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Abstract— In this paper we approach the problem of in-
situ camera calibration using an auxiliary mobile color-depth
camera. The calibration is based on image lines and the Direct
Linear Transformation (DLT). Calibration includes intrinsic
and extrinsic parameters, and radial distortion. Traditionally,
camera calibration methods based on DLT combine 2D and
3D points. Using 2D image lines allows adding simple image
processing methods for fine tuning the calibration data (lines).
Experimental comparison of points and lines based calibration
shows that the automatic fine tuning of the lines is beneficial
for the calibration process in noisy conditions. Experiments
on both synthetic and real setups show that despite the low
computational complexity of the DLT, the proposed calibration
methodology yields promising accurate results.

I. I NTRODUCTION

Scheduling calibration to occur just after installing a
network of cameras has the advantage of allowing the choice
of zoom and focus in-situ, according to the scenarios at hand.
On the other hand, this in-situ calibration usually turns un-
practical the conventional calibration tools. Imaging a known
pattern is required in conventional calibration methodologies
such as the ones proposed by Tsai [1], Heikkilä [2], Zhang
[3] and Bouguet [4]. Precise calibration demands that the
known pattern is imaged covering most of the imaging area,
which implies that the pattern has to be impractically largeif
the camera is mounted in a high position, far from the floor
level. In addition, conventional calibration methodologies
are mostly focused in the intrinsic parameters, and thus do
not provide distances (rigid pose transformations, extrinsic
parameters) among the various cameras of a network of
cameras. In other words, are not designed to provide a global
coordinate system for all cameras.

Creating a global coordinate system for a set of cameras
having non-overlapping fields of view (FOV) has been ap-
proached in various works [5], [6]. In [5], prior knowledge of
the dynamics of a mobile target, tracked by the cameras, has
been shown to compensate for the lack of overlap between
the camera fields of view. In [6] a team of mobile robots
is used to provide a global coordinate system to a network
of fixed cameras. One of the robots carries a total station
for measuring precisely the angle and distance of the other
robots which are also tracked by the fixed cameras. In [5]
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Fig. 1. A calibrated color-depth camera, ASUS X-Tion (RGBD) allows
calibrating a color camera (RGB), Axis P1347 HD (a). After calibration,
the RGBD data, e.g. edge points and their 3D positions, can bemapped
over the RGB image (b).

and [6] there are not required calibration patterns, but the
robots have to be imaged by the network of cameras. Not-
ing that mobile robots equipped with ranging and imaging
sensors effectively allow for Simultaneously Localizing and
Mapping the environment (SLAM), it is natural to generalize
camera calibration to rely on SLAM done by the mobile
robots, instead of just using the robots as targets to track.
This is advantageous for example to cover fields of view
encompassing areas that cannot be traversed by the robots. In
qualitative terms, this redefines the camera calibration from
a see meparadigm, in which a known pattern or robot has
to be observed, to asee what I seeparadigm, where a robot
maps the scene and provides that information for camera
calibration.

Laser Range Finders (LRF) combined with SLAM proved
to reliably provide scene information (3D clouds of points)
of large areas [7], [8]. As proposed in [9], the 3D maps can
therefore be used to calibrate a camera by selecting a region
of interest on the map and adjusting an initial guess to the
projection matrix. This adjustment is done by minimizing
the re-projection error of the 3D points on the camera FOV.

Recently, Color-Depth Cameras, also known as RGBD
cameras, have become an interesting low cost alternative
to LRF [10]. A set of 3D points is simply acquired by
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back-projecting 2D points from the RGBD image plane.
Features can be detected in a network camera image and
then matched with the RGBD image points. This defines a
set of 2D-to-3D points correspondences which can be used
to estimate the camera projection matrix using the Direct
Linear Transformation (DLT) [11], [12].

In this paper we introduce an in-situ calibration method-
ology, based in the DLT, that allows estimating the camera
projection matrix and radial distortion using image lines
and 3D lines represented by 3D points. The 3D data is
acquired by a mobile robot equipped with a calibrated color-
depth camera. The mobile robot/camera provides a global
coordinate system to the fixed cameras or, in other words,
the fixed cameras are fused into a global map.

The paper is organized as follows. Sec.II introduces
the camera projection model, including radial distortion,
and briefly describes DLT based on point correspondences.
Sec.III introduces the proposed calibration methodology,
DLT-Lines, based on image lines. An experimental noise
analysis is also included. Calibration experiments on sim-
ulated and real setups are presented in Sec.IV. Finally,
conclusions are drawn and future work is discussed in Sec.V.

II. CAMERA MODEL AND DLT-Points

A. Pin-hole Camera Model

The pin-hole camera model maps the 3D projective space
to the 2D projective plane. Using homogeneous coordinates,
a scene point,M = [X Y Z 1]T is imaged as a pointm =
[u v 1]T :

m
.
= P M = K [R t]M (1)

where
.
= denotes equal up to a scale factor,P is a 3 × 4

projection matrix,K is a 3 × 3 upper triangular matrix
containing the intrinsic parameters of the camera,R is a
3 × 3 rotation matrix representing the orientation of the
camera andt is a3×1 vector representing the position of the
camera [13]. The rotation,R and translation,t are defined
with respect to a fixed absolute (world) coordinate frame.
Having estimated the camera projection matrix, the intrinsic
and extrinsic parameters can be estimated by decomposing
P [14].

B. Radial Distortion

As noted by Fitzgibbon [15], true lens distortion curves
are typically very complex to represent, implying the use of
high-order models or lookup tables to model camera radial
distortion effect with high precision. On the other hand,
considering typical computer vision applications, accuracies
of the order of a pixel are all that is required, and an approx-
imation to the cameras’ true distortion functions perform as
well as the preciser ones.

Fitzgibbon proposed the so calledDivision Modelwhere
an undistorted image point,̂mu = [uu vu]

T is computed
from a radially distorted image point̂md = [ud vd]

T . More
precisely,m̂u = m̂d/(1 + λ ‖m̂d‖2), whereλ represents the

radial distortion parameter. TheDivision Modelcan also be
conveniently written in homogeneous coordinates:





uu

vu
1





.
=





ud

vd
1 + λ ‖m̂d‖2



 . (2)

Note that an undistorted point,mu = [uu vu 1]T is a simple
function of a distorted point,md = [ud vd 1]T :

mu

.
= md + λed (3)

whereed = [0 0 ‖m̂d‖]T . The coordinates of̂mu and m̂d

are expressed in a 2D coordinate system having the origin
coincident with the image principal point̂co = [cu cv]

T .

C. DLT-Points

The Direct Linear Transformation (DLT), developed by
Aziz and Karara [11], [14], allows estimating the camera
projection matrix,P , by solving a linear system on the
matrix entries based on a set of 3D points,{Mi : Mi =
[Xi Yi Zi 1]T } and the corresponding 2D image points
{mi : mi = [ui vi 1]

T }. Applying a cross product bymi to
both sides of Eq.1,mi×mi = mi×(P Mi), results in zero in
the left hand side of the equation and thus[mi]× P Mi = 0
where[mi]× represents the linear cross product operation as
a skew-symmetric matrix ofmi. The properties of Kronecker
product [16],⊗, allows one to obtain an equation factorizing
the data and variables to estimate:

(MT

i
⊗ [mi]×) vec(P ) = 0 (4)

where vec(P ) denotes the vectorization of the matrixP ,
formed by stacking the columns into a single column vector.
Each pair (Mi,mi) allows writing Eq.4 once, and thus
provides a set of three equations in the entries ofvec(P ), but
only two of them linearly independent. In order to estimateP
one has to have at least six pairs of 3D-to-2D corresponding
points.1 Pre-normalization of the input data is crucial on
implementing this algorithm as noted by Hartley in [18].
Hartley suggested that the appropriate transformation is to
translate all data points (3D and 2D points) so that their
centroids are at the origin. Further the data should be scaled
so that the average distance, of data points to the origin, is
equal to

√
2 for image points and

√
3 for 3D points.

The Fitzgibbon’s division model allows a simple extension
of the DLT-Pointscalibration methodology to deal with the
estimation of the camera projection matrix,P directly from
radially distorted image data. Substituting the right handside
of Eq.3, in theDLT-Pointsfactorized equation (Eq.4) results
in:

(

MT

i
⊗ [mid + λeid]×

)

vec(P ) = 0 (5)

which can be rewritten as(Ai1 + λAi2)vec(P ) = 0, where
Ai1 = MT

i
⊗ [mid]× andAi2 = MT

i
⊗ [eid]×. Considering

1HavingN ≥ 6 pairs of 3D-to-2D correspondences, in a nondegenerate
configuration, allows forming a matrixA, 3N×12, by stackingN matrices
MT

i
⊗ [mi]×. The singular vector corresponding to the smallest singular

value ofA is an estimate of projection matrix (vectorized), minimizing the
error ‖A vec(P )‖2 s.t. ‖vec(P )‖ = 1 [17].



N pairs (Mi,mi) one forms two3N × 12 matrices,A1

and A2, by stacking matricesAi1 and Ai2. As suggested
by Fitzgibbon [15], left-multiplying the stacked matrices
by AT

1
results in a Polynomial Eigenvalue Problem (PEP),

(AT
1
A1 + λAT

1
A2)vec(P ) = 0, which can be solved for

example in Matlab using thepolyeig function. Its solution
gives simultaneously the projection matrix,vec(P ) and the
radial distortion parameter,λ. Noting that the distortion
model involves representing points around the principal
point, which we assume to be approximately equal to the
image center [15], the estimated projection matrix is finally
obtained withP ′ = T−1P , whereT is a3×3 matrix defining
the translation of the image coordinate reference to the prin-
cipal point. Having estimatedP ′, one has an estimate of the
principal point, which can be used to iterate the calibration
procedure and therefore overcome the approximation.

III. C ALIBRATION BASED ON IMAGE L INES

In this section we introduce the calibration methodology
DLT-Lines including the estimation of radial distortion. As
indicated by the name, we consider lines identified on the
image of the camera to obtain its parameters. Contrarily
to 3D lines, which are normally represented using Plucker
coordinates [14], 2D lines have simple representations as
cross products of image points in homogeneous coordinates.
In the following we explore this representation to build the
calibration methodology. The use of lines, as opposed to
using isolated image points, brings an advantage. Image
processing can be used for fine tuning the location of the
lines in the image and therefore automatically improving the
calibration data input.

As in DLT-Points two cases are considered, namely (i)
non-existent radial distortion and (ii) significant radialdis-
tortion. In the case where the radial distortion is considered,
it is modeled using Fitzgibbon’s division model.

A. DLT-Lines

Given a 3D lineLi, its projection on the camera image
plane, li can be represented by the cross product of two
image points in projective coordinates,li = m1i×m2i. Any
point mki lying in the line li implies that lT

i
mki = 0.

Applying the multiplication bylT
i

on both sides of Eq.1,
i.e., lT

i
mki = lT

i
P Mki, leads to:

lT
i
P Mki = 0 (6)

whereMki is a 3D point in projective coordinates lying inLi.
As in the case ofDLT-Points, using the Kronecker product
one obtains a form factorizing the vectorized projection
matrix:

(MT

ki
⊗ lT

i
) vec(P ) = 0. (7)

Each pair of 3D point and its corresponding image line,
(Mki, li), allows writing Eq.7 once, and thus provides one
linear constraint in the entries ofvec(P ). In order to estimate
P one needs at least12 pairs (Mki, li). 2 ConsideringN ≥

2Alternatively, one can state that nondegenerate six 3D lines configuration
and their corresponding six image lines are enough to estimateP .
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Fig. 2. ComparingDLT-PointsandDLT-Linesusing a VRML setup. Points
chosen are extremes of line segments (left plot). Gaussian noise added in
the points (image) data indicated in the horizontal axis.Kerr , right plot,
denotes horizontal focal length relative error4.

12 pairs(Mki, li), one forms a matrixB, N×12, by stacking
the N matricesMT

ki
⊗ lT

i
. The least squares solution, more

precisely the minimizer of‖B vec(P )‖2 s.t. ‖vec(P )‖ = 1,
is the right singular vector corresponding to the least singular
value ofB.

From Eq.7 and Eq.4 it is possible to conclude thatDLT-
Points can be incorporated onDLT-Lines, by concatenation
of matricesA andB, respectively. Both matrices represent
equations on entries ofvec(P ), allowing to paired(Mi,mi)
points, be combined with(Mki, li) to estimate the projection
matrix P .

Comparing both DLT methods, it is important to note that
while in DLT-Pointsone has to provide one 3D-point to one
2D-point correspondences, inDLT-Lines one 2D-line,li is
an image of a 3D-line,Li and thus indicates, for example,
many-3D-points to one-2D-line correspondence. Any point
Mki ∈ Li forms a linear constraint withli (Eq.7). This
property of DLT-Lines allows to apply additional image
processing tools that add robustness to the extraction of
calibration data. In particular,DLT-Lines involves finding
lines both in the RGB and RGBD images. These 2D-lines,
li can be fine tuned to better match edge points, i.e. local
gradient information:

l∗
i
= argli max

∑

k
‖∇I(mk)‖, mk ∈ (li ∩R) (8)

whereI is a RGB converted to gray level image,∇ denotes
image gradient andR is a region of interest containing a
straight-line segment plus some tolerance (e.g.±10 pixel
around the segment extremes). In addition, any line defined
in the RGBD image indicates 3D points (from the depth data)
that are expected to form a line in 3D. The points forming
the 3D line have noise, e.g. due to the finite depth resolution,
which is important to filter using a RANSAC procedure [14].

Figure 2 comparesDLT-Pointswith DLT-Lines in a syn-
thetic (VRML [19]) setup. The calibration data is based on a
number of image points indicating extremes of line segments
corresponding to edge lines. The 3D data is inferred from

4The decomposition of estimated projection matrix, detailed in[14],
allows factorizing the intrinsic and extrinsic parameters as P = K[R t],
and therefore comparing them with the ground truth. The horizontal focal
length relative error is defined asKerr = (K(1, 1)−Ke(1, 1))/K(1, 1),
whereK is the VRML camera true intrinsic parameters matrix,Ke is the
estimated one andK(3, 3) = Ke(3, 3) = 1.



the 2D data (back-projection of image points intersecting
scene facets of the VRML model). The image points are
disturbed by adding Gaussian noise. The locations of the
image lines are fine tuned based on Eq.8. The plots show
the mean reprojection error and the mean of the relative
error of the estimated horizontal focal length, considering
100 calibration experiments for each noise level (standard de-
viation, horizontal axis). The two plots are similar, showing
that the common cost function used in nonlinear calibration,
the mean reprojection error, is effectively a good indicator
of the accuracy of the calibration. As noted by Hartley [18],
data normalization (magenta) improves the conditioning of
the DLT-Pointsproblem (green). The fine tuning of the lines
(blue) brings some additional decrease of the reprojection
error.

B. DLT-Lines with Radial Distortion

Using Eq.2, which describes the relationship between
distorted and undistorted image points, a linel12 can be
defined as the cross product of two points:

l12 =





u1d

v1d
1 + λs2

1



×





u2d

v2d
1 + λs2

2



 = l̂12 + λe12 (9)

wheresi is the norm of distorted image pointi, s2
i
= u2

id
+

v2
id

, the distorted line is denoted aŝl12 = [u1d v1d 1]T ×
[u2d v2d 1]T and there is a distortion correction terme12 =
[v1ds

2

2
− v2ds

2

1
, u2ds

2

1
−u1ds

2

2
, 0]T . Applying Eq.9 into the

point-to-line constraint, Eq.7, one has:
(

MT

k12
⊗ (l̂12 + λe12)

T

)

vec(P ) = 0 (10)

which can be rewritten as:

(Bki1 + λBki2) vec(P ) = 0 (11)

whereBki1 = MT

k12
⊗ l̂T

12
, Bki2 = MT

k12
⊗ eT

12
andMk12

denotes thekth 3D point projecting to the distorted linel12.
ConsideringN ≥ 12 pairs(Mki, l̂i), whereN = kmaximax,
one forms twoN × 12 matrices,B1 and B2, by stacking
matrices Bki1 and Bki2. Using once more Fitzgibbon’s
suggestion [15], left-multiplying the stacked matrices by
BT

1
results in a Polynomial Eigenvalue Problem (PEP),

(BT
1
B1 + λBT

1
B2) vec(P ) = 0, which can be solved

for example in Matlab using thepolyeig function. Its
solution gives simultaneously the projection matrix,vec(P ),
the radial distortion parameterλ, andP ′ = T−1P , where T
is defined in sec II.C. In a similar way as explained before,
both DLT methods applied to the radial distorted camera,
can be combined to estimateP andλ.

In order to organize and summarize the aspects already
described, we outline now the completeDLT-Linescalibra-
tion methodology (see Fig. 3). As input one has 2D lines in a
RGBD image acquired by a calibrated camera5, and 2D lines
in a RGB image acquired by the camera to calibrate. Each 2D
line of the RGB image is described by a number of points.

5Alternatively, one can have simply 3D points describing 3D lines (two
points per line).

Fig. 3. Camera calibration methodology, using Color-Depth (RGBD)
camera andDLT-Lines.

Usually one needs more than two points per line in order
to identify the radial distortion. Step 1 of the methodology
consists of estimatingλ, P and finallyP ′ (using equations 9
till 11). Step 2 consists of a local fine tuning of the lines in
the RGB image. The image lines are composed by a number
of parts (as described by the original number of 2D points).
For each of the parts of a line, an optimization process
is run as described by Eq.8. Steps 1 and 2 are repeated a
number of times, using as an approximation of the principal
point the values extracted from the estimatedP ′, in order to
overcome approximation of the principal point done in the
initialization. The process stops when the fine tuning of the
lines does not change significantly the lines.

IV. EXPERIMENTS

In this section the proposed calibration methodology is
tested in one simulated and one real setups. The simulated
setup consists of a VRML world containing fixed RGB
cameras and one mobile RGBD camera. A surveillance
camera network and a mobile robot equipped with a Asus
X-tion (RGBD) camera, are used for the acquisition of the
real data.

A. Virtual Reality Setup

A virtual reality world representing an indoor environ-
ment, containing one mobile and various fixed cameras, has
been built in VRML in order to create a calibration setup with
ground truth and thus allowing for a quantitative assessment
of the precision ofDLT-Lines. The VRML was programmed
using the Virtual Reality toolbox of Matlab. The depth of the
RGBD camera is computed using the projection matrix and
the set of facets composing the scenario.

The first step of the experiment involves identifying corre-
sponding lines both in the RGBD and RGB images. Then, a
line fitting algorithm fine tunes the location of each line, as
described in Sec.III-A (see Eq.8). Since the RGBD camera
gives the depth for each image pixel (using the depth map),
one can obtain a 3D line from each 2D line, considering
that the intrinsic and extrinsic parameters of the camera are
known. Figure 4 shows the input data, lines in both RGBD
and RGB images (Fig.4(d) and (e)), and results ofDLT-Lines
calibration in the VRML setup ((Fig.4(g)).

Given the calibration data, i.e.N 3D line points,Ml,
and their projections on the RGB image plane,ml, the
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Fig. 4. Camera calibration in a VRML setup (a). Each line defined in the RGBD image (b,c) leads to a 3D line in the world/RGBD coordinate system (d).
The RGBD lines and the corresponding lines in the RGB image (e), form the required input data forDLT-Linescalibration. After the projection matrix of
the RGB camera has been estimated, any RGBD 3D info, such as edgepoints and their 3D locations, can be mapped to the RGB image (f). Decomposing
the estimated projection matrix asK[R t] [14], provides a graphical comparison with the ground truth,blue and red cameras, respectively in (g).

reprojection error was found to have the valueErr =
∑

(ml − m̂l)
2/N = 0.4707[pix2], where m̂l is the esti-

mated projection ofMl. This subpixel error is qualitatively
verified to be small in Fig.4(f), where edge points found in
the RGBD image were back-projected to 3D points using the
depth information and projected to the RGB camera using
the estimated projection matrix. In particular one verifiesthat
the edge points of the RGBD image transported to the RGB
image are consistent with the edges of the RGB image.

Selecting the (horizontal) focal length as a representative
of the intrinsic parameters, the difference between estimated
and real values was found to beKerr = 4.9× 10−5, where
Kerr is defined as in Fig.2. The estimation error in the
camera orientation can be assessed using a distance between
the real and the estimated rotation matrices6. The distance
between rotation matrices was found to beRerr = 0.01[rad].
The camera position can be evaluated comparing the real
distance between RGBD and RGB cameras,d = 3.2454[m],
and the estimated one,de = 3.2546[m]. The difference
between these distances isderr = 0.0092[m], meaning a
relative error of approximately3 × 10−3. Considering that
the experiment involved using rendered images, and thus
introduced significant pixelization error in the calibration
data, the absolute and relative errors are effectively small.

B. Real Setup

In this experiment, the objective is to calibrate an Axis
P1347 high definition surveillance camera (RGB), with radial
distortion, installed on a waiting room. A ASUS X-Tion
(RGBD) camera, mounted on mobile platform, is used to
capture 3D scene information. The RGBD camera is assumed
to be calibrated.

Figures 5(b) and (f) show the lines identified on the RGBD
and RGB cameras. The noise in the depth map, Fig. 5(c),

6The distance between two rotation matrices,R1 and R2, can be
calculated using the norm of vectorvd = logm(RT

1
R2), where logm

denotes the matrix logarithm. The difference is given asRerr = 1/2 ‖vd‖.

implies noise in the 3D lines which can be attenuated using
RANSAC (see Fig. 5(d)). The data in Figs.5(e) and (f),
allow applyingDLT-Linesand obtaining the results shown in
Fig.5(g). As in the simulated setup, a qualitative assessment
of the precision of the calibration can be made by transport-
ing edges from the RGBD image to the RGB image (see
Fig.1(b), where the RGB image Fig. 5(f) has been cropped
to show just the area covered by the RGBD camera). The
qualitative good conformance of transported edges and RGB
edges asserts a qualitatively precise calibration.

In order to obtain quantitative assessment, some more tests
have been conducted. In particular J. Y. Bouguet’s calibration
toolbox [4] was used to estimate the intrinsic parameters of
the RGB camera. The difference between the (horizontal)
focal length obtained using Bouguet’s toolbox and the one
extracted from the estimated projection matrix usingDLT-
Lines, was found to beKerr = 0.05 (relative error defined
as described in Fig.2). The real distance from RGBD to
RGB wasd = 3.55[m], measured with a tape, while the
estimated usingDLT-Lineswas found to bede = 3.53[m].
The small relative errors assert thatDLT-Linescan provide
accurate results.

V. CONCLUSIONS ANDFUTURE WORK

This paper introducesDLT-Lines, a camera calibration
methodology based in the DLT. While in the ancestor
methodology,DLT-Points, the input data is formed by paired
3D-to-2D points, inDLT-Linesthe input data is formed by a
set of image lines and the corresponding 3D lines described
by 3D points. Similarly toDLT-Points, DLT-Lineshas been
extended to consider radial distortion, using the division
model proposed by Fitzgibbon [15].

One advantage ofDLT-Lines is that one or more 3D
points can be combined with two or more 2D points defining
an image line, instead of exact 1-to-1 correspondences as
required by DLT-Points. This is interesting as it allows



(a) Setup (b) RGBD data (c) RGBD depth map (d) RANSAC on one 3D line

(e) RGBD lines and cam. (f) RGB data (g) Result, RGB cam. in red

Fig. 5. Calibration of a surveillance camera, Axis P1347 (RGB), using a mobile robot equipped with a color-depth camera, Asus X-Tion (RGBD) (a).
Lines in the RGBD image (b,c) define 3D lines (d,e). Each line formed directly from the depth map (cyan dots) is filtered using RANSAC (blue and black
dots), as shown in (d), where the left/right plot has different/equal scales in the axis. RGBD (e) and RGB lines (f), form the input dataset forDLT-Lines.
Decomposing the estimated projection matrix asK[R t], provides the camera position and orientation on the world coordinate system (g).

applying automatic filtering techniques such as RANSAC
on 3D points defining a line, or fine tuning 2D lines to
come closer to local maxims (roof ridges) of module image
gradient. Simulation involving Gaussian noise on the input
data showed thatDLT-Lines can outperformDLT-Points
in terms of reprojection error, because of the additional
(automatic) filtering.

Experiments on a camera network simulated using VRML
allowed assessingDLT-Linesperformance, in terms of esti-
mated camera parameters, by comparing the results of the
calibration of the cameras with the ground truth.DLT-Lines
proved to be accurate, estimating the camera intrinsic and
extrinsic parameters with precision.DLT-Lines was tested
also in a real indoors setup, involving the calibration of a
real high resolution camera using a low budget color-depth
camera to acquire 3D information. In this case the estimated
intrinsic parameters were compared with Bouguet’s calibra-
tion. Was verified that the results were similar (order of10−2

relative error), and therefore confirmed the effectivenessof
the proposed methodology.

In terms of future work, Steele and Jaynes [20] have
shown that is possible to improve the numerical accuracy
of the polynomial eigenvalue problem as introduced by
Fitzgibbon [15], which can be beneficial also forDLT-Lines.
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