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Abstract

This paper presents a novel approach to the weak classifier selection based

on the GentleBoost framework. We include explicitly the notion of neighborhood

in one of the most common weak learner in boosting, the decision stumps. The

availability of neighboring points adds a new parameter to the decision stump, the

feature set (i.e. neighborhood), and turns the single branch selection of the deci-

sion stump into a fuzzy decision that weights the contribution of each branch using

a neighborhood-based confidence measure. The confidence measure of the fuzzy

stumps use neighboring samples to increase the robustness to local data perturba-

tions.

The appropriate definition of the neighborhood in the dataset allows the ap-

plication of the fuzzy stumps framework in a wide range of problems. In this

paper we address two types of scenarios to show their advantages: i) time-based

neighborhoods and ii) space-based neighborhoods. In both scenarios we evaluate

experimentally the properties of the fuzzy stumps, considering computer generated

datasets and real classification problems, such as human activity recognition and

object detection.
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1 Introduction

Boosting algorithms combine efficiency and robustness in a very simple and successful

strategy for classification problems. The advantages of this strategy have led several

works to improve the performance of boosting on different problems by proposing

modifications to the key elements of the original AdaBoost algorithm [1]: (i) the pro-

cedure to compute the data weights [2, 3, 4, 5], (ii) the selection of the base classifier

(e.g. [6, 7, 8] ) and (iii) the loss function it optimizes [9]. In this paper we address

the selection of the base classifier to bring improvements to classification for computer

vision problems.

Several works have shown experimental performance improvements by grouping

subsets of data samples into the base classifier. On one hand, when the groups are

defined previously such as the analysis of genomic data, each data sample is divided

into groups of data points in order to build a base regressor for each group. Then the

most relevant group regressors are selected to construct a new base regressor, which

improves the prediction error [6]. On the other hand, when the objective is to search

for groups in the data set, the data samples are gathered to build augmented base clas-

sifiers. This approach has been followed by the TemporalBoost [8], the SpatialBoost

[7] and the scale-space based weak regressors [10]. In order to detect human events in

videos, the TemporalBoost algorithm, proposed by [8], incorporates previous classifier

responses into the current decision by averaging their responses. The average response

of the weak classifier is selected when such a temporal support decreases the misclassi-

fication error at the current frame. Since the temporal support is not a parameter of the

weak classifier selection, the parameters of the weak learner are not optimally chosen

for the time-based criterion. In order to segment objects in images, the SpatialBoost

algorithm, introduced by [7], computes the response of two weak classifiers: the single

pixel and the neighborhood-based. The weak classifier with minimum error selects the

appropriate spatial support to improve the segmentation result for each pixel. Since the

SpatialBoost is designed for interactive image segmentation, the search for the weak

classifier is limited to the individual features (pixels) and one type of neighborhood.
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In addition, the features of the neighborhood are the pixel value of the center and the

class labels of its neighbors. The scale-space regressors, proposed by [10], use spatial

support as well, but the scale of the weak regressor is increased by an octave if the

regression error decreases. Thus, the resolution of the data along the iterations is a

monotonically non-decreasing function with faster convergence. The scale-space cri-

terion fits very well in the regression problem but in the more general classification

problem, the error could have several local minima over the scales, so a more exhaus-

tive search over the scales is needed.

We present a new approach to weak classifier selection for boosting, which aug-

ments the search space by using neighboring data samples. Although the general objec-

tive of our work is similar to the TemporalBoost [8] and SpatialBoost [7] approaches,

we include the notion of neighborhood in the weak classifier in a comprehensive man-

ner, which allows to apply the same algorithm on different problems where the neigh-

borhood notion is explicitly defined. SpatialBoost builds the feature neighborhoods by

adding the pixel value of the center and the class label of the center’s neighborhood.

We propose a more general approach by using the pixel (feature) values of the neigh-

borhood instead of the class labels. We introduce a feature set selection procedure to

the weak learner, which must choose the neighborhood that minimizes the classifica-

tion error at each round. Using decision stumps as weak learners, our proposal is based

on the average computation of the weak learner response in the vicinity of a data sam-

ple. This new type of weak learner selects jointly the parameters of the decision stump

and its neighborhood, a procedure that turns the single branch selection of the decision

stump into a linear combination of the branches. Such a combination of the stump

branches is commonly referred to as a fuzzy decision on [11], [12], [13]. Moreover,

[14] shows empirically that the fuzzy tree decreases the variance and consequently im-

proves the classification output. The extension of our fuzzy stumps proposal to fuzzy

decision trees has a similar behavior but relies on the feature set (neighborhood) to

build the decision function that combines the response of both branches for each base

learner.

We explain how to exploit the advantages of the fuzzy decision stumps in two sce-
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narios: time-based neighborhood and space-based neighborhood. In both scenarios

we evaluate experimentally the properties of the fuzzy stumps in computer generated

datasets, which allow us to control the level of noise and complexity of the problem.

The synthetic tests are followed by the application of the fuzzy stumps on real clas-

sification problems: (i) Human activity recognition on videos, which is based on the

temporal fuzzy stumps and (ii) car and face detection on images, which is based on

the spatial fuzzy stumps. These experimental results show a better performance of the

fuzzy stumps when compared to the common stumps.

2 Fuzzy decision stumps in GentleBoost

In this section we explain how to add fuzziness to the weak learner response, using

neighboring data points to perform the classification.

2.1 GentleBoost with decision stumps

The GentleBoost algorithm builds a final strong classifier, whose output is the log-odd

of the class given a feature point xi ∈ Rd. The problem is, at each round, to find the

optimal weak classifier hm that minimizes the classification error. This is done using

adaptive Newton steps, resulting in minimizing, at each round, a weighted squared

error

J =

N∑
i=1

wi(yi − hm(xi))
2, (1)

where wi = e−yihm−1(xi) are the weights and N the number of training samples.

The optimal weak classifier is then added to the strong classifier, followed by the

adaptation of the data weights. Table 1 shows the GentleBoost algorithm.

The choice of the weak classifier hm depends on the application, but a common

choice is based on efficient and interpretable models such as the decision stumps. They

have the form

hm(xi) = aδ
[
xfi > θ

]
+ bδ

[
xfi ≤ θ

]
, (2)

where f ∈ {1, . . . , d} is the feature number and δ is an indicator function (i.e.
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1. Given: (x1, y1), . . . , (xN , yN ) where xi ∈ X , yi ∈ Y = {−1,+1}, set H(xi) := 0, initialize
the observation weights wi = 1/N , i = 1, 2, . . . , N

2. Repeat for m = 1, . . . ,M

(a) Find the optimal weak classifier hm over (xi, yi, wi).

(b) Update weights for examples i = 1, 2, . . . , N , wi := wie
−yih

∗
m(xi)

3. Compute the strong classifier as H(xi) =
∑M

m h∗
m(xi) and classify the sample xi according to

sgnH(xi)

Table 1: GentleBoost algorithm.

δ[condition] is one if condition is true and zero otherwise). The optimal value of

the stump parameters {a, b, f, θ} are found by the minimization of J w.r.t. hm. [15]

presents a closed form for a and b and the values of f and θ are found using an exhaus-

tive search. In addition, we consider in our experiments the natural extension of the

decision stumps, the decision trees.

2.2 Fuzzy weak learners

We extend the use of one feature to a set of features, defined in a group of available

neighbors for each feature. This is done by modifying the indicator functions of Eq.

(2) in order to collect the values of the indicator functions within the neighborhood of

xfi . As the neighborhood (i.e. feature set) is an additional parameter of the indicator

function, our algorithm must find the feature set that achieves minimum error, in the

same way as the usual decision stump finds the optimal feature f .

The neighborhood of xfi is defined by a set of feature indexes

I = {(i, f), (i1, f1), . . . , (i,fp), . . . , (iP , fP )} that selects the neighboring pointsN =

{xfi , x
f1
i1
, . . . , x

fp
ip
, . . . , xfPiP }. The index set I is obtained from a neighboring map,

which needs to be defined for each type of neighborhood. For instance, if we compute

the feature xi on each frame of a video sequence, the features computed on the previ-

ous T frames {xi−1, . . . , xi−T } belong to the neighborhood of xi. Thus, the temporal

neighboring map of the video-based feature index (i, f) is (i− t, f) t = 1, . . . , T , so

the neighborhoodN has three parameters: the data point index i, the feature dimension

f and the temporal extent T . Let us denote P as the parameters of the index set I(P)

and its correspondent neighborhood N (P). Then, the set of indexes of the time-based
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neighborhood is

I(P) = I(i, f, T ) = {(i, f), (i− 1, f), . . . , (i− T, f)} (3)

and its correspondent neighborhood is

N (P) = N (i, f, T ) = {xfi , x
f
i−1, x

f
i−2, . . . , x

f
i−T }. (4)

The example of Eq. (3) and Eq. (4) consider all windows sizes from 1, only one

feature, to T + 1 that is the maximum length of the window.

In addition to the time-based data, we address spatially constructed data samples

such as the features computed on a digital image. Let us consider the data point xi as

the feature values computed on an image of size W × H , where W is the width and

H is the height. The feature point xfi is related to the image point (η, ξ) as follows:

f = η ·W + ξ. The neighboring map is based on a spatial mask, which selects the

data points in the neighborhood of xfi . For instance, the elliptical mask centered at the

image point (η, ξ) and rotated by α selects all the points in the set

e(f = η ·W + ξ, A,B, α) =

{
(u
′
, v
′
) :

(u
′ − η)2

A2
+

(v
′ − ξ)2

B2
<= 1

}
(5)

u
′

= u cosα− v sinα

v
′

= v sinα+ v cosα.

Thus, the index set of the elliptical image neighborhood of the feature point xfi is
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I(P) = I(i, f = u
′

iW + v
′

i, A,B, α)

= {(i, f), (i, f = u
′

1W + v
′

1), . . . , (i, f = u
′

P−1W + v
′

P−1)}, (u
′

i, v
′

i) ∈ e(f,A,B, α)

(6)

and its correspondent neighborhood is

N (P) = N (i, f = u
′

iW + v
′

i, A,B, α)

= {xfi , x
u
′
1+Wv

′
1

i , . . . , x
u
′
P−1+Wv

′
P−1

i }, (u
′

i, v
′

i) ∈ e(f,A,B, α) (7)

The example of Eq. (6) and Eq. (7) consider the ellipses with parameters P =

i, f = ηW + ξ, A,B, α. Let us include the neighborhoodN (P) in the decision stump

by computing the average response of the base learner hm,

gm(xi) =
1

|N (P)|
∑

∀xf
i ∈N (P)

hm(xfi ) (8)

=
1

|N (P)|
∑

∀xf
i ∈N (P)

(
aδ
[
xfi > θ

]
+ bδ

[
xfi ≤ θ

])
, (9)

where |I(P)| is the cardinality of the neighborhood N (P). This expression can be

rearranged in order to put a and b in evidence,

gm(xi) = a
(

1
|N (P)|

∑
∀xf

i ∈N (P) δ
[
xfi > θ

])
+

+ b
(

1
|N (P)|

∑
∀xf

i ∈N (P) δ
[
xfi ≤ θ

])
.

(10)

From the equation 10 it is easy to note that the performed output averaging only

modifies the indicator function. The new indicator functions are:

∆+(xi, θ,N (P)) =
1

|N (P)|
∑

∀xf
i ∈N (P)

δ
[
xfi > θ

]
, (11)

7



which computes the percentage of features in the set N (P) that are grater than the

threshold θ and

∆−(xi, θ,N (P)) =
1

|N (P)|
∑

∀xf
i ∈N (P)

δ
[
xfi ≤ θ

]
, (12)

which computes the percentage of features in the setN (P) that are less than the thresh-

old. The functions ∆+ and ∆− = 1−∆+ of Eq. (11) and Eq. (12) sample the interval

[0 1] according to the number of features in the setN (P). For example, if |N (P)| = 2

this yields to ∆ ∈ {0, 1/2, 1}, if |N (P)|, ∆ ∈ {0, 1/3, 2/3, 1} and so on. The new

weak learners, the fuzzy decision stumps, are expressed as follows:

gm(xi) = a∆+(xi, θ,N (P)) + b∆−(xi, θ,N (P)). (13)

At each round, the fuzzy stumps of Eq. (13) add to the strong classifier a weighted

sum of both branches, with confidence weights ∆+ and ∆− for the decisions a and b

respectively.

Substituting the fuzzy weak stump of Eq. (13) into the error function

J =

N∑
i=1

wi(yi − gm(xi))
2, (14)

the optimal decision parameters a and b are obtained by the minimization of the error

of Eq. (14),

∂J

∂a
= 0

∂J

∂b
= 0. (15)

The solution of Eq. (15) yields

a∗ =
ν̄+ω̄− − ν̄−ω̄±
ω̄+ω̄− − (ω̄±)

2 , (16)

b∗ =
ν̄−ω̄+ − ν̄+ω̄±
ω̄+ω̄− − (ω̄±)

2 , (17)
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with
ν̄+ =

∑N
i wiyi∆+, ν̄− =

∑N
i wiyi∆−,

ω̄+ =
∑N

i wi∆+, ω̄− =
∑N

i wi∆−,

and ω̄± =
∑N

i wi∆−∆+.

Note that variables of Eq. (16) and Eq. (17) are functions of {xi, f, θ,N (P)}

that we drooped for notation simplicity. Also note that if at round m, the optimal

neighborhood N (P) of the fuzzy stumps contains only a feature point, the resulting

weak learner becomes the usual decision stump.

There is no closed form to compute the optimal f, θ and N (P), thus exhaustive

search is usually performed. Finding the optimal θ and f is a tractable problem, but

finding the neighborhood N (P) could be a very hard problem by testing all possible

parameters P , thus it is essential to use a priori knowledge of the problem to reduce

the search space.

2.2.1 Neighborhood selection

The optimization of the neighborhood is a very hard problem because exhaustive search

could take a prohibitive long time.

The assumption of neighboring data points allow us to bound the search of the

neighborhood parameters according to the local structure of the data sets, reducing the

search space from a very large number of neighborhoods to a subset promising can-

didates. The search of the time-based feature sets is reduced to a set of predefined

temporal windows bounded to a few seconds, such that the confidence measures ∆+

and ∆− provide robustness to local perturbations. For instance, if we bound the tem-

poral search to 2 sec. on a 25fps camera, this yields T=50 for Eq. (3) and Eq. (4), so

the search space is reduced to 50 different neighborhoods.

The search of the space-based neighborhoods is reduced to a set of predefined 2D

functions. These functions are inspired by the image filters, which define a kernel

around a pixel to compute the filter response. Thus, we define the elliptical masks as

the natural spatial support of a feature point, selecting the points inside the ellipse as

part of the neighborhood of the feature point.
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Figure 1(a) shows 13 examples of binary masks generated by the procedure just de-

scribed and Figure 1(b) their implementation in digital images, with the masks plotted

at the center pixel of each image. Note that the first mask represents a feature point

(pixel).

3 Assessments of fuzzy learners in synthetic data

We aim to evaluate the properties of the fuzzy learners when exposed to controlled

distortions of the data. These synthetic databases allow us to compare the perfor-

mance and robustness of our fuzzy learners in noisy and transformed versions of the

datasets. In addition, we consider the neighborhood selection problem in two scenar-

ios: (i) space-based neighborhood selection for image classification and (ii) time-based

neighborhood for 2D trajectory classification ( previously presented [16] ).

The image classification is a binary class problem, where the objective is to dis-

tinguish a specific mask against the remaining ones. The masks represent geometric

shapes and the task is to provide the correct label of each image. In this case we eval-

uate the fuzzy learners using a space-based neighborhood. The second scenario is the

classification of 2D trajectories for both binary and multi-class problems. The objec-

tive is to provide the correct label of each 2D point and in this case we evaluate the

time-based neighborhood for the fuzzy stumps.

3.1 Spatial support for fuzzy learners

The experiments of this section compare the capabilities of our fuzzy stumps and trees

with spatial support against the common decision stumps and trees. Figure 2(a) shows

the masks of the positive class (square) and the four shapes of the negative class: i) cir-

cle, ii) triangle, iv) rhombus and v) hexagon. In order to evaluate the robustness of the

methods to different noise levels and data transformations, we generate modified ver-

sions of the initial masks. The modifications include: i) pixel noise, ii) shape rotation

and iii) shape translation.

The space-based neighborhoods are two dimensional structures that bring high-
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(a)

(b)

Figure 1: The 13 masks used to search for the best space-based neighborhood, in the
case of Section 3. The plot 1(a) on top shows the continuous masks and the bottom
plot 1(b) their respective discrete implementation. The mask number 1 represents only
one pixel and the remaining ones define different neighbor sets centered at that pixel.
Masks from numbers 2 to 5 have parameters (A = 1, B = 0.1) and masks from 6 to
9 have parameters (A=1,B=0.4) and in both cases α = 0, 45, 90, 135 degrees. The last
four masks are circles and the parameters are (A=B=0.4), (A=B=0.6), (A=B=0.8) and
(A=B=1).
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(a) (b)

(c) (d)

Figure 2: The original image set is presented in the first column of Image 2(a). The
second group of columns of Figure 2(a) with the title “Easy”, plots examples of the
distortions that correspond to a pixel noise with 5% variance and rotations of 2 degrees.
In the same figure, the group of columns labeled as “Noisy” corresponds to the 67.5%
noise case and 18 degrees of variance in rotations. The last group of columns of Figure
2(a) aims to illustrate the influence of the 18 degrees rotations and 5% variance of
the added noise. Figure 2(b) shows the subset of neighborhoods N (P) of Eq. (7)
for searching the best space-based fuzzy weak learner. Figures (c) and (d) show the
evolution of the error in the testing data set over the boosting rounds that corresponds
to the last column of Figure 2(a), labeled as Rotations.
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order interactions among features, so in this scenario we also include the decision trees

with four splits, for both the decision stumps and the fuzzy stumps. Thus, we have

four types of weak classifiers for the GentleBoost algorithm: (i) decision stumps, (ii)

decision trees with four nodes, (iii) fuzzy stumps and (iv) fuzzy trees with four nodes.

The comparison between the four learning procedures relies on the maximum of the

recognition rate over the GentleBoost rounds.

Each 18×9 image mask represents one data sample xi ∈ R162 (Eqs. 2,13) (feature

points, f = 1, . . . , 162). The selection of the best neighborhood of the fuzzy stumps

follows the method described in section 2.2.1, using the masks shown in Figure 2(b),

so the neighborhood search is reduced to 13 sets. Remind that at each round the fuzzy

stumps selects the set N (i, f = ηW + ξ, A,B, α) of Eq. (7) that minimizes the

weighted error of Eq. (14).

Figure 2(a) shows examples of the generated data samples. The distortions of the

initial image masks have one or more of the following components:

• Image noise, which is simulated by the addition of noise to every pixel indepen-

dently. The noise model is a Gaussian with zero mean and variance ranging from

5% to 67.5% of the maximum pixel value.

• In plane 2D rotations, which are determined by Gaussian functions with zero

mean and variance varying from 2 deg to 18 deg.

• Small image translations, which are applied to the entire dataset and their range

is from one to two pixels in each direction. For every image, the probability of

being translated follows a uniform distribution.

For each experiment, the generation of the training and testing data comprises 11

different groups of 200 samples per class are generated. One of the groups corresponds

to the training set of every classifier and the remaining 10 groups correspond to the

testing set. Figures 2(c) and 2(d) show two examples of the evolution of the error in the

testing set, which present the general trend of the results: the fuzzy learning strategy

brings improvements for both the decision stumps and the decision trees with four

splits.
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(a) (b)

(c) (d)

Figure 3: Maximum recognition rate achieved for each method while varying the noise
parameters for the train and test sequences. 3(a) presents the results varying the gaus-
sian noise from 5% to 45% with the rotation variation fixed to 2 degrees and 3(b)
presents the results varying the gaussian noise from 5% to 67.5% with the rotation
variation fixed to 18 degrees. In 3(c) and 3(d) the pixel noise variance is fixed to 5%
and 25% respectively while the rotation variance changes from 2 to 18 degrees in both
cases.

In the first group of experiments the level of noise is the same for the training and

testing data sets. Figures 3 show the maximum recognition rate over rounds achieved

by GentleBoost with: (i) decision stumps, (ii) fuzzy stumps, (iii) decision trees with

four splits and (iv) fuzzy decision trees with four splits. It is important to remark

that the tree version of each weak learner is better than its single-stump counterpart.

In addition, the fuzzy version of each learner attain better recognition rate than the

simple one. Figures 3(a) and 3(b) correspond to variations in the pixel noise parameter

wile the rotation is fixed to 2 and 18 degrees respectively. In the first case, with less

rotations, the improvement obtained with the fuzzy version is less visible, but in Figure

3(b), with 18 degrees variance for the rotation parameter, the fuzzy procedure brings
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clearer improvements. It is also noticeable, from Figure 3(b), that with more pixel

noise present in the images the difference between the learners is narrowed.

When varying the variance of the rotations parameter maintaining the amount of

pixel noise fixed, 5% in Figure 3(c) and 25% in Figure 3(d), we see that the fuzzy

learners are clearly more robust and this difference tends to increase when augmenting

the rotations.

In the second group of experiments, the levels of noise of the training and testing

sets are different. Figure 4 shows the recognition rates of this setup where the methods

were trained with the parameters that correspond to test number 3. In Figure 4(a)

the training was performed with a pixel noise of 25% and a rotation variance of 18

degrees, varying then the pixel noise from 5% to 45% (test number 1 to 5). Figure

4(b) corresponds to the methods trained with pixel noise variance of 5% and rotation

variance of 10 degrees. The results confirm that the fuzzy stumps perform better than

the decision stumps in all situations and the behavior is very similar to the obtained

in the previous setup. It is important to remark the very similar performance of the

fuzzy stumps and decision trees on Figure 4(b) and even in the most difficult case the

fuzzy stumps perform better than the decision trees. This suggests that the neighboring

interactions between features are as important as other high-order interactions, when

the data set allows to define such a neighborhood notion.

3.2 Discussion

We evaluate the performance of our fuzzy weak learners, in two problems:

• Binary image classification using the spatial support for the fuzzy learners.

• 2D trajectory classification using the temporal support for the fuzzy stumps (

previously presented [16] ).

Although the very different nature of the problems, we were able to apply suc-

cessfully the fuzzy learners in both setups. The requirement for this behavior is the

definition of an explicit and adequate notion of neighborhood for each problem. In

addition, the better performance of the fuzzy stumps when compared to the decision
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(a)

(b)

Figure 4: Maximum recognition rate achieved for each method while varying the noise
parameters only in the test. In each case the classifiers where trained with a specific
set of noise parameters and tested then varying the amount of one of those parameters.
In Figure 4(a) the training was performed with a pixel noise of 25% and a rotation
variation of 18 (that corresponds to test number 3), then the test results where obtained
varying the pixel noise from 5% to 45%. In 4(b) the train was done with a pixel noise
variance of 5%, and with a rotation variance of 10 degrees (that corresponds to test
number 3). Then the test was performed varying the rotation parameter from 2 to 18
degrees 16



stumps, shows experimentally the advantages of the fuzzy indicator function over the

common indicator function and suggest to apply the FuzzyBoost directly in similar

problems.

The fuzzy stumps (Eq. (13)) have two main advantages over the sharp decision of

the common stumps (Eq. (2)):

• Prevents the addition of wrong decisions due to noisy feature points and

• brings additional robustness to data transformations.

4 Fuzzy learners on real problems

In this section we address real classification problems following the procedure of the

previous section, which evaluates the fuzzy learners in two different scenarios: (i) time-

based fuzzy stumps for human activity recognition ( previously presented [16] ) and (ii)

space-based fuzzy learners for object detection.

4.1 Space-based fuzzy learners for object detection

The objective of these tests is to classify an image as the object (positive class) or

the background (negative class) in two different problems: (i) car detection and (ii)

face detection. The spatial neighborhood is applied to the pixels of the Sobel filter

response of each image. We follow the comparison standard of Section 3.1, so we have

four types of weak classifiers for the GentleBoost algorithm: (i) decision stumps, (ii)

decision trees, (iii) fuzzy stumps and (iv) fuzzy trees.

The car detection data set (UIUC Image Database - DataSet3) contains images of

side views of cars and background patterns. The face detection data set (CBCL MIT

face data - DataSet4) contains frontal facial and non-facial images.

4.1.1 Car detection

The UIUC Image Database [17] is composed of 1050 training examples, 550 car and

500 non-car cropped images, all of size 40x100 pixels. In addition, the database pro-
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vides the original images and the location of the cars in the test images. To generate the

positive and negative data we use a sliding window method that extracted 200 cars and

1705 non-cars. Figure 5 shows data set images of the computed features, the negative

and positive classes and the masks selected. The data samples for classification are

provided by the magnitude of the image gradient, which is computed from the Sobel

filter response on horizontal and vertical directions.

(a) (b)

(c) (d)

Figure 5: Figure 5(a) shows one example of the original image and Figure 5(b) its
corresponding data sample computed by the Sobel filter response. 5(c) shows positive
and negative examples in the UIUC Image Database for Car Detection. 5(d) shows the
masks selected for building the neighborhoods

The selection of the best spatial neighborhood of the fuzzy learners follows the

procedure of Section 2.2.1, using the masks of Figure 5(d). The a priori information

considered to reduce the number of masks for searching is the spatial support of the

gradient response. In the case of car images, the line-based shape captures the neigh-

borhood information of the data samples. Thus, we consider a group of 7 masks, which

are comprised mainly of horizontal and vertical bars obtained from an elliptical shape,

as described in 2.2.1.

We compare the performance of the four types of weak classifiers by computing the

Receiver Operating Characteristic (ROC) curve. We choose the ROC curve because it

is a good evaluation criterion on binary problems where the number of samples is
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highly biased to one of the classes, like the image databases utilized on this work.

Figure 6(a) shows the curves of the four classifiers, where the fuzzy decision stumps

perform better than the decision stumps, and the fuzzy decision trees better than the

decision trees.

4.1.2 Faces detection

The CBCL MIT face data set [18] is composed of a total of 24,045 test images, 472

faces and 23,573 non-faces. The training data has 2,429 faces and 4,548 non-faces and

all the images have 19x19 pixel and are grayscale. In Figure 7(a) are plotted 8 positive

examples in the top two rows and 8 negative examples at the bottom rows.

The selection of the best spatial neighborhood of the fuzzy learners follows the

procedure of Section 2.2.1, using the masks of Figure 7. In the case of the faces,

rectangular and line shaped masks capture the facial landmarks such as eyes, eyebrows,

nostrils and mouth corners. Figure 8(a) shows the ROC curves of the four classifiers

considered, which have a behaviour similar to the previous section, the car detection

problem. Thus, the fuzzy learners bring better performance for both decision trees and

decision stumps.

5 Conclusion

We present a new boosting method that introduces a fuzzy function in decision stumps,

which can be applied to several classification problems. The properties brought by the

fuzzy stump are based on the notion of neighborhood. The feature set that represents

the neighborhood is included explicitly in the expression of the weak classifier. This

characteristic allows us to apply the fuzzy procedure to several problems, given that

is possible to define explicitly neighborhood sets in the data. Thus, our base classifier

relies on the feature set (neighborhood) to build a confidence measure that combines

the response of both branches for each stump, improving the robustness of the decision

stump to local perturbations of the data.

We explained how to exploit the advantages of the fuzzy decision stumps in two
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(a)

(b)

Figure 6: Comparison between both decision trees and stumps and its fuzzy versions
in the cars database. 6(a) shows the true positives vs. false positives and 6(b) the
classification error over the rounds.
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(a) (b)

Figure 7: 7(a) shows positive and negative examples in the CBCL MIT face data.
7(b) shows the masks considered for the space-based fuzzy stump in the face detection
application

scenarios: time-based neighborhood and space-based neighborhood. For both sce-

narios, we assess experimentally the advantages of the fuzzy stumps in two different

setups:

• Synthetic datasets. This setup allow us to simulate several types of distortions to

the data.

• Real datasets in the context of computer vision. We tested the algorithm in four

real databases that comprise common tasks in computer vision applications: i)

Human activity recognition in video sequences ([16]) and ii) Object detection in

images.

The experiments show the appealing nature of this fuzzy procedure due to its better

performance and wide range of applicability. However, the question of how to search

over all the possible neighborhoods is problem dependent and can surely be further

improved. As future work we aim to address two issues related to the neighborhood

search: i) Propose efficient algorithms that extract promising neighborhoods and ii)

study the spatio-temporal structure to define neighborhoods in that space. Addressing

this problems will allow the application of the fuzzy procedure to spatio-temporal data,
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(a)

(b)

Figure 8: Comparison between both decision trees and stumps and its fuzzy versions
in the face database. 8(a) shows the true positives vs. false positives and 8(b) the
classification error over the rounds.
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for example to segment objects in video sequences.
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