods usually fall into two classes: point-to-
point and recursive estimation algorithms. Point-
to-point attitude determination is based on the
measurements of two or more sensors in a sin-
gle point in time, while recursive estimation es-
timation uses information from sucessive time
points, as well as knowledge about the space-
craft attitude dynamics model. In small satel-
lites, only a single attitude sensor is often avail-



able, thus leading to the exploration of recur-
sive estimation based solutions, such as the Ex-
tended Kalman Filter (EKF). The point-to-point
methods are attractive for attitude estimation
algorithms since the problems associated to the
Kalman filter linearization or to modelling the
process and observation with non-Gaussian dis-
tributions are avoided. Also, there is no need
to initialize the filter or to guarantee symmetry
and positive-definitive state error covariance ma-
trix. The Singular Value Decomposition (SVD)
was chosen due to its robustness and low compu-
tational requirements when considering two atti-
tude sensors, Section 2.

In order to work properly, the attitude estima-
tion algorithms have to face up other problems:
the mathematical description of the system is
non-linear, as well as the observation model [7],
and the attitude representation model must be
chosen appropriately. Most of the attitude rep-
resentation models have advantages and disad-
vantages (9], but quaternion representation, ¢ =

[ L G2 Q3 qa ]T, is the most commonly used,
since it is not singular for any rotation [15]. How-
ever quaternions represent a 3 dimensional rota-
tion involving four parameters, therefore subject
to the constraint ¢? + ¢ + ¢2 + ¢2 = 1, leading
to difficulties in maintaining the rotation matrix
orthogonality [1]. To circumvent these problems
and guarantee convergence, the EKF algorithm
must be modified [1], [4].

Since small satellites are typically in LEO, the
preferred attitude actuators are those which gen-
erate a magnetic momentum that interacts with
the Earth geomagnetic field rotating the satellite.
Thus LEO satellites may be controlled strictly
by geomagnetic field interaction. A magnetic
moment produced by coils placed on the satel-
lite will produce a resultant torque by interacting
with the geomagnetic field, which may be used
for attitude control. Nevertheless, this low power
consumption approach poses several control dif-
ficulties, such as the time-dependence on the ge-
omagnetic field along the satellite orbit and its
highly non-linear mathematical description. Sev-
eral researchers have explored and solved part of

the control problems posed by LEO small satel-
lites. Ong [13] proposes some intuitive control
laws to tackle this problem, but the actuation
is very restricted and does not take advantage of
the time-varying nature of the problem. Steyn
[10] approaches the control problem by using a
Fuzzy Logic Controller that achieves better re-
sults than a Linear Quadratic Regulator (LQR),
despite considering the constraint of actuating on
a single coil at each time. This approach sug-
gests that a non-linear and time-varying control
methodologies should be further explored so that
a better problem understanding and possible so-
lutions may be found. Wisniewski [17] compares
two non-linear solutions: sliding mode control
and energy based control, achieving better results
that LQRs based on linear periodic theory.

In this paper, the results of the estimation al-
gorithms comparison performed in [8] where the
estimators were tested out of the control loop,
are extended to closed loop using the predictive
control algorithm first described in [11], and sum-
marized in Section 3. In [11] results of applying
this controller to small satellites were obtained
with full attitude knowledge and no estimator in
the loop. In the work reported here, the estima-
tion algorithms EKF or SVD are feeding the pre-
dictive controller with estimates of the satellite
state. A summary of the estimation algorithms
and model formulation, as well as the coordinate
system used throughout this work is described
in Section 2. In Section 3, a description of the
LEO small satellites control problem is performed
and the predictive control algorithm for attitude
stabilzation and spin control of small satellites is
summarized. The set up of the EKF and SVD al-
gorithms are described in Section 4. The results
are presented in Section 5 and obtained from a
LEO small satellite simulation environment using
PoSAT-1 [12] as a benchmark of the simulator.

2 Problem Formulation
2.1 Coordinate Systems

The following coordinate systems (CS) are used
throughout this paper:



Orbit CS: {fo, jo, Eo}—This is a right orthonor-
mal CS whose origin is placed at the mass center
of the spacecraft and attached to spacecraft or-
bit around the Earth. The k, is pointing zenith,
30 is tangent to the orbit opposite to the orbital
velocity and i, is orthogonal to the plane of orbit.

Body CS: {ib, Jbs lAcb}- its origin is placed in the
center mass of the spacecraft and its axes are the
principal axes of inertia. This referential frame
is attached to the body of the satellite, rotating
around the axis with the smallest moment of iner-
tia. fb, jb and Eb are aligned with the two remain-
ing principal moments of inertia of the satellite in
order to form a right-handed CS.

Control CS: {i., j., k.}- When the CS which
origin is the satellite mass center does not in-
clude the principal axes of inertia, an additional
CS must be considered which is usually denoted
as the control CS. For attitude estimation pur-
poses this issue is not taken into account since,
for simplicity of the estimator algorithm, the ap-
proximation of considering the principal axes of
inertia along the body CS is made, in order to
increase the computational efficiency of the algo-
rithm.

Inertial CS: {Yi, ji, lAcz-}— its origin is placed on
the Earth’s mass centre and it does not rotate
with the Earth. The k; is along the Earth spin
vector and points from South to North. IZ and
.]?Z- form a plane parallel to the Earth’s equatorial
plane, where i; is along the vernal equinox and j;
complements this right-handed triad.

2.2 Attitude Dynamics

The equation of a small satellite attitude dynam-
ics is well known and may be expressed in the
Control CS as [15]:

1 C‘bci = - chi x 1 Cd)ci"' Cthrl+ CNgg+ CNdist

(1)
where [ is the inertia tensor; “N,; is the control
torque; “Ny, is the gravity gradient torque; ‘N g
is a disturbance torque caused by aerodynamic
drag and other effects [15] and ‘w,; is the angular

velocity of the Control CS w.r.t. the Inertial CS
written in the control CS.

The control torque is obtained by electromagnetic
interaction with the geomagnetic field [15],

N,y =° m x¢ B 2)

where “m is the control magnetic moment gener-
ated by the satellite coils and will be referred as
the control variable throughout this paper; ‘B is
the geomagnetic field.

The kinematic equation gives the mathematical
relation between the angular velocity and the
derivative of the rotation vector. In this work the
attitude is parameterized by quaternions. Hence,
the kinematics are expressed in the Control CS
as [15]

d , 1 b b
%qo(t) - 59 ( wba) 4, (3)
where (2 is the absolute angular veloc-
ity of a rotating frame, Q(bwbo) =
0 W, —Wy Wg
: —we 0 Wo @yl The angular rates
wy —wy 0  w,
—Wy —wy —w, 0

components are body CS w.r.t. orbit CS.

Special care must be taken when dealing with
the quaternion algebra [10]. In this work, the
quaternion multiplication established by Hamil-
ton is defined by the operator ® [8]. Therefore,
the kinematic equation becomes

Loptt) = 5 vwno @ o ()
The linearization of Equation (1) involves lin-
earization of the attitude determination vector
composed of the rotation vector and the angular
velocity. Since the quaternion represents a rota-
tion, the sum of two quaternions is no longer a

quaternion, and its linearization is calculated as
q(t) = 0q(t) ® g (5)
2.3 Attitude Determination Methods

Recursive methods for attitude estimation suit-
able for nonlinear systems, especially for a small



satellite Attitude Determination System (ADS)
in closed loop, consist typically of algorithms
where the linearization is performed about the fil-
ter estimate trajectory, that depends on the mea-
surements data. Since the trajectory is continu-
ously updated, the algorithm parameters can not
be pre-computed once for the entire set of data
as for batch algorithms.

The optimal state recursive estimator, in the
sense that it minimizes the mean square estima-
tion error when applied to linear dynamic sys-
tems, is the Kalman filter. Also, the Kalman filter
is well suited to real-time problems because it di-
rectly estimates the state vector at a single time,
based on the measurements at that time and all
measurements up to that time with a fading mem-
ory. However, the Kalman filter just guarantees
optimal state estimate when applied to linear sys-
tems. The state space formulation for small satel-
lites is non-linear both regarding the system and
the observation models. Still, the Kalman fil-
ter can be used by linearization of the equations
that describe the system - Extended Kalman Fil-
ter (EKF) [8]. Due to this, the Kalman filter
optimality and stability properties are not guar-
anteed. So, there are other recursive non-linear
estimators, such as higher order filters, that at-
tempt to handle inaccuracies or simplification er-
rors resulting from the linearizations or to model
the process and observation with non-Gaussian
distributions [1].

A different approach to the attitude estimation
problem consists on determining the attitude
based on a sequence of noisy vector measure-
ments. Given a set of n > 2 vector measure-
ments by b, in the body system, and a set of ref-
erence vectors r; 7, in the orbit system, there
is an orthogonal matrix A (the attitude matrix
or direction-cosine matrix) that transforms rota-
tional vectors from the orbital to the body coordi-
nates. The problem of finding the best estimate of
the A matrix was posed by Grace Wahba [14] who
was the first to choose a least square criterion to
define the best estimate, i.e., to find the orthogo-
nal matrix A with determinant 1 that minimizes

the loss function

L(A) = (6)

N | =

= 2
Z W; |bz — Al‘ll
i=1

where w; is a set of positive weights assigned to
each measurement and |.| denotes the Euclidean
norm. Attitude matrix A expresses orientation
between the Orbital CS and Control CS and can
be expressed in terms of a quaternion [15],

] (7

Alg) = |:

where [qX] is a skew symmetric matrix that im-
plements algebraically the cross product between
two vectors and q = fql Q Q3 ]

The point-to-point methods or solutions to
Wahba’s problem, are attractive for attitude esti-
mation algorithms since the EKF problems are
avoided and also there is no need to initialize
the filter or to guarantee symmetry and positive-
definite state error covariance matrix. Since the
point-to-point methods are exclusively based on a
set of noisy vector measurements to determine the
attitude matrix, there must be two sets of mea-
surements from different attitude sensors: mag-
netometers and Sun sensors.

?—q2—q3+42 2(g192+49394) 2(¢193—49294)

2(¢192—49394) —d>+a5—a3+a3 2(2(1211324'412‘14)2
2(q,93+49294) 2(q293—9194) —a1—9xtaztay
= (¢2 - |lal|*)1323 + 2aa” — 2g4[qx]

Magnetometers are used to measure the local ge-
omagnetic field vector (magnitude and direction).
This data is compared to a model of the geo-
magnetic field in order to determine the attitude.
Magnetometer information has the advantage of
being available throughout the whole orbit as well
as of low power requirements, being lightweight
and inexpensive. However, it is not very accurate
due to errors in the International Geomagnetic
Reference Field (IGRF) models. Nevertheless,
magnetometers are widely used for attitude de-
termination as the main sensor, due to its avail-
ability. As for the Sun sensor, it reads the an-
gle between the spin axis of the satellite and the
Sun. Since the Sun is not visible during parts
of the orbit due to the satellite libration or be-
cause the satellite is orbiting in the dark side of
the Earth, its information is not always available.



Other sensors such as the Earth horizon sensor;
Star sensor and gyroscopes are also used in LEO
satellites. However Earth horizon sensors are very
susceptible to errors or to fail, like Star sensors or
gyroscopes. Besides, gyroscopes are not so com-
monly used because they are expensive for the
typically small LEO satellites budget.

Among point-to-point methods (e.g. , Daven-
port’s g [3], the Singular Value Decomposition
(SVD) method [6] was chosen in this work due
to its robustness and low computational require-
ments when considering two attitude sensors [5].

However, problems arise when just one sensor is
available, e.g., when the Sun is out of range of the
Sun sensor or when the satellite is in the dark side
of Earth. That must be handled when the SVD
is used. This will be addressed in Section 4.

3 A Predictive Control Algorithm

A new algorithm for attitude stabilization and
spin control was proposed in [11] and shown to
be asymptotically stable working in closed loop
without an attitude determination algorithm. In
this Section we will only summarize the relevant
topics for the exposition in the remainder of the

paper.

3.1 Problem Description

Equation (2) shows that the control torque is
always perpendicular to the geomagnetic field,
pointing out the non-controllability of the elec-
tromagnetic actuaction. The direction parallel to
the geomagnetic fields is not controllable, but the
geomagnetic field changes along the orbit. This
implies that, e.g., yaw, is not controllable over
the poles but only a quarter of orbit later, ap-
proximately over the equator. Those characteris-
tics must be adequately explored to regulate the
satellite attitude appropriately. A time-varying
predictive algorithm to determine the control mo-
ment, which takes advantage of the geomagnetic
field changes, is proposed as a solution to this
control problem.

3.2 Motivation

Using the satellite total energy as a Lyapunov
candidate function, its time derivative is given

by:

Etot = sz; chtrl (8)
where ‘w,, is the angular velocity of the Control
CS w.r.t. the Orbital CS expressed in the Con-
trol CS The equation Fipy =0 represents all the
control torques that lie on a plane that is perpen-
dicular to “w.,. Therefore, imposing E,p < 0is
the same as constraining the control torque to lie
"behind” the plane perpendicular to ‘w,,.

Furthermore, the control torque must always be
perpendicular to the geomagnetic field. As such,
the solution of this problem must satisfy two re-
quirements:

cBT Cthrl =0 (9)

{ cwz; chtrl <0
It can be seen from Equation (9) that, although
the solution to these constraints is not a linear
space, it is nevertheless an unlimited subset of a
plan embedded in a three-dimensional space, in
the general case, or it does not exist if “w,, is par-
allel to °N,;;. This is equivalent to state that the
solutions to this control algorithm are infinite in
the general case, suggesting a control algorithm
that should choose the optimum magnetic mo-
ment (or at least the best one given all the con-
straints) at each actuation instant to take advan-
tage of the particular angular velocity and geo-
magnetic field. This approach differs from most
of the others solutions available in the literature,
which use a constant control law, independently

of the current angular velocity and geomagnetic
field.

3.3 Formulation

As in [10], the measurements of the current geo-
magnetic field and the satellite angular velocity
are used to determine the control magnetic mo-
ment. We start by defining a cost function based



on the kinetic energy:

1
J = 3 ng,AQ “Weo
where Aq is a positive definite gain matrix. More
insight is given, regarding the choice of the cost

function, in [16].

(10)

It is also shown in [16] that it is possible to pre-
dict the effect that a given control torque will
produce on the angular velocity, requiring only
the knowledge of the current angular velocities
and attitude, readily available from the attitude
determination system. From the available mag-
netic moments it is possible to choose the one
that minimizes the cost function (10), once the
geomagnetic field value is available from the mag-
netometers.

4 Simulation Setup
4.1 Estimation Setup

At least one attitude sensor must be permanently
available along the whole orbit for the estima-
tor algorithm to work properly. One such sensor
is the magnetometer. This made magnetometers
the most used sensors for attitude determination.
To avoid local measurability problems, the data
from the magnetometers must be combined with
other attitude sensors data (SVD algorithm) or
with information from the satellite model (EKF
algorithm). In the EKF approach the attitude
vector is estimated by minimizing the state es-
timate error covariance, based on statistical as-
sumptions concerning the uncertainties, together
with a set of noisy sensor observations.

Lefferts et. al. [4] avoid the EKF error covariance
matrix singularity, by not estimating the scalar
part of the quaternion g4. This reduces the rank
in some of the matrices involved in the algorithm,
i.e., the transition matrix ®, the error covariance
matrix P and the covariance of the process (7, the
Kalman gain K as well as the F' matrix that con-

IThe use of Ag instead of the inertia matrix was chosen
due to the possibilty of definig relative weights for the
angular velocities.

tains the equations of motion and the H matrix
that relates sensor measurements with the state.
To reconstruct the full quaternion, the fourth el-
ement of the quaternion is obtained from the
estimated vector part and using the constraint
lgl> = 1, leading to ¢ = \/1—q? — ¢} — g3
This is the approach used in this work.

When propagating the state and covariance
matrices and also to propagate the attitude
quaternion, the full quaternion must be han-
dled carefully to obtain a proper rotation.
Therefore, in these steps of the algorithm,
the quaternions have to be handled separately
from the angular velocity. Instead of using
Ixpe1 = [f(x(t),u(t),t)dt + x;, as for the
angular velocity, the quaternion must be prop-
agated through the transition matrix & =
eJ 30wt without approximation, resulting in
G = (cos (%)l—i-%ksin (%) Qk) @ »
\/w?c+w—§+w§ [15]. When up-

dating the state, where the estimated state is

where W, =

T
X = [ w q ] , the peturbation error, §X;,1 =
[ 0Wki1 Okt ] , estimated by the filter, is com-
puted, 65&’6-1—1 = Kk—l—l (ymeas,k—|—1 _A((/ik)YOrb,k)
and in case of the angular velocity is added to
the full state, @, = @y, + 6@y11. However, to
preserve the physical sense of the quaternion up-
date, the quaternion is updated using quaternion
multiplication and Equation (5),

0Qk+1

T — 08k ] @Gy (1)

When the Sun sensor measurements are available,
the measurement covariance matrix is expanded
to a 6X6 matrix, Ry = l Finag O3 ] and the

O3x3 Rss
H matrix is expanded in order to incorporate also
the Sun sensor measurement, ygs.

(/]7;-1:[

A
ot O3xs 4q1 41=Q1yorb
k41 §A(a) N
O3x3 g, a=nYss
SA(a) 3A(q)
5q2 QZ:A Yord 3q3 GS::1\3 Yord 12
sa@™ T O sa@" TR (12)
992 go=qs 943 q3=q3



In the SVD approach, two attitude sensors are
used (Sun sensors and magnetometers) to com-
pute the attitude matrix without making use of
the system models. When the Sun sensor mea-
surements are not available, which happens in
small periods of the orbit, the attitude dynam-
ics equation is used to propagate the lastest at-
titude estimates until the Sun sensor is available
again and the SVD algorithm is fully operational,
correcting the incurred error.

The derivative of the quaternion, from the kine-
matic’s Equation (4), is obtained adding a pole,
a, to the transfer function of the derivator system
that obtains ¢ from ¢, to damp the high frequency
noise. The transter function 2 is discretized us-
ing the bilinear transform, where s « 727
The discrete expression to be applied between
measurements with a sampling time of At is given

by the difference equation

z z2—1

Cjtk = (1 _aAT)q.tk—l - aATq.tk—z +th Gt (13)

Other problem with the SVD algorithm is to ob-
tain the quaternion estimate from the attitude
matrix. This can be made from Equation (7).

One of the four possible solutions is

qi = :|:05\/1 + A11 + A22 + A33
q% = 025(A23 - Agg)/qi
q% = 025(A31 - Alg)/qi
g3 = 0.25(A1 — A1) /q;

However numerical inaccuracies may arise
when q; is very small One way to
overcome this is to compute the maxi-
mum of qf = 40.5y/1+ A;; — Ay — Az,
qi = :i:05\/1 — A11 + A22 — A33, and
qi = 20.5y/1— A — Ay + As3 and based
on this, switch among solutions [8]. The three
other solutions are,

qf = £0.5v/1+ Ajp — Ay — Ass
q% = 0.25(A12 —+ Agl)/qf
g3 = 0.25(A3 + Az)/a?
qi = 0.25(Ags — A32)/(ﬁ

a3 = £0.5y/1 — Ay + Ay — Asg
g = 0.25(A12 + As1)/a3
C]g’ = 025(A23 =+ A32)/q§
qi’ = 025(A31 — Alg)/qg

q; = £0.5y/1 — Ay — Ay + Asg
qi = 0.25(A13 + As1) /a3
g5 = 0.25(Ass + As2) /a3
qff = 025(A12 —_ 1421)/q§l

4.2 Control Setup

The control algorithm was applied to a realis-
tic simulated model of PoSAT-1 [12]. PoSAT-
1, as other satellites of the UoSAT class, has re-
duced control capabilities due to the values of the
control magnetic moment being limited to only
three different values of positive/negative polar-
ity. Combining this restriction with the single-
coil actuation, the available set of magnetic mo-
ments is reduced to only 18 different values (6 for
the x coils, 6 for the y coils and 6 for the z coils).

Power consumption is another serious restriction,
reflected on PoSAT-1 actuation capabilities. For
each actuation on a coil there must be at least a
back-off time of 100 seconds to recharge the power
supplies. This means that the actuators have at
most a duty cycle of 3% , since the maximum ac-
tuation time is only 3 seconds. Considering these
constraints, there are only 19 available magnetic
moments: the 18 already referred and the ”do-

nothing-solution” ‘m = [ 0 00 ]T. With such
a restricted search space it is not necessary to
use an iterative minimization algorithm to find
the optimal magnetic momentum, because all so-
lutions can be evaluated and the best one (i.e.
the one that minimizes (10)) is chosen.

5 Results

Several simulations were performed using the
SimSat simulator [12] where the Predictive Con-
troller described in Section 3 is used in closed
loop with the EKF or the SVD algorithm. The



first row of Figure 1 shows a good performance
attained with the predictive controller in the loop
with the EKF algorithm, where v, the angle be-
tween the local vertical and the boom axis, is re-
duced from 60° to less than 5° in only 3 orbits.
Simulations were performed for attitude stabiliza-
tion with spin control, initial conditions v = 60°

fweo = [ 0.001037 0 0.02 ]T and the desired

[0 0 0.02]. The
spin velocity must be kept around 0.02 rad/s due
to PoSAT-1 thermal requirements. Rows 3-5 of
Figure 1, show that the controller keeps the spin
velocity oscillating around the reference, while
the libration is being damped.

reference v = 0°,w,, =

The second row of Figure 1 shows the Euler er-
ror angle, which gives the error between the es-
timated and the true attitude matrix. This vari-
able tests the estimator performance. From the
figure a fast convergence can be noticed, since y
is reduced in less than 1.5 orbits. To test the ini-
tial convergence of the EKF, an error of 50% was
added to the initial angular velocity and to the
initial Euler angles, roll, pitch and yaw. Simula-
tion results are plotted in Figure 1 second row,
showing that the EKF has a quick initial conver-
gence. The estimator error for the angular ve-

locity is calculated as the root mean square error
(RMS),

E,, =~ lim. J LS @ —ay ()

m i
and similary for the £, and E,,.

The estimator error for the Euler angle errors are
calculated taking the RMS.

J LS~ i) — by

m 5

E, ~ lim (15)

m—r0o0

The other Euler angle RMS error, Ey and Ey are
computed similarly.

The RMS obtained for angular velocity is: E,, =
0.00109, E,, = 0.005, E,, = 0.0023 rad/s and,
for the roll - 9, pitch - # and yaw - ¢ angles is:
Ey =6.32°, By = 7.75° and Ey = 16.16°, as can
be seen in Figure 1, rows 3-5.

For the SVD algorithm, in the plots of Figure
2, a signal indicating the availability of Sun sen-
sor measurements is provided. The signal is high
when measurements are available and low other-
wise, originating a square wave in all plots. In
Figure 2 the first row shows that the controller
is converging but slower than for EKF. From the
second row of Figure 2 there are orbit segments
where the error of the estimates raises dramati-
cally. This happens because the satellite is hidden
from the Sun, i.e., it is "behind” the Earth. In
these cases, the attitude estimation and angular
velocity are obtained exclusively from propaga-
tion of the satellite attitude dynamics. This is
so because the model of the Sun sensor is based
on the estimates of the previous attitude which
already has an error due to propagation. So the
attitude obtained by the algorithm is also influ-
enced by the error. This is also due to the angular
velocity error, since, as can be seen from the kine-
matic equation (4), the quaternion is influenced
directly by the angular velocity. The same anal-
ysis can be driven from the observation of rows
3-5 of Figure 2, where the estimates diverge from
its real value. However, when the Sun is in the
field of view of the sensor, the attitude estimates
become closer to the true value and the error in-
curred by the SVD is very small when compared
to the EKF results. Figure 3 details of the sec-
ond row of Figure 2. If the Root Mean Square
(RMS) is computed for the whole orbit, with the
SVD running only when two sensors are avail-
able, the RMS errors are: E,, = E,, = 0.00068,
E,, = 0.00057 rad /s and for the Euler angles: Ey
= 16.19°, Ep = 9.5° and E4 = 17.29°. Still, the
angular velocity has a very good accuracy com-
pared with the EKF. Hence, if the RMS is only
computed when SVD is running the results for the
Euler angles improve considerably: E, = 0.52°,
Es = 0.55° and Ey = 0.52°. Clearly, the propaga-
tion of the attitude and angular velocity through
the model of the satellite is not a good option.
A way to avoid this problem is to add measure-
ments from another sensor also always available
in space for small satellites: the Global Position
System (GPS). Until recently, this instrument is
mainly used to sychronisation and on-board or-



bital position determination. A way to improve
SVD performance and to obtain a fair compari-
son with the EKF, as the SVD would be running
the whole orbit and not just during a part of it, is
to combine the magnetometers information with

GPS [2].
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Figure 1: EKF estimator in closed loop with the
predictive control algorithm. (solid line: estima-
tion results; dotted line: true values of the vari-
able). Row 1: 7 evolution; row 2: Euler error;
row 3 — 5: true and estimated angular velocity.
The y-axis label of the 37%-5" row, is the RMS
for the Euler angles [roll/pitch/yaw in degrees].

6 Conclusions

In this paper we presented the results of using a
predictive control algorithm for attitude control
of small satellites, first introduced in [11], with
an attitude estimator in the loop. Two estima-
tors were tested: EKF and SVD. The predictive
controller displayed a good performance when
working in closed loop with a estimator, even
when fed by attitude estimation with a large er-
rors. Simulation results have shown that the con-
troller works better with the EKF than with the
SVD. However, the SVD deterministic method,
like all point-by-point methods, computes the at-
titude matrix efficiently and with much less com-
putational load than the EKF. Therefore, it is
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Figure 2: SVD estimator in closed loop with the
predictive control algorithm. (solid line: estima-
tion results; dotted line: true values of the vari-
able). Row 1: 7 evolution; row 2: Euler error;
row 3 — 5: true and estimated angular velocity.
The y-axis label of the 37%-5" rows, is the RMS
for the Euler angles [roll/pitch/yaw in degrees].
An additional signal is high when the Sun sensor
measurements are available and low otherwise,
originating a square wave in all plots.
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attractive to implement in small satellites with
short computational resources. Nevertheless, it
requires two vector measurements in order to es-
timate the attitude. Thus, in order to have the
SVD working continuously, even when just one
attitude sensor is available, it was proposed to
propagate the state vector through the dynamic
and kinematic equations. The results obtained
were has not good as those obtained for the EKF
but very encouraging when considering only the
SVD performance. To improve the results is nec-
essary to have two attitude sensors or to improve
the computation of the estimates through the Dy-
namics knowledge.

References

[1] T. Bak. “Onboard Attitude Determination for
Small Satellite”, In proc.: Proceedings 3rd In-
ternacional Conf. on Spacecraft Guidance, Nav-
igation and Control Systems, ESA (1996).

[2] J. Crassidis, F. Markley, F. Landis. “New Algo-
rithm for Attitude Determination Using Global
Positioning System Signals”, Journal of Guid-
ance, Control and Dynamics, vol. 20, No. 5,
Sep-Oct. (1997).

[3] P. Davenport. “A Vector Approach to the Al-
gebra of Rotations with Applications”, NASA
Technical Note TN D-4696, (1968).

[4] E. J. Lefferts, F. L. Markley, M. D. Shuster.
“Kalman Filtering for Spacecraft Attitude Es-
timation”, Journal of Guidance, Control and
Dynamics,vol. 5, No 5, pp. 417-429, (1982).

[5] F. L. Markely, D. Mortari. “How to estimate
From Vector Observations”, ATAA/AAS As-

trodynamics Specialist Conference, Girdwood,
Alaska (1999).

[6] F. L. Markely. “Attitude Determination using
Vector Observations and Singular Value Decom-

position”, The Journal of the Astronautical Sci-
ences, volume 36, No. 3 (1988).

[7] S. M Marques. “Small Satellites Attitude De-
termination Methods”, MSc. Thesis, IST Tech-
nical University of Lisbon, (2001).

[8] S. M Marques, R. Clements, P. Lima. “Com-
parison of Small Satellite Attitude Determina-
tion Methods”, Proc. of 2000 AIAA Conf. on
Navigation, Guidance and Control, USA (2000).

[9] M. D. Shuster. “A Survey of Attitude Represen-
tations”, Journal of the Astronautical Sciences,
vol. 41, No. 4, pp. 439-517 (1993).

[10] W. H. Steyn. “Comparison of Low-Earth-
Orbit Satellite Attitude Controllers Submittted
to Controlability Constraints”, Journal of Guid-

ance, Control and Dynamics, vol. 17, (1994).

[11] P. Tabuada, P. Alves, P. Tavares, P. Lima. “A
Predictive Algorithm for Attitude Stabilization
and Spin Control of Small Satellites”, European
Control Conf. (ECC’99), Karlsruhe - Germany

(1999).

[12] P. Tavares, B. Sousa, P. Lima. “A Simulator
of Satellite Attitude Dynamics”, Proc. of Con-
trolo’98, 3rd Portuguese Conference on Auto-

matic Control, volume 2, (1998).

[13] W. T. Ong. “Attitude Determination and Con-
trol of Low Earth Orbit Satellites”, Msc. thesis,
Dept. of Electronic and Eletrical Engineering,

University of Surrey, (1992).

[14] G. Wahba. “A Least-Squares Estimate of Satel-
lite Attituder”, SIAM Review, vol. 7, No. 3, p.

409 (problem 65-1), (1965).

15] J. R. Wertz. “Spacecraft Attitude Determination
[ p

and Control”, Astrophisics and Space Science
Library, vol. 73, Kluwer Academic Publishers

(1995).

R. Wisniewski., A. Astolfi, T. Bak, M. Blanke,
P. Lima, K. Spindler, P. Tabuada, P. Tavares,
“Satellite Attitude Control Problem”, Chap-
ter in Control of Complex Systems (COSY),
Springer-Verlag, Berlin (2000).

[16]

R. Wisniewski. “Satellite Attitude Control us-
ing ELectromagnetic Actuation”, Ph.D. Thesis,
Dept. of Control Engineering, Aalborg Univer-
sity (1996).

[17]



