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Abstract—In this paper we approach the problem of in- \/\ RGB i lmage
situ camera calibration using an auxiliary mobile color-depth e @
camera. The calibration is based on image lines and the Direct ks PI347
Linear Transformation (DLT). Calibration includes intrinsic (RGB, fixed) i
and extrinsic parameters, and radial distortion. Traditionally,
camera calibration methods based on DLT combine 2D and
3D points. Using 2D image lines allows adding simple image
processing methods for fine tuning the calibration data (lines).

Experimental comparison of points and lines based calibration S
shows that the automatic fine tuning of the lines is beneficial T

for the calibration process in noisy conditions. Experiments

on both synthetic and real setups show that despite the low Asus Xtion
computational complexity of the DLT, the proposed calibration (RGBD, mobite
methodology yields promising accurate results.
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Scheduling calibration to occur just after installing a (a) Hardware (b) Map RGBD to RGB
network of cameras has the advantage of allowing the choice , ,
. . . . Fjg. 1. A calibrated color-depth camera, ASUS X-Tion (RGBDpws
of zoom and focus in-situ, according to the scenarios at -harkds\librating a color camera (RGB), Axis P1347 HD (a). Afteritmation,
On the other hand, this in-situ calibration usually turns unthe RGBD data, e.g. edge points and their 3D positions, caméeped
practical the conventional calibration tools. Imaging akn  ©ver the RGB image (b).
pattern is required in conventional calibration methodae
such as the ones proposed by Tsai [1], HeikKR], Zhang
[3] and Bouguet [4]. Precise calibration demands that thend [6] there are not required calibration patterns, but the
known pattern is imaged covering most of the imaging are&obots have to be imaged by the network of cameras. Not-
which implies that the pattern has to be impractically ldfge ing that mobile robots equipped with ranging and imaging
the camera is mounted in a high position, far from the floogensors effectively allow for Simultaneously Localizingda
level. In addition, conventional calibration methodokesgi Mapping the environment (SLAM), it is natural to generalize
are mostly focused in the intrinsic parameters, and thus d@mera calibration to rely on SLAM done by the mobile
not provide distances (rigid pose transformations, esitin robots, instead of just using the robots as targets to track.
parameters) among the various cameras of a network dhis is advantageous for example to cover fields of view
cameras. In other words, are not designed to provide a gloticompassing areas that cannot be traversed by the rafots. |
coordinate system for all cameras. gualitative terms, this redefines the camera calibratiomfr
Creating a global coordinate system for a set of camer@see meparadigm, in which a known pattern or robot has
having non-overlapping fields of view (FOV) has been apt0 be observed, to see what | separadigm, where a robot
proached in various works [5], [6]. In [5], prior knowledge o Maps the scene and provides that information for camera
the dynamics of a mobile target, tracked by the cameras, héalibration.
been shown to compensate for the lack of overlap betweenlLaser Range Finders (LRF) combined with SLAM proved
the camera fields of view. In [6] a team of mobile robotdo reliably provide scene information (3D clouds of points)
is used to provide a global coordinate system to a netwof¥ large areas [7], [8]. As proposed in [9], the 3D maps can
of fixed cameras. One of the robots carries a total statidgherefore be used to calibrate a camera by selecting a region
for measuring precisely the angle and distance of the othef interest on the map and adjusting an initial guess to the
robots which are also tracked by the fixed cameras. In [FJrojection matrix. This adjustment is done by minimizing
the re-projection error of the 3D points on the camera FOV.
This work has been partially suppor_ted by the FCT projecttPEs Recently, Color-Depth Cameras, also known as RGBD
OE / EEI/ LAO009 / 2011, by the FCT project PTDC / EEACRO / 10341 . . .
cameras, have become an interesting low cost alternative

2008 DCCAL, and by the project High Definition Analytics (HRAQREN ) > 4 ¢
- 1&D em Co-Promo@o 13750 . to LRF [10]. A set of 3D points is simply acquired by
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back-projecting 2D points from the RGBD image planeradial distortion parameter. THeivision Modelcan also be
Features can be detected in a network camera image amwhveniently written in homogeneous coordinates:
then matched with the RGBD image points. This defines a
set of 2D-to-3D points correspondences which can be used Uu | td 2
to estimate the camera projection matrix using the Direct Yu | = UdA 2 | 2)
Linear Transformation (DLT) [11], [12]. 1 1+ Al

In this paper we introduce an in-situ calibration methodNote that an undistorted point;,, = [ty Uy 1]T is a simple
ology, based in the DLT, that allows estimating the camerfunction of a distorted pointyg = [ug vg 1]7:
projection matrix and radial distortion using image lines
and 3D lines represented by 3D points. The 3D data is My = Mg + Aeq ®3)

acquired by a mobile robot equipped with a calibrated colof;hare eq = [0 0 ||ingl]7. The coordinates ofi, andiig

depth camera. The mobile robot/camera provides a globgly expressed in a 2D coordinate system having the origin
coordinate system to the fixed cameras or, in other Wordéoincident with the image principal point, = |

the fixed cameras are fused into a global map.
The paper is organized as follows. Sec.ll introduce€. DLT-Points

the camera projection model, including radial distortion, The Direct Linear Transformation (DLT), developed by
and briefly describes DLT based on point correspondencesziz and Karara [11], [14], allows estimating the camera
Sec.lll introduces the proposed calibration methodologyrojection matrix, P, by solving a linear system on the
DLT-Lines based on image lines. An experimental noisgnatrix entries based on a set of 3D poin{sy/; : M; =
analysis is also included. Calibration experiments on simx y; 7z, 1]7} and the corresponding 2D image points
ulated and real setups are presented in Sec.lV. Finally,,, . 1, = [u; v; 1]7}. Applying a cross product by; to
conclusions are drawn and future work is discussed in Sec.ioth sides of Eq.1y; xm; = m; x (P M;), results in zero in
the left hand side of the equation and tHus]. P M, =0
II. CAMERA MODEL AND DLT-Points where[m;]« represents the linear cross product operation as
a skew-symmetric matrix of;. The properties of Kronecker
product [16],®, allows one to obtain an equation factorizing
The pin-hole camera model maps the 3D projective spatke data and variables to estimate:
to the 2D projective plane. Using homogeneous coordinates,

A. Pin-hole Camera Model

T —
a scene pointM = [X Y Z 1]T is imaged as a points = (M ® [mi]x) vee(P) =0 (4)
[w v 1]7: where vec(P) denotes the vectorization of the matrix,
m=PM=KI[R t|M (1) formed by stacking the columns into a single column vector.

Each pair (M;, m;) allows writing Eq.4 once, and thus
where = denotes equal up to a scale factét,is a3 x 4 provides a set of three equations in the entrieseaf P), but
projection matrix, K is @ 3 x 3 upper triangular matrix only two of them linearly independent. In order to estim&te
containing the intrinsic parameters of the camefajs @ one has to have at least six pairs of 3D-to-2D corresponding
3 x 3 rotation matrix representing the orientation of thepoints! Pre-normalization of the input data is crucial on
camera and is a3 x 1 vector representing the position of thejmplementing this algorithm as noted by Hartley in [18].
camera [13]. The rotationiz and translation/ are defined Hartley suggested that the appropriate transformatiom is t
with respect to a fixed absolute (world) coordinate frameranslate all data points (3D and 2D points) so that their
Having estimated the camera projection matrix, the initins centroids are at the origin. Further the data should be dcale
and extrinsic parameters can be estimated by decomposigg that the average distance, of data points to the origin, is

P [14]. equal toy/2 for image points and/3 for 3D points.
The Fitzgibbon’s division model allows a simple extension
B. Radial Distortion of the DLT-Pointscalibration methodology to deal with the

As noted by Fitzgibbon [15], true lens distortion curveseStimation of the camera projection matrik,directly from

are typically very complex to represent, implying the use ofadially distorted image data. Substituting the right haia
high-order models or lookup tables to model camera radi,QIf Eq.3, in theDLT-Pointsfactorized equation (Eq.4) results

distortion effect with high precision. On the other hand™ .
considering typical computer vision applications, accigs (M ® [mig + Aeial,) vee(P) =0 ()
of the order of a pixel are all that is required, and an approXghich can be rewritten agA;; + AA;2)vec(P) = 0, where
|mz|a|t|on ttr? the cameras’ true distortion functions perforsn 4., — /7 @ 4], and A;s = MT @ [esq]x. Considering
well as the preciser ones.

Fitzgibbon proposed the so call&ivision Modelwhere 1Having N > 6 pairs of 3D-to-2D correspondences, in a nondegenerate
an undistorted image poinm _ [u v ]T is Computed configuration, allows forming a matrid, 3N x 12, by stackingN matrices
from a radia"y distorted imague poim;d :u [ud ’Ud]T More MZ.T ® [ms]x. The singular vector corresponding to the smallest singular

] g value of A is an estimate of projection matrix (vectorized), minimizing th
precisely,i,, = maq/(1+ X ||mql|”), where) represents the error || A vee(P)||? s.t. |[vec(P)| = 1 [17].



N pairs (M;,m;) one forms two3N x 12 matrices, A, ®T= LT -Pons 0o

and A,, by stacking matricest;; and A;». As suggested =%\« pirimes o 0.4
by Fitzgibbon [15], left-multiplying the stacked matrices g4
by AT results in a Polynomial Eigenvalue Problem (PEP)$s o
(AT Ay + MAT Ay)vec(P) = 0, which can be solved for &, 003
example in Matlab using theol yei g function. Its solution &
gives simultaneously the projection matrixc(P) and the
radial distortion parameter)\. NOting that the distortion 0 uvn%isestandzard deviat?on [pix] 4 0 uvn%isestand%rddeviat?on [pix] 4
quel in\-lowes representing pOintS a-round the prinCipallzlig 2. ComparinddLT-PointsandDLT-Linesusing a VRML setup. Points
pomt, which we assume _to be appr_oxmately e_qu_al i:‘O th&c;seln are extremes of line segments (left plot). Gaussiaselunjded in
image center [15], the estimated projection matrix is finall the points (image) data indicated in the horizontal a%s,.., right plot,
obtained withP’ = T—1 P, whereT is a3 x 3 matrix defining denotes horizontal focal length relative efror
the translation of the image coordinate reference to the pri
cipal point. Having estimated’, one has an estimate of the ) ) _
principal point, which can be used to iterate the calibratio 12 Pairs(Mxi, ;), one forms a matrix3, N x 12, by stacking
procedure and therefore overcome the approximation.  the N matricesM;; ® If. The least squares solution, more
precisely the minimizer off B vec(P)||” s.t. ||vec(P)|| = 1,
I1l. CALIBRATION BASED ON IMAGE LINES is the right singular vector corresponding to the leastusig
In this section we introduce the calibration methodologyalue of B.
DLT-Linesincluding the estimation of radial distortion. As From Eq.7 and Eq.4 it is possible to conclude tB&fT-
indicated by the name, we consider lines identified on thEointscan be incorporated oDLT-Lines by concatenation
image of the camera to obtain its parameters. Contrarilgf matricesA and B, respectively. Both matrices represent
to 3D lines, which are normally represented using Pluckegquations on entries afec(P), allowing to paired M;, m;)
coordinates [14], 2D lines have simple representations @oints, be combined with)/;, ;) to estimate the projection
cross products of image points in homogeneous coordinatégatrix P.
In the following we explore this representation to build the Comparing both DLT methods, it is important to note that
calibration methodology. The use of lines, as opposed wwhile in DLT-Pointsone has to provide one 3D-point to one
using isolated image points, brings an advantage. Imag@®-point correspondences, IDLT-Linesone 2D-line,i; is
processing can be used for fine tuning the location of then image of a 3D-lineL; and thus indicates, for example,
lines in the image and therefore automatically improving thmany-3D-points to one-2D-line correspondence. Any point
calibration data input. My; € L; forms a linear constraint witld; (Eq.7). This
As in DLT-Pointstwo cases are considered, namely (iyroperty of DLT-Lines allows to apply additional image
non-existent radial distortion and (ii) significant raddis- processing tools that add robustness to the extraction of
tortion. In the case where the radial distortion is consider calibration data. In particulaDLT-Lines involves finding
it is modeled using Fitzgibbon’s division model. lines both in the RGB and RGBD images. These 2D-lines,
l; can be fine tuned to better match edge points, i.e. local
gradient information:

r [pix]

0.03

err

1] 0.0%

A. DLT-Lines

Given a 3D lineL;, its projection on the camera image
plane, l; can be represented by the cross product of two [; = arg;, max Zk IVI(my)l, mre@NR)  (8)
image points in projective coordinatds= m1; X mo;. Any ’
point my; lying in the line ; implies that!! my; = 0.
Applying the multiplication by!l" on both sides of Eq.1,

wherel is a RGB converted to gray level image€, denotes
image gradient andR is a region of interest containing a

ie., 17 my =1 P My, leads to: straight-line segment plus some tolergpce (etg()_ pixel '
around the segment extremes). In addition, any line defined
1P M, =0 (6) inthe RGBD image indicates 3D points (from the depth data)

herel... is a 3D point | acti dinates lying I that are expected to form a line in 3D. The points forming
where/i; 1S a S point in projective coordinates yingIh. - ynq 3p jine have noise, e.g. due to the finite depth resolution

Ars] n tbhteiﬁase C;Drlr_r;r-l;’OI?t?iztiJrsllnq[htheVKr?nr?zckgr prrqdutci:t r\]/vhich is important to filter using a RANSAC procedure [14].
one obtains a 1o acto g the veclorized projectio Figure 2 compare®LT-Pointswith DLT-Linesin a syn-

matrix: UL 1T P =0 7 thetic (VRML [19]) setup. The calibration data is based on a
(My; ® ;) vec(P) = 0. ) number of image points indicating extremes of line segments
Each pair of 3D point and its corresponding image linegorresponding to edge lines. The 3D data is inferred from

(Mg, 1;), allows writing Eq.7 once, and thus provides one

linear constraint in the entries otc(P). In order to estimate _ ‘The decomposition of estimated projection matrix, detailed1d],
allows factorizing the intrinsic and extrinsic parametessfa= KR t],

P one needs at leas® pairs (My;, 1;). ? ConsideringN > 304 therefore comparing them with the ground truth. The bati focal

length relative error is defined ds.» = (K(1,1) — Kc(1,1))/K(1,1),

2Alternatively, one can state that nondegenerate six 313 imafiguration  where K is the VRML camera true intrinsic parameters matii; is the
and their corresponding six image lines are enough to estifate estimated one an& (3,3) = K.(3,3) = 1.
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the 2D data (back-projection of image points intersecting
scene facets of the VRML model). The image points are
disturbed by adding Gaussian noise. The locations of the
image lines are fine tuned based on Eq.8. The plots show
the mean reprojection error and the mean of the relative
error of the estimated horizontal focal length, considgrin

100 calibration experiments for each noise level (standard de- 0o
viation, horizontal axis). The two plots are similar, shogi

that the common cost function used in nonlinear calibration
the mean reprojection error, is effectively a good indicato
of the accuracy of the calibration. As noted by Hartley [18]Fig. 3. Camera calibration methodology, using Color-DeptiGE®)
data normalization (magenta) improves the conditioning g@mera andLT-Lines

the DLT-Pointsproblem (green). The fine tuning of the lines

(blue) brings some additional decrease of the reprojectiqgSually one needs more than two points per line in order

error. to identify the radial distortion. Step 1 of the methodology

B. DLT-Lines with Radial Distortion consists of estimating, P and finally P’ (using equations 9

etiII 11). Step 2 consists of a local fine tuning of the lines in
H]e RGB image. The image lines are composed by a number
of parts (as described by the original number of 2D points).
For each of the parts of a line, an optimization process

Image Lines Image Lines
(with fine tunning) (with fine tunning)

Estimated A, P

Using Eqg.2, which describes the relationship betwe
distorted and undistorted image points, a lihe can be
defined as the cross product of two points:

U1 Uaq . is run as described by Eq.8. Steps 1 and 2 are repeated a
lio = V14 X Vaq =li2+Xe12  (9) number of times, using as an approximation of the principal
14 \s? 1+ \s3 point the values extracted from the estimafed in order to

overcome approximation of the principal point done in the
initialization. The process stops when the fine tuning of the
lines does not change significantly the lines.

wheres; is the norm of distorted image poits? = u2,; +
v, the distorted line is denoted as, = [u1g v1ig 17 x
[uzq v2q 1]T and there is a distortion correction teuy, =

[v1455 — V2452, U245 —u14s3, 0]7. Applying EQ.9 into the IV. EXPERIMENTS
point-to-line constraint, Eq.7, one has: In this section the proposed calibration methodology is
T - T i . tested in one simulated and one real setups. The simulated
(M’m@(lu +Ae1a) )UGC(P) =0 (10) setup consists of a VRML world containing fixed RGB
which can be rewritten as: cameras and one mobile RGBD camera. A surveillance
camera network and a mobile robot equipped with a Asus
(Bki1 + ABgi2) vec(P) =0 (11)  X-tion (RGBD) camera, are used for the acquisition of the

where Byi1 = M, ® Ty, Bria = M, ® e, and M, real data.
denotes thé:'" 3D point projecting to the distorted ling,. A Virtual Reality Setup

Considering' > 12 pairs (Mp;, l;), whereN = kpazimas, A virtual reality world representing an indoor environ-

one forms twolV' x 12 matrices, 3, and B, by stacking ment, containing one mobile and various fixed cameras, has

;T:Jztgg:tsioim[lls]mdleﬁkrﬁﬁItiL;)T)I/ri]r?g Otﬂge sggliz dFIr:wzagtlrti)ct:)gsn Sl‘beeen built in VRML in order to create a calibration setup with
BT results in a Polynomial Eigenvalue Problem (PEP)ground truth and thus allowing for a quantitative assessmen

. of the precision oDLT-Lines The VRML was programmed
T T —
]gfrl (janlar:]rpf\eBilnBli/?atll);g(iiin; tgé(\;\:h;:er: gcaer]mlc):teior?OIxzd using the Virtual Reality toolbox of Matlab. The depth of the

| X . 2 . RGBD camera i mput ing the projection matrix an
solution gives simultaneously the projection mattix¢(P), GBD camera is computed using the projection matrix and

L9 : the set of facets composing the scenario.
/ __ —1
Fhe rqd|al Q|stortlon paramet_e\r,'andP =T'P, yvhere T The first step of the experiment involves identifying corre-
is defined in sec II.C. In a similar way as explained before

. ) ; sponding lines both in the RGBD and RGB images. Then, a
Eg:‘hbzl‘;r;n;;hg ddfoagsg:ﬁgéoa:;e)\ radial distorted camerge fitting algorithm fine tunes the location of each line, as
' gescribed in Sec.lll-A (see EQq.8). Since the RGBD camera

In order to organize and summarize the aspects alrea X, . . :
; . : ; es the depth for each image pixel (using the depth map),
described, we outline now the compldd.T-Linescalibra- one can obtain a 3D line from each 2D line, considering

tion methodology (see Fig. 3). As input one has 2D lines in fhat the intrinsic and extrinsic parameters of the camega ar

RGBD image acquired by a calibrated canfeend 2D lines own. Figure 4 shows the input data, lines in both RGBD
in a RGB image acquired by the camera to calibrate. Each Zﬁd RéB images (Fig.4(d) and (e)) an’d resultDbT-Lines

line of the RGB image is described by a number of pomtSCaIibration in the VRML setup ((Fig.4(g)).
SAlternatively, one can have simply 3D points describing 3fiedi (two Given the calibration data, i.eV 3D line points, M;,

points per line). and their projections on the RGB image plang;, the
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Fig. 4. Camera calibration in a VRML setup (a). Each line defimethe RGBD image (b,c) leads to a 3D line in the world/RGBDrdamate system (d).
The RGBD lines and the corresponding lines in the RGB imagef¢en the required input data f@LT-Linescalibration. After the projection matrix of
the RGB camera has been estimated, any RGBD 3D info, such ageids and their 3D locations, can be mapped to the RGB imag®éomposing
the estimated projection matrix ds[R t] [14], provides a graphical comparison with the ground trblbe and red cameras, respectively in (g).

reprojection error was found to have the valitgr = implies noise in the 3D lines which can be attenuated using
S (my —1y)?/N = 0.4707[pix?], where r; is the esti- RANSAC (see Fig. 5(d)). The data in Figs.5(e) and (f),
mated projection of\/;. This subpixel error is qualitatively allow applyingDLT-Linesand obtaining the results shown in
verified to be small in Fig.4(f), where edge points found irFig.5(g). As in the simulated setup, a qualitative asseesme
the RGBD image were back-projected to 3D points using thef the precision of the calibration can be made by transport-
depth information and projected to the RGB camera usinigg edges from the RGBD image to the RGB image (see
the estimated projection matrix. In particular one veriffe  Fig.1(b), where the RGB image Fig. 5(f) has been cropped
the edge points of the RGBD image transported to the RG® show just the area covered by the RGBD camera). The
image are consistent with the edges of the RGB image. qualitative good conformance of transported edges and RGB
Selecting the (horizontal) focal length as a represergativedges asserts a qualitatively precise calibration.
of the intrinsic parameters, the difference between esticha  In order to obtain quantitative assessment, some more tests
and real values was found to €., = 4.9 x 107°, where have been conducted. In particular J. Y. Bouguet's calitmat
K., is defined as in Fig.2. The estimation error in theoolbox [4] was used to estimate the intrinsic parameters of
camera orientation can be assessed using a distance betw#@nRGB camera. The difference between the (horizontal)
the real and the estimated rotation matri€eShe distance focal length obtained using Bouguet's toolbox and the one
between rotation matrices was found toRg., = 0.01[rad].  extracted from the estimated projection matrix usDigT-
The camera position can be evaluated comparing the rdadhes was found to bek,,.. = 0.05 (relative error defined
distance between RGBD and RGB cameras; 3.2454[m], as described in Fig.2). The real distance from RGBD to
and the estimated onel. = 3.2546[m]. The difference RGB wasd = 3.55[m], measured with a tape, while the
between these distances ds,, = 0.0092[m], meaning a estimated usin@LT-Lineswas found to bel, = 3.53[m).
relative error of approximatel$ x 10~3. Considering that The small relative errors assert tHaLT-Linescan provide
the experiment involved using rendered images, and thagcurate results.
introduced significant pixelization error in the caliboati
data, the absolute and relative errors are effectively Ismal V. CONCLUSIONS ANDFUTURE WORK

B. Real Setup This paper introduce®LT-Lines a camera calibration
In this experiment, the objective is to calibrate an Axignethodology based in the DLT. While in the ancestor
P1347 high definition surveillance camera (RGB), with radiamethodologyDLT-Points the input data is formed by paired
distortion, installed on a waiting room. A ASUS X-Tion 3D-to-2D points, inDLT-Linesthe input data is formed by a
(RGBD) camera, mounted on mobile platform, is used tset of image lines and the corresponding 3D lines described
capture 3D scene information. The RGBD camera is assumby 3D points. Similarly toDLT-Points DLT-Lineshas been
to be calibrated. extended to consider radial distortion, using the division
Figures 5(b) and (f) show the lines identified on the RGBDnodel proposed by Fitzgibbon [15].
and RGB cameras. The noise in the depth map, Fig. 5(c),One advantage oDLT-Linesis that one or more 3D
6 _ _ _ points can be combined with two or more 2D points defining
The distance between two rotation matricd®; and R, can be . . .
calculated using the norm of vectoy; = logm(R? R»), wherelogm @ image line, instead of exact 1-to-1 correspondences as
denotes the matrix logarithm. The difference is giverRas, = 1/2||lvq||.  required by DLT-Points This is interesting as it allows
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(e) RGBD lines and cam.

Fig. 5.

(f) RGB data
Calibration of a surveillance camera, Axis P1347 (RGBing a mobile robot equipped with a color-depth camerasAédion (RGBD) (a).

(c) RGBD depth map
-4

X [m] 0

y [m]

(g) Result, RGB cam. in red

Lines in the RGBD image (b,c) define 3D lines (d,e). Each limenfed directly from the depth map (cyan dots) is filtered usingNSBAC (blue and black
dots), as shown in (d), where the left/right plot has diffefequal scales in the axis. RGBD (e) and RGB lines (f), fohe input dataset foDLT-Lines
Decomposing the estimated projection matrixfagR ¢], provides the camera position and orientation on the worlitdinate system (g).

applying automatic filtering techniques such as RANSACI4] J. Bouguet, “Camera calibration toolbox for matlab,” hgww.
on 3D points defining a line, or fine tuning 2D lines to

come closer to local maximsoof ridgeg of module image

(5]

gradient. Simulation involving Gaussian noise on the input

data showed thaDLT-Lines can outperformDLT-Points

(6]

in terms of reprojection error, because of the additional

(automatic) filtering.

(7]

Experiments on a camera network simulated using VRML

allowed assessinBLT-Linesperformance, in terms of esti-

mated camera parameters, by comparing the results of tHe

calibration of the cameras with the ground trubiLT-Lines

proved to be accurate, estimating the camera intrinsic antf!

extrinsic parameters with precisioDLT-Lines was tested

also in a real indoors setup, involving the calibration of a1
real high resolution camera using a low budget color-depth
camera to acquire 3D information. In this case the estimatét’
intrinsic parameters were compared with Bouguet's calibra

tion. Was verified that the results were similar (ordei @f >

relative error), and therefore confirmed the effectiverafss

the proposed methodology.

[12]

[13]

In terms of future work, Steele and Jaynes [20] have
) . ' ; 14]

shown that is possible to improve the numerical accuraéy
of the polynomial eigenvalue problem as introduced byis]

Fitzgibbon [15], which can be beneficial also Ot T-Lines
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