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“The machine has no feelings, it feels no fear and no hope...

It operates according to the pure logic of probability.

For this reason, I assert that the robot perceives more accurately than man.”

Max Rudolf Frisch in Homo Faber (1957)





Abstract

This thesis addresses an online 6D Simultaneous Mapping and Localization technique (SLAM)

for a tracked wheel robot in an unknown and unstructured environment. While the robot pose

is represented by a 3D position and SO(3) orientation, the environment is mapped with natural

landmarks in 3D space, autonomously collected using visual data from feature detectors. An

Extended Kalman Filter (EKF) is used to compute both pose and landmark estimates over

time. A motion model using odometry readings from motor encoders and orientation changes

measured with an Inertial Measurement Unit is introduced, as well as an observation model

with a novel approach that copes with both mono and stereo observations.

Since the computational complexity of EKF grows over a quadratic order with the increas-

ing number of landmarks in the state, a new landmark classifier using a Temporal Difference

Learning methodology is introduced. This classifier is applied for landmark removal, identifying

all undesired landmarks for estimation. The main novelty introduced is a Dimensional-bounded

EKF that, with the aforementioned classifier and proper criteria for landmark removal and

insertion, forces an upper bound to the number of landmarks in the EKF state, reducing the

computational complexity up to a constant while not compromising its integrity.

An inverse depth parametrization is used for landmark representation. Two different

feature detectors are presented and compared for this thesis: SURF and ORB. All experimental

work was done using real data from RAPOSA-NG, a tracked wheel robot developed for Search

and Rescue missions.

Keywords: Simultaneous localisation and mapping, Extended Kalman filter, Feature de-

tector, Inverse depth parametrization, Landmark evaluator, Temporal difference learning
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Resumo

Esta tese trata de uma técnica de Localização e Mapeamento Simultâneo (SLAM) online em

6D para um robot terrestre num ambiente desconhecido, cuja pose é representada pela sua

posição em 3D e a sua orientação definida em SO(3). O mapa é composto por pontos de

referência (landmarks) naturais, extráıdos automaticamente com um detector de pontos em

dados visuais. É utilizado o Extended Kalman Filter (EKF) para calcular as estimativas da

pose e das landmarks ao longo do tempo. Um modelo de movimento que utiliza leituras de

odometria e velocidades angulares medidas com um sensor inercial é introduzido, assim como

um modelo de observação que lida com informações monoculares e estereo em simultâneo.

Como a complexidade computacional do EKF cresce acima de uma ordem quadrática com

o aumento do número de landmarks, um novo classificador de landmarks que utiliza técnicas

de Aprendizagem por Diferenças Temporais é introduzido. Este classificador pode ser utilizado

para remoção de landmarks, identificando as landmarks não desejadas para estimação. A grande

novidade introduzida é um EKF de Dimensão Fechada que, com o classificador supracitado e

critérios próprios para inserção e remoção de landmarks, pode limitar o número destas no estado,

reduzindo a complexidade computacional do EKF para uma constante sem comprometer o seu

desempenho.

Uma parametrização de profundidade inversa é utilizada para representação das landmarks

no estado. Dois detectores de pontos visuais são apresentados e comparados nesta tese: SURF

e ORB. Os resultados experimentais foram obtidos com dados reais do RAPOSA-NG, um robot

SAR terrestre para missões de Busca e Salvamento.

Palavras Chave: Localização e mapeamento simultâneo, Extended Kalman filter, , In-

verse depth parametrization, Detector de pontos visuais, Classificador de landmarks, Aprendiza-

gem por diferenças temporais
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Chapter 1

Introduction

This chapter serves as an introduction for this thesis, presenting a problem within the robotics

field related to pose and map estimation for most robot platforms and a solution proposal

in section 1.1, focused on Search and Rescue (SAR) activities and issues. RAPOSA-NG, a

SAR semi-autonomous robot used for real tests is then introduced in section 1.2, along with

its predecessor, RAPOSA. Section 1.3 reviews the literature and section 1.4 points all major

contributions this thesis makes to this area. Finally, section 1.5 ends this chapter by presenting

the thesis outline.

1.1 Problem Statement

Nowadays, deploying SAR robots after urban and large-scale catastrophes is of the utmost im-

portance. They intervene within human-inaccessible spaces or environments that may pose any

threat to human safety, such as collapsed buildings or environments with radioactive contami-

nation. Their missions can vary from area reconnaissance to finding victims within risky areas,

demanding quick responses with extreme caution1. As such, most SAR robots require skilful

and focused operators to control them successfully. It is then imperative that SAR robots should

perform some tasks with an autonomous or semi-autonomous approach. For instance, granting

simultaneous localization and mapping capabilities for a SAR robot allows the operator to focus

more on different actions, such as operating its course while probing the environment for victims

or safer routes without worrying with locating the robot.

It seems to be a chicken and egg problem to locate a robot and map the environment in

a simultaneous way, as the pose requires a map to be pinpointed but is also needed to build

the map layout [1]. In fact, this problem is not trivial at all. Using probabilistic models, one

can assume that there is shared uncertainty by both location and map information. If this

uncertainty is somehow minimized, both location and mapping estimations will become more

1http://spectrum.ieee.org/automaton/robotics/industrial-robots/fukushima-robot-operator-diaries, Accessed
on 28/08/2011

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: iRobot Warrior 710 in Fukushima Dai-1 Nuclear Plant.

accurate [2]. Simultaneous Location and Mapping (SLAM) is one of the most promising research

fields in robotics, aiming to predict the location of a robot and map its surroundings using both

an observation and a motion model with available data from a set of sensors. Probabilistic filters

can be applied to reduce uncertainty in an iterative way over time.

Extended Kalman Filter (EKF), when applied to SLAM, proves to work reasonably well

with distinct observations and a small state for estimation [3]. However, an optimal solution

for SLAM assumes perfect data correspondence over time, and it is quite difficult to accomplish

that when dealing with visual observations in real time acquired with perspective variant feature

detectors. Also, with the increasing amount of new data for map estimation over time, the

computational complexity of EKF grows over a quadratic order, making it obsolete for large

amount of data estimation. By upper bounding the state, the computational complexity of EKF

becomes constant and, using a well-defined classifier and proper criteria, undesired features are

automatically removed in an autonomous way. A side effect from this outlier removal procedure

is that the map may become visually sparse, but as long as it meets the SLAM needs for stable

predictions, one can use proper techniques to acquire visually more compelling maps or map the

surroundings using more appropriate sensors for that effect (e.g. sonars and laser range-finders).

A common configuration for SAR robots uses monocular or stereo vision cameras, as well as

rotor encoders for odometry readings and an Inertial Measurement Unit (IMU) to measure linear

acceleration, angular velocities and orientation changes in three axis. As such, the solution for

the SLAM problem proposed on this thesis uses both odometry and IMU readings for movement

prediction, as well as monocular and stereo visual data for mapping the environment. The map

is represented in state as a set of point landmarks extracted in an autonomous way with feature

detectors. By using both monocular and stereo information in a hybrid way, a larger amount of

information from visual observations can then be used to solve the SLAM problem.
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Figure 1.2: Different perspective views and inside view of RAPOSA (Left) and RAPOSA-NG
from IST (Right).

1.2 Search and Rescue Robots: RAPOSA and RAPOSA-NG

For this thesis development and experimental results, a real tracked wheel robot named RAPOSA-

NG was used. This robot is an upgraded version of RAPOSA, a tracked wheel robot developed

in a project with the same name from 2003 to 2005, by a Reseach and Development consor-

tium between a robotics Portuguese company IdMind c© , Instituto de Sistemas e Robótica (ISR)

from Instituto Superior Técnico (IST), Lisbon fire-fighters (Regimento de Sapadores Bombeiros

de Lisboa) and the Perceptual Robotics Laboratory from the University of South Florida [4]. The

goal was to conceive a robot able to intervene and operate in environments hostile or inaccessible

to humans for SAR missions. Following the RAPOSA project success, IdMind c© redesigned it

and made this new version for commercial purposes.

Both RAPOSA-NG and its predecessor share the same layout, as shown in figure 1.2.

They are both grounded tracked wheel robots with two pairs of tracked wheels, coupled between

two different bodies: a base body and a frontal body. IST became the final owner of RAPOSA

and acquired the backbones of one RAPOSA-NG from IdMind c© for research purposes. An

Inertial Measurement Unit (IMU) was equipped on RAPOSA-NG frontal body, as well as a

Stereo Camera for visual data acquisition and to support 3D view with the usage of visual

glasses.

Although this work has been configured to be implemented on RAPOSA-NG, it presents

a general basis for most grounded robots that share similar traits with RAPOSA-NG.

1.3 Literature Review

It was during the 80s that R.C. Smith and P. Cheeseman presented a stochastic way of measur-

ing a number of spatial relationships with a common world frame by compounding successive

states modelled with uncertainty [2]. Extended Kalman Filter (EKF) was then applied to es-
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SLAM

LEFT RIGHT

Figure 1.3: Graphical depiction of the proposed SLAM using visual features from a stereo
camera.

timate it in an iterative way, computing a proper gain that would weight both observable and

prior spatial relationships. Their remarkable work gave rise to a probabilistic approach for the

robotics field and many researchers strived to apply it to a real case scenario. J.J. Leonard and

H.F. Durrant-Whyte not only accomplished that in 1991 with a real robot in a known environ-

ment, but also introduced Simultaneous Localization and Mapping (SLAM) terminology to the

robotics field and the concept of geometric beacons: natural landmarks present in the environ-

ment that could be successively observed with reliability and be well described in terms of a

concise geometric parametrization (referred in this thesis simply as landmarks) [3]. Geometric

beacons can be acquired with many different types of sensors, as long as the aforementioned

qualities are maintained.

While EKF tends to be the standard and most widely used filter for non-linear state

estimates in SLAM, it suffers from several key problems. For instance, the update step for the

posterior state covariance demands a full inversion of the innovation covariance and even with

few observations, it retains a quadratic order of computational complexity. Also, the Kalman

gain obtained is not optimal, as the system is linearised. Many researchers have proposed

different techniques to overcome some of these issues in SLAM, such as the usage of Unscented

Kalman Filter for a more optimal Kalman gain over non-linear systems [5] [6], particle filters for

a posterior state estimation [7] and Extended Information Filter applied to sparse information

matrices [8]. Nonetheless, EKF remains a powerful tool for solving the SLAM problem, still

currently used for a number of applications.

Most literature regarding SLAM algorithms points out the usage of lasers and/or sonars

for map observation [1]. While they prove to be good sensors for the mapping purpose when

using techniques such as occupancy grid mapping [9] and ICP [10], cheaper sensors for mapping
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can be also used that nonetheless are mandatory in a SAR robot, e.g. visual cameras.

Civera and Davison proposed a real-time algorithm which recovers the location of a monoc-

ular camera over time using SLAM with a random walk model [11]. However, feature initializa-

tion requires more than one observation and a proper triangulation for an initial depth estimate.

Also, it needs to acquire landmarks with known depth for scale initialization. Thus, Civera and

Davison presented an inverse depth parametrization that represents landmarks uncertainty with

more accuracy than the standard XYZ parametrization [12]. The increase of accuracy can

be justified by the higher degree of linearity of the inverse depth parametrization over XYZ

parametrization. However, this representation parametrizes each landmark with double the pa-

rameters, increasing the EKF complexity even further. They also defined a landmark classifier

that removes 50% of all predicted landmarks that should be visible but are not detected by any

feature detector per iteration. This approach lead to the landmark classifier introduced in this

thesis. The usage of a random walk model assumes a well behaved motion with smooth linear

and angular velocities for all time, a condition that surely fails when, for instance, a robot climbs

up a set of stairs.

Pinies, Lupton, et al. added the usage of an IMU to the vision SLAM with inverse depth

parametrization [13]. In fact, having orientation changes measured with an IMU, the uncertainty

of the camera location is better modelled. However, it does not decrease the uncertainty when

only linear motion is observed, which leads to the need of odometry inclusion presented in this

thesis. As for the scalability problem, in order to solve it, this thesis extends the inverse depth

parametrization usage for stereo vision as well.

BiCamSLAM, introduced in 2007 by J. Sola et al., uses monocular information from each

camera of a stereo rig instead of applying directly stereo information from epipolar geometry [14].

For this thesis, a different approach is presented, where both monocular and stereo observations

are added to the state with the inverse depth representation but with a known depth (and a

proper model for the uncertainty using epipolar geometry) for the stereo case.

Autonomous feature detectors and descriptors such as SIFT [15], SURF [16] and, more

recently, ORB [17], contributed for the visual detection of landmarks over the SLAM. By pre-

senting a subset of interest points (features) from each image with unique descriptors in an

autonomous way, it allows the Visual SLAM to detect and classify visual landmarks for map-

ping purposes.

1.4 Main Contributions

This thesis presents two major contributions:

1. The capability to introduce landmarks in the state from either monocular or stereo vi-

sualizations using the inverse depth parametrization in an hybrid and elegant way. All

landmarks are treated the same way, regardless of their origin. As such, they can be mod-
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elled with both monocular and stereo observation models. While monocular observations

have no depth information, they allow the estimation of depth through parallax changes

during time. Also, the motion model uses sensor fusion between odometry and (IMU)

readings, proving to be effective for robots with tracked wheels such as RAPOSA-NG.

The SLAM implemented in this thesis requires neither observation initialization, artifi-

cial landmarks nor prior movement knowledge from the robot, making all the process for

SLAM completely autonomous.

2. A novel approach for the EKF, entitled Dimensional-bounded EKF (DBEKF), is intro-

duced, imposing an upper bound for the number of landmarks present in state to be

estimated. This condition is granted by eliminating unwanted landmarks, as well as land-

marks with no contribution to the state. In order to classify the utility of each landmark,

a landmark classifier computed through a Temporal Difference Learning method is defined

[18]. If the map is only needed for pose estimation and not for visual analysis from the

user, this proves to be highly effective for the the SLAM, since the computational load

becomes constant over time;

A comparison between feature detectors ORB and SURF is presented as well, where both

performances are evaluated for this problem.

1.5 Thesis Outline

The remainder of this thesis is given as follows: Chapter 2 introduces all theoretical aspects, pre-

senting definitions and formulations related to the 6D EKF SLAM with inverse depth parametri-

sation and both odometry and IMU readings, feature detectors and a novel dimensional-bounding

algorithm with proper classifiers and criteria for EKF. Chapter 3 presents a physical description

of RAPOSA-NG, including all sensors and actuators, while covering the system architecture and

calibrations made. Chapter 4 presents all tests and respective results from real scenarios with

RAPOSA-NG. Finally, Chapter 5 concludes this thesis and presents some ideas and suggestions

for future work.



Chapter 2

Theoretical Background

This chapter is focused on all theoretical aspects relevant for this thesis. It starts in section 2.1

with the introduction of Extended Kalman Filter (EKF) as a solution for the Simultaneous Lo-

calization and Mapping (SLAM) problem, how it is computed and both motion and observation

models used are presented, as well as new landmark insertion to the state from both mono and

stereo observations. Section 2.2 makes reference to two feature detectors and descriptors, SURF

and ORB, as well as their usage for data correspondence between landmarks and visual features.

Finally, section 2.3 introduces a new Landmark Classifier and how it can infer on the EKF to

upper limit the state, resulting in the Dimensional-bounded Extended Kalman Filter (DBEKF).

2.1 Extended Kalman Filter for Pose and Map Estimation

2.1.1 Introduction

Kalman Filter became a major reference for the probabilistic robotics field as it iteratively

computes an optimal estimate over time from a given set of observations, knowing the stochastic

process model. It presents an elegant closed-form solution to the Bayes Filter problem, provided

that the state estimate is represented as a gaussian distribution and both motion and observation

models are linear systems with additive zero-mean uncorrelated multivariate gaussian noise [1].

The Extended Kalman Filter (EKF) differs from the Kalman Filter by coping with non-

linear models via first-order Taylor expansion. It can be applied to solve the Simultaneous

Localization and Mapping (SLAM) problem in this thesis, as pose changes and observations are

not modelled in a linear fashion. However, all properties regarding gaussian assumptions remain

true, and as such, the robot state estimation, st, is represented as a gaussian distribution for all

instants,

st ∼ N (µt, Pt) (2.1)

7
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Given a motion model, f , for state transition between instants t − 1 and t, with the

previous state, st−1, and transition measures, ut (e.g. odometry and Inertial Measurement Unit

(IMU) readings),

st = f(st−1, ut) + εt where εt ∼ N (0, Qt), (2.2)

one can predict the a priori state estimate with EKF predict instant :

µ̄t = f(µt−1, ut) (2.3)

P̄t = Ft−1 Pt−1 Ft−1
> +Qt (2.4)

where the jacobian Ft−1 is

Ft−1 =
∂f

∂st

∣∣∣∣
µt−1,ut

. (2.5)

If sensor observations are available, an observation model, g, is used to compute the

expected observations from a given state. It is assumed that real observations are covered by

the observation model with an added gaussian error noise,

zt = g(st) + δt where δt ∼ N (0, Rt). (2.6)

In the update step, the error between real observations and expected ones, bt, is given as

a gaussian distribution:

bt ∼ N (b̂t, Bt) (2.7)

b̂t = zt − g(µ̄t) (2.8)

Bt = Ht P̄tHt
> +Rt (2.9)

where the jacobian Ht is

Ht =
∂g

∂st

∣∣∣∣
µ̄t

. (2.10)

Finally, EKF update computes a “near-optimal” Kalman Gain, Kt,

Kt = P̄tHt
> Bt

−1, (2.11)

and closes the feedback control for an a posterior state estimate
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µt = µ̄t +Kt b̂t, (2.12)

Pt = (I −KtHt) P̄t. (2.13)

2.1.2 State Definition and Quaternion Representation

It is assumed that the robot being located uses both odometry and IMU readings for pose

prediction and visual data from a monocular or stereo camera. Two coordinate frames are

introduced for a better description of the problem, depicted in figure 2.1:

1. World frame, (XW , Y W , ZW ): a fixed coordinate frame with respect to both pose and

map estimations.

2. Camera frame, (XCt , Y Ct , ZCt): it shares its origin and orientation with the robot cam-

era pose for instant t in the world frame. Note that the camera frame origin may not

coincide to the focal point location. In fact, for a stereo camera, the camera frame origin

is assumed to be located between the left and the right camera focal points. However, it

shares the same orientation as both left and right camera focus, where ZCt is perpendicular

to their image planes. The camera frame at the initial instant is assumed to be equal to

the world frame.

It is then imperative that the state at any instant t comprises both camera and map

information,

st = ( r>t q>t︸ ︷︷ ︸
Camera State

y1
> . . . yn

>︸ ︷︷ ︸
Map State

)> (2.14)

Both vector rt and the unitary quaternion qt have the camera position in the world frame

and spatial rotation from the world frame to the camera frame at instant t, respectively [19].

This SLAM maps the environment by observing point features from a monocular or stereo visual

camera and introducing them on the state as landmarks. Thus, the map state is described by a

set of n 3D-point landmarks, y1 to yn, each represented with an Inverse Depth Parametrization

that is briefly introduced in subsection 2.1.3 [12]. It is assumed that the environment surrounding

the robot is static, making map representation invariant with time.

Regarding qt, although less intuitive than euler angles, quaternion representation for ori-

entation suffers no singularity, avoiding the gimbal lock problem. Also, they are advantageous

over rotation matrices for real time implementations, as quaternions are more compact, numeri-

cally stable and computationally efficient. The quaternion is kept in state in the form of vector,

as

qt =
(
qwt qxt qyt qzt

)>
(2.15)
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Figure 2.1: Possible state representation at instant t.

Also, the spatial rotation from the camera frame at instant t to the world frame is given

by the quaternion conjugate, q∗t ,

q∗t =
(
qwt −qxt −qyt −qzt

)
. (2.16)

Note that the quaternion has four parameters in state but represents a transform in SO(3).

As such, all values are conditioned to

qw
2
t + qx

2
t + qy

2
t + qz

2
t = 1, (2.17)

and this condition must be always satisfied for a proper representation of a rotation.

For cases where an orthogonal matrix representation is needed, an unitary quaternion q

can be easily converted to a rotation matrix, denoted Rq, by

Rq =

q
2
w + q2

x − q2
y − q2

z 2 (qx qy − qw qz) 2 (qx qz + qw qy)

2 (qx qy + qw qz) q2
w − q2

x + q2
y − q2

z 2 (qy qz − qw qx)

2 (qx qz − qw qy) 2 (qy qz + qw qx) q2
w − q2

x − q2
y + q2

z

 . (2.18)

Figure 2.2 depicts a flowchart of this SLAM. It assures that the prediction and update

instant are computed when motion and observation data are available, respectively. It also

depicts the state initialization right on start and landmark inclusion to the state whenever it is

needed.
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Figure 2.2: EKF flowchart

2.1.3 Inverse Depth Parametrization

EKF demands a close proximity between the current state and the linearization point. While it

can be assumed that the robot pose has small changes between two consecutive EKF instants,

drastic changes over observation estimates can turn EKF unstable. To overcome this problem,

a more linear parametrization for the observation model is proposed by Civera et al [12], called

Inverse Depth Parametrization, which is applied for a monocular Visual SLAM. In this work,

however, this parametrization is applied for both monocular and stereo visual observations.

Using this parametrization, a landmark yi in state is represented by

yi =
(
oxi oyi ozi θi φi pi

)>
, (2.19)

where oi is the observation point, θi and φi are the azimuth and elevation of the semi-ray that

crosses both the oi and the landmark in the world frame, and pi is the inverse of the euclidean

distance from oi to the landmark.

To convert a landmark i in XYZ parametrization, yXY Zi , to the inverse depth counterpart,

yi, an observation point must be chosen from

oi ∈ R3 \ {yXY Zi }. (2.20)

For this work, oi will always correspond to the camera location in the world frame where

landmark i was first observed. Having oi, one can define the vector hi,
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Figure 2.3: Inverse Depth Parametrization for landmark yi (di = |yXY Zi − oi|).

hi = yXY Zi − oi (2.21)

and compute the remaining parameters,

θiφi
pi

 =


arctan(hxi, hzi)

arctan(−hyi,
√
hxi

2 + hzi
2)

1
|hi|

 . (2.22)

Conversely,

yXY Zi = oi +
1

pi
mi where mi =

cosφi sin θi

− sinφi

cosφi cos θi

 . (2.23)

2.1.4 Motion Model

For the Motion Model, it is assumed that the robot moves in a 3D space and uses an IMU and

odometry to help predict its location over time. This model allows the EKF to predict the state

transition from two consecutive instants t and t+1. If no IMU nor odometry are used, a random

walk approach can alternatively be applied at a cost of more inaccuracies to the estimates.

To help model the robot movement over time, two extra frames are defined for the robot

for each instant t. Figure 2.4 shows a possible distribution for all new frames plus camera frame

given by the state.

1. Body frame, (XBt , Y Bt , ZBt): it represents the robot body pose at instant t. The spatial

translation from Bt to Bt+1 in the world frame, rBtBt+1
, can be obtained using a simple
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Figure 2.4: A possible Body, IMU and Camera frames configuration for a robot.

odometry motion model and by integrating rotary encoders information from each wheel

(rrightτ , rleftτ ). As EKF is solved iteratively in a discrete way, each instant t corresponds to

a time τt. Knowing the time difference between instants t and t+ 1, ∆τ(t,t+1),

∆τ(t,t+1) = τt+1 − τt, (2.24)

both linear motions from each wheel can be modelled with addictive uncorrelated zero-

mean gaussian noise,

{
rrightτ = rrightt+1 − r

right
t + rε rightt , rε rightt ∼ N (0, (∆τ(t,t+1) σ

right
odo )2)

rleftτ = rleftt+1 − r
left
t + rε leftt , rε leftt ∼ N (0, (∆τ(t,t+1) σ

left
odo )2)

(2.25)

For instance, assuming a two-wheel robot with movement rBtBt+1
coplanar to the plane

(ZoX)Bt ,

rodot = rBtBt+1
= T odoτ

sin(αodoτ )

0

cos(αodoτ )

 , (2.26)

αodoτ =
rrightτ − rleftτ

Lodo
, T odoτ =

rrightτ + rleftτ

2
, (2.27)

where Lodo is the size of the line segment that crosses both wheels and the robot frame

origin. Unfortunately, a simple two-wheeled motion model for movement is not accurate

enough for tracked wheel robots to grant more kinectic friction with inclined surfaces and

stairs, varying Lodo with unmeasured external factors over time. As such, since this model

fuses information from an IMU, it will not consider the resulting body frame orientation
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from odometry. Instead, it will use IMU readings, as explained below.

2. IMU frame, (XIt , Y It , ZIt): it represents the IMU pose at instant t. The angular velocity

wimu can be modelled through the IMU gyroscopes,

wimut = wgyrot + wbiast + wεt , (2.28)

where wgyrot is the angular velocity retrieved from the IMU, wbiast is the bias error normally

associated with most IMUs (if the IMU uses optical or MEMS technology and is calibrated,

it can be assumed no wbiast for some period of time [20]) and wεt is a normally distributed

error with zero-mean,

wεt ∼ N (0, σ2
imu). (2.29)

Knowing the time difference between instants t and t+1, ∆τ(t,t+1), and assuming constant

velocity wimut , one can compute the spatial rotation from frame It to It+1 using quaternion

notation (qimut ) [19],

qimutw = cos(2 |wimut |∆τ(t,t+1)), (2.30)

osint =
sin(2 |wimut |∆τ(t,t+1))

|wimut |

(
qimutx qimuty qimutz

)>
= osint wimut , (2.31)

where |wimut | is the L2-norm of wimut .

This model assumes an IMU installed at any part of the robot, given that all transforma-

tions from the IMU to the robot camera and body frames are well known for each instant. It can

be retrieved through servo feedback and proper encoders. Using homogeneous transformation

matrices, the state transition can be computed as

TWCt+1
= TWCt [TCtIt T

It
It+1

[T
Ct+1

It+1
]−1], (2.32)

where both TCtIt and T
Ct+1

It+1
are well known transforms from the camera frame to the IMU frame

in their respective instants. Regarding T ItIt+1
,

T ItIt+1
= T ItBt T

Bt
Bt+1

[T
It+1

Bt+1
]−1, (2.33)

rItIt+1
= rItBt +RItBt r

odo
t −Rqimut

r
It+1

Bt+1
(2.34)
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while the rotation RItIt+1
is available by converting qimut to an orthogonal rotation matrix,

RItIt+1
= Rqimut

, (2.35)

So, to calculate the state transition from two consecutive instants t and t+ 1,

{
rt+1 = rt +Rqt (rCtBt +RCtBt r

odo
t −RCtIt Rqimut

[R
Ct+1

It+1
]
>
r
Ct+1

Bt+1
)

qt+1 = qt × (qcamt × qimut × q∗camt+1 )
(2.36)

where qcamt and qcamt+1 are quaternion representations of RCtIt and (R
Ct+1

It+1
)
>

, respectively, and both

TCtBt and T
Ct+1

Bt+1
are also well known transforms from the camera frame to the body frame in their

respective instants.

When implementing this model for RAPOSA, it can be assumed that both IMU frame

and camera frame share the same orientation and rCtBt for all time,

∀t, RCtIt = I(3×3), rCtBt = rinc (2.37)

and due to a linear actuator installed on RAPOSA (refer to subsection 3.1.3), RCtBt is given by

RCtBt = Rinct =

1 0 0

0 cos (αinct ) sin (αinct )

0 − sin (αinct ) cos (αinct )

 (2.38)

where αinct is the smallest angular displacement around the XOt axis between the body frame

and the camera frame orientation.

The state transition from two consecutive instants t and t+ 1 for RAPOSA simplifies to

{
rt+1 = rt +Rqt r

motion
t

qt+1 = qt × qimut

(2.39)

where

rmotiont = rinc +Rinct rodot −Rqimut
rinc. (2.40)

A jacobian matrix Ft is needed to compute the predict step in EKF, as stated in equation

(2.5). The jacobian is given by
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Ft =


I 0

∂rt+1

∂qt

∣∣∣
µt,ut

∂qt+1

∂qt

∣∣∣
µt,ut

0

0 I

 (2.41)

.

where, from equation (2.39),

∂rt+1

∂qt

∣∣∣∣
µt,ut

= 2
[
Mw r

motion
t Mx r

motion
t My r

motion
t Mz r

motion
t

]
, (2.42)

Mw =

 qwt −qzt qyt
qzt qwt −qxt
−qyt qxt qwt

 , Mx =

qxt qyt qzt

qyt −qxt −qwt
qzt qwt −qxt


My =

−qyt qxt qwt

qxt qyt qzt

−qwt qzt −qyt

 , Mz =

−qzt −qwt qxt

qwt −qzt qyt
qxt qyt qzt

 .
(2.43)

and

∂qt+1

∂qt

∣∣∣∣
µt,ut

=


qimuwt −qimuxt −qimuyt −qimuzt

qimuxt qimuwt qimuzt −qimuyt

qimuyt −qimuzt qimuwt qimuxt

qimuzt qimuyt −qimuxt qimuwt

 (2.44)

Contrary to equation (2.2), this model assumes no additive error on the output. A proper

first order Taylor linearisation is then needed to approximate the model to a linear form in order

to use it for the EKF, where

Qt = JQt Q
′
t [JQt ]> (2.45)

where

Q′t =


(∆τ(t,t+1) σ

left
odo )2 0 0

0 (∆τ(t,t+1) σ
right
odo )2 0 0

0 0 (σinc)
2

0 (σimu)2 I(3×3)

 (2.46)

and
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JQt =


∂rt+1

∂rleftodo

∣∣∣∣
µt,ut

∂rt+1

∂rrightodo

∣∣∣∣
µt,ut

∂rt+1

∂αinct

∣∣∣
µt,ut

∂rt+1

∂qimut

∣∣∣
µt,ut

.
∂qimut

∂wimut

∣∣∣
µt,ut

0 0 0 ∂qt+1

∂qimut

∣∣∣
µt,ut

.
∂qimut

∂wimut

∣∣∣
µt,ut

0

 (2.47)

The jacobian matrix Q′t encompasses error variance from both left and right odometry

readings, ∆τ(t,t+1) σ
left
odo and ∆τ(t,t+1) σ

right
odo (equation (2.25)), the inclination arm, σinc, and

angular velocity readings (equation (2.28)). The partial derivatives related to the odometry and

inclination are given by

∂rt+1

∂rleftodo

∣∣∣∣∣
µt,ut

= Rqt R
inc


1
2 sin(αodoτ )− T odoτ

Lodo
cos(αodoτ )

0
1
2 cos(αodoτ ) + T odoτ

Lodo
sin(αodoτ )

 , (2.48)

∂rt+1

∂rrightodo

∣∣∣∣∣
µt,ut

= Rqt R
inc


1
2 sin(αodoτ ) + T odoτ

Lodo
cos(αodoτ )

0
1
2 cos(αodoτ )− T odoτ

Lodo
sin(αodoτ )

 , (2.49)

and

∂rt+1

∂αinct

∣∣∣∣
µt,ut

= Rqt

 0

−T odoτ cos(αodoτ ) cos(αinct )

T odoτ cos(αodoτ ) sin(αinct )

 (2.50)

The partial derivatives related to the IMU readings are

∂qt+1

∂qimut

∣∣∣∣
µt,ut

=


qwt −qxt −qyt −qzt
qxt qwt −qzt qyt

qyt qzt qwt −qxt
qzt −qyt qxt qwt

 (2.51)

∂rt+1

∂qimut

∣∣∣∣
µt,ut

= −2Rqt

[
M imu
w rinc M imu

x rinc M imu
y rinc M imu

z rinc
]
, (2.52)
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M imu
w =

 qimuwt −qimuzt qimuyt

qimuzt qimuwt −qimuxt

−qimuyt qimuxt qimuwt

 , M imu
x =

q
imu
xt qimuyt qimuzt

qimuyt −qimuxt −qimuwt

qimuzt qimuwt −qimuxt


M imu
y =

−q
imu
yt qimuxt qimuwt

qimuxt qimuyt qimuzt

−qimuwt qimuzt −qimuyt

 , M imu
z =

−q
imu
zt −qimuwt qimuxt

qimuwt −qimuzt qimuyt

qimuxt qimuyt qimuzt

 .
(2.53)

and, from both equations (2.30) and (2.31),

∂qimut

∂wimut

∣∣∣∣
µt,ut

=

[
−∆τ(t,t+1) o

sin
t (wimut )>

(∆τ(t,t+1) q
imu
wt − o

sin
t )

wimut (wimut )>

|wimut |2 − osint I(3×3)

]
(2.54)

2.1.5 Observation Model

The Observation Model adopted for this approach, from equation (2.6), computes zt, a vector

with all n features correspondent to each landmark in state, given the camera pose at instant t,

zt =
(
z1t
> ... znt

>
)>

. (2.55)

Assuming that the camera focal point is located over the camera frame origin and shares

the same orientation, this model is composed of two steps:

1. For each landmark yi in state, compute a directional vector in the camera frame that points

from the camera position to the landmark position. All landmarks within the interval HC

result in the same semi-ray for the same camera pose, and therefore, share the same visual

observation. The interval HC in the camera frame can be parametrized as

HC = {Rq∗t j (oi − rt +
1

pi
mi) | j ∈ [0,+∞[}, (2.56)

where Rq∗t is the rotation matrix that rotates the world frame to the camera frame (from

qt conjugate, q∗t ).

A possible directional vector that can be easily computed is hi
C
t , defined as,

hi
C
t = Rq∗t hit, where hit = (pi (oi − rt) +mi). (2.57)

Choosing hi
C
t from HC allows the observation model to measure landmarks with infinite

depth, since
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Figure 2.5: Observation Model for landmark yi.

pi = 0 : hi
C
t = Rq∗t mi. (2.58)

2. Using the Pinhole Camera Model, for each landmark i situated in front of the camera,

project hi
C
t on the camera’s image plane that is orthogonal to the camera’s optical axis.

Knowing the focal length, fC , the scale factors relating pixel coordinates to meters in the

image plane, mu and mv, and the location of the principal point in pixels, cu and cv, the

directional vector hi
C
t can be directly mapped onto pixel coordinates, zit, by

(
zuit

zvit

)
=

(
cu

cv

)
− fC

hz
C
i t

(
mu hx

C
i t

mv hy
C
i t

)
+ δit where δit ∼ N (0, σ2

pixel I(2×2)). (2.59)

It would be more accurate to round zit to their nearest integers, modelling the discretiza-

tion of visual information to the image output. However, this model would lose its conti-

nuity and would no longer be differential for all the domain. Instead, it is assumed that

the model does not perform any discrete operation but introduces an error associated

with the approximation. This error is defined in conformity with all aforementioned EKF

conditions, being an added zero-mean uncorrelated multivariate gaussian noise.

Note also that the image output is a cropped region from the camera’s image plane. As

such, all landmarks that are projected outside of the image plane margins or with negative

depth are not visible. This evaluation will be used further on section 2.3.

The pinhole model assumes a single camera with no lenses, nor aperture radius. It does not

model any type of image distortion or blur present in every camera. For this thesis, information

retrieved for observation analysis passed through a correction process using camera’s proprietary
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software before being used by the EKF, returning an undistorted image with known intrinsic

parameters, while maintaining a wide visual range. This software also rectifies each pair of stereo

images, by projecting them to a common image plane [21]. If no software correction is available,

distortion can be compensated with proper models using distortion parameters intrinsic to the

camera, retrieved through calibration methods.

An horizontal stereo camera is used in this thesis to acquire image data from two different

sources. Since all images are properly rectified, a given pair of features from both cameras only

correspond to the same landmark if they both share the same horizontal axis. This rectification

also results in a pair of images with the same size and intrinsic parameters.

A set of coordinate frames, (XCLt , Y CLt , ZCLt) and (XCRt , Y CRt , ZCRt), are defined for

the left and right camera, respectively. After the rectification process, both right and left camera

frames share the same orientation as the camera frame and are displaced by b along the XCt

axis.

To simplify the formalism, a parameter kLR is introduced, where

kLR =

{
0, from left (L) camera

1, from right (R) camera
(2.60)

Both directional vectors from left and right cameras, hi
CL
t and hi

CR
t , can easily computed

from hi
C
t ,

hi
CL/CR
t = Rq∗t (pi (oi − (rt + (−1)k

LR
Rqt b̄)) +mi) = hi

C
t − (−1)k

LR
h′it (2.61)

where

h′it = pi b̄ and b̄ =
(
b 0 0

)>
. (2.62)

With the pinhole model, one can either model an observation from both cameras,

zStereoit =

z
L
uit

zRuit
zvit

 =

zuitzuit
zvit

− fC mu pi

hz
C
i t

−bb
0

 , (2.63)

or from left or right camera only,

zLeftit
=

(
zLuit
zvit

)
zRightit

=

(
zRuit
zvit

)
. (2.64)
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Top view

Side view

Stereo
Camera

Figure 2.6: Horizontal stereo camera representation.

From equation (2.7) and (2.10), a jacobian Ht is needed to compute the update step from

EKF,

Ht =
[
H1t · · · Hit · · · Hnt

]>
, (2.65)

where

Hit =

[
∂zit
∂rt

∣∣∣
µ̄t,zit

∂zit
∂qt

∣∣∣
µ̄t,zit

0 . . . 0
∂zit
∂yi

∣∣∣
µ̄t,zit

0 . . . 0

]
(2.66)

and

∂zit
∂yi

∣∣∣∣
µ̄t,zit

=

[
∂zit
∂oi

∣∣∣
µ̄t,zit

∂zit
∂θi

∣∣∣
µ̄t,zit

∂zit
∂ψi

∣∣∣
µ̄t,zit

∂zit
∂pi

∣∣∣
µ̄t,zit

]
. (2.67)

To compute the partial derivatives related to the robot state, from equation (2.57),

∂zit
∂rt

∣∣∣∣
µ̄t,zit

=
∂zit
∂hCit

∣∣∣∣∣
µ̄t,hCit

∂hCit
∂rt

∣∣∣∣∣
µ̄t,zit

and
∂zit
∂qt

∣∣∣∣
µ̄t,zit

=
∂zit
∂hCit

∣∣∣∣∣
µ̄t,hCit

∂hCit
∂qt

∣∣∣∣∣
µ̄t,zit

. (2.68)

For the partial derivative related to the robot position,

∂hCit
∂rt

∣∣∣∣∣
µ̄t,zit

= −piRq∗t . (2.69)

As for the partial derivative related to the robot orientation, knowing the relation between
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a quaternion and its conjugate from equation (2.16),

∂hCit
∂qt

∣∣∣∣∣
µ̄t,zit

= 2
[
M∗w hit −M∗x hit −M∗y hit −M∗z hit

]
, (2.70)

where

M∗w =

 q
∗
wt −q∗z t q∗yt
q∗z t q∗wt −q∗xt
−q∗yt q∗xt q∗wt

 , M∗x =

q
∗
xt q∗yt q∗z t
q∗yt −q

∗
xt −q∗wt

q∗z t q∗wt −q∗xt

 ,
M∗y =

−q
∗
yt

q∗xt q∗wt
q∗xt q∗yt q∗z t
−q∗wt q∗z t −q∗yt

 , M∗z =

−q
∗
z t −q∗wt q∗xt

q∗wt −q∗z t q∗yt
q∗xt q∗yt q∗z t

 .
(2.71)

To compute the partial derivatives related to the correspondent landmark state, applying

the chain rule in higher dimensions,

∂zit
∂yi

∣∣∣∣
µ̄t,zit

=
∂zit
∂hCit

∣∣∣∣∣
µ̄t,hCit

∂hCit
∂yi

∣∣∣∣∣
µ̄t,zit

+
∂zit
∂h′it

∣∣∣∣
µ̄t

∂h′it
∂yi

∣∣∣∣
µ̄t

(2.72)

where

∂hCit
∂yi

∣∣∣∣∣
µ̄t,zit

= Rq∗t

 pi I(3×3)

cosψi cos θi − sinψi cos θi

0 − cosψi

− cosψi sin θi − sinψi sin θi

oi − rt

 (2.73)

and

∂h′it
∂yi

∣∣∣∣
µ̄t,zit

=
[
0 · · · 0 b̄

]
(2.74)

Finally, for a monocular observation,

∂zit
∂hCit

∣∣∣∣∣
µ̄t,hCit

=
fC

hCzit

−mu 0 mu

hCxit
−(−1)k

LR
h′it

hCzit

0 −mv mv

hCyit
hCzit

 , (2.75)

∂zit
∂h′it

∣∣∣∣
µ̄t

=
fC

hCzit

[
(−1)k

LR
mu 0 0

0 0 0

]
, (2.76)
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and for a stereo observation,

∂zit
∂hCit

∣∣∣∣∣
µ̄t,hCit

=
fC

hCzit


−mu 0 mu

hCxit
−h′it

hCzit

−mu 0 mu

hCxit
+h′it

hCzit

0 −mv mv

hCyit
hCzit

 (2.77)

∂zit
∂h′it

∣∣∣∣
µ̄t

=
fC

hCzit

 mu 0 0

−mu 0 0

0 0 0

 . (2.78)

2.1.6 Feature Initialization

Over time, visual observations are made and new landmarks are attached to the state from

observed visual features. Many criteria can be used to establish when new landmarks should be

inserted and how many. For instance, one can add a new landmark every time a visual feature is

observed that does not correspond to any landmark in state, but it proves to be computationally

ineffective as it fills the state in a short time if no landmark removal procedure is performed.

Assuming the usage of the stereo camera depicted in figure 2.6, one can acquire monocular

features either from the left or from the right camera. Also, some features acquired from both

cameras correspond to the same landmark, resulting in a stereo feature. Depending on whether

the new landmark in state results from a monocular feature or from a stereo feature, two different

initializations are introduced:

1. From a monocular observation: If a new landmark yn is to be attached to the state

with n − 1 landmarks from a feature zLeftn t or zRightn t alone, first a directional vector for

the respective camera frame is computed using the Pinhole Camera Model from equation

(2.59).

hCL/CRn t =


1

fC mu
(cu − zL/Runt

)
1

fC mv
(cv − zvnt )

1

 (2.79)

Having Rqt from qt in state and knowing that both left and right camera frames share the

same orientation from the robot state, the directional vector can be related to the world

frame by

hnt = Rqt h
CL/CR
n t (2.80)

and
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
on

θn

φn

pn

 =


rt + (−1)k

LR
Rqt b̄

arctan(hxnt, hznt)

arctan(−hynt, |hxznt|)
pinitial

 (2.81)

where

|hxznt| =
√

(hxnt)
2 + (hxnt)

2 (2.82)

It is impossible to gain depth information from just one observation, thus an initial ar-

bitrary value pinitial serves as an initial estimation for the inverse depth given enough

uncertainty. This parametrization is approximately linear along the corresponding semi-

ray, allowing the EKF to sustain big errors for the depth estimation.

2. From a stereo observation: If a new landmark yn is to be attached to the state with

n− 1 landmarks from a stereo pair of features, zStereont , first a directional vector from the

camera frame is computed using the Pinhole Camera Model from equation (2.59). Since

both left and right camera frames share the same distance from the camera frame but in

opposite directions, the directional vector can be calculated as

hCnt =


1

fC mu
(cu − 1

2(zLunt + zRunt ))
1

fC mv
(cv − zvnt )

1

 . (2.83)

In the same fashion as equation (2.80),

hnt = Rqt h
C
nt (2.84)

and


on

θn

φn

pn

 =


rt

arctan(hxnt, hznt)

arctan(−hynt, |hxznt|)
pepipolar

 . (2.85)

where pepipolar can be computed using epipolar geometry [22],

pepipolar =
zLunt − z

R
unt

2 b fC mu |hCnt |
. (2.86)



2.1. EXTENDED KALMAN FILTER FOR POSE AND MAP ESTIMATION 25

Figure 2.7: Top view of camera frame for stereo vision of a landmark yi.

For a state with n−1 landmarks, st estimation (as a normal distribution) can be updated

by adding a new landmark yn initial estimate [12],

µnewt =

(
µt

yn

)
, Pnewt = Jnewt

[
Pt 0

0 Ant

]
(Jnewt )> (2.87)

where

Jnewt =

 I 0
∂yn
∂rt

∣∣∣
µt,znt

∂yn
∂qt

∣∣∣
µt,znt

0 · · · 0 Jnewyn

 . (2.88)

From equations (2.81) and (2.85), by applying the chain rule, the partial derivatives related

to the robot state are

∂yn
∂rt

∣∣∣∣
µt,znt

=

[
I(3×3)

0(3×3)

]
and

∂yn
∂qt

∣∣∣∣
µt,znt

=



∂on
∂qt

∣∣∣
µt,znt

∂θn
∂hnt

∣∣∣
µt,hnt

.
∂hnt
∂qt

∣∣∣
znt

∂φn
∂hnt

∣∣∣
µt,hnt

.
∂hnt
∂qt

∣∣∣
znt

0(1×4)


, (2.89)

where
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∂θn
∂hnt

∣∣∣∣
µt,hnt

=
1

|hxznt|2

 hznt

0

−hxnt


>

,
∂φn
∂hnt

∣∣∣∣
µt,hnt

=
1

|hnt|2 |hxznt|

hxnt hynt−|hxznt|2

hynt hznt


>

(2.90)

and, having the conversion from quaternion to a rotation matrix given by equation (2.18), if the

landmark is extracted from a monocular feature,

∂on
∂qt

∣∣∣∣
µt,znt

= 2 b (−1)k
LR

 qwt qxt −qyt −qzt
qzt qyt qxt qwt

−qyt qzt −qwt qxt

 (2.91)

or, if the landmark is extracted from a stereo pair of features,

∂on
∂qt

∣∣∣∣
µt,znt

= 0(3×4) (2.92)

From equations (2.80), (2.84),

∂hnt
∂qt

∣∣∣∣
znt

= 2
[
Mw hnt Mx hnt My hnt Mz hnt

]
, (2.93)

where Mw, Mx, My and Mz are from equation (2.43).

Regarding Jnewyn and Ant, they assume a different structure depending if the landmark is

extracted from a monocular or stereo source. For the monocular case,

Ant =

[
σ2
pixel I(2×2) 0

0 σ2
i.d.

]
and Jyn =

[
∂yn

∂zMono
n t

∣∣∣
µt,zMono

nt

∂yn
∂pn

∣∣∣
µt,zMono

nt

]
. (2.94)

where σ2
i.d. is the variance associated to the initial inverse depth (which is assumed to be high

enough to cover all uncertainty). The partial derivatives are

∂yn
∂pn

∣∣∣∣
µt,zMono

nt

=
(

0 0 0 0 0 1
)>

(2.95)

and
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∂yn
∂pn

∣∣∣∣
µt,zMono

nt

=


0(3×2)

∂θn
∂hnt

∣∣∣
µt,hnt

.
∂hnt
∂zMono
nt

∣∣∣
µt,zMono

nt

∂ψn
∂hnt

∣∣∣
µt,hnt

.
∂hnt
∂zMono
nt

∣∣∣
µt,zMono

nt

0(1×2)

 , (2.96)

where

∂hnt
∂znt

∣∣∣∣
µt,zMono

nt

=
−1

fC
Rqt


1
mu

0

0 1
mv

0 0

 . (2.97)

For the stereo case,

Ant = σ2
pixel I(3×3) and Jyn =

∂yn
∂zStereont

∣∣∣∣
µt,zStereont

(2.98)

∂yn
∂pn

∣∣∣∣
µt,zStereont

=



0(3×3)

∂θn
∂hnt

∣∣∣
µt,hnt

.
∂hnt

∂zStereont

∣∣∣
µt,zStereont

∂ψn
∂hnt

∣∣∣
µt,hnt

.
∂hnt

∂zStereont

∣∣∣
µt,zStereont

∂pn
∂zStereont

∣∣∣
µt,zStereont


, (2.99)

where

∂hnt
∂zStereont

∣∣∣∣
zStereont

=
−1

fC
Rqt


1

2mu
1

2mu
0

0 0 1
mv

0 0 0

 . (2.100)

and finally, from equation (2.86),

∂pn
∂zStereont

∣∣∣∣
µt,hnt

= pepipolar


hCxnt

2 fC mu |hCnt |
2 + 1

zLunt
−zRunt

hCxnt
2 fC mu |hCnt |

2 − 1
zLunt

−zRunt
hCynt

fC mv |hCnt |
2


>

. (2.101)
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2.2 Feature Detection, Description and Matching

2.2.1 Introduction

When observing a camera image, one might ask how to use this data as a measurement for

algorithms such as SLAM. As explained in subsection 2.1.2, the map is kept in state as a set

of natural landmarks. These landmarks are extracted from different visual points in different

images, called features. However, not all visual points in an image serve as good features. Their

neighbouring region should be as distinctive as possible from other regions. For instance, unique

corners and blob-like regions are known as good feature holders. Also, it is important that all

features possess an unique identification, invariant to some changes such as scale and rotation

and resistant to small distortions. This would allow the SLAM to associate all landmarks in

state with their visual counterparts, by associating a descriptor to the landmark and matching

it with all observed features from camera images.

In this thesis, each landmark is described by the descriptor from the last visual feature

observed and matched. This presents some advantages, such as the ability to match more

accurately in continuous images, but also presents problems regarding loop closure. If the

landmark is not observed in the same perspective as the last time it was perceived, it will

be extremely difficult for the descriptors to match. Also, false positive matches infer wrong

descriptors to the landmarks. While it may seem critical, proper measures in the matching

process described bellow can reduce de facto a number of false positives.

There are many feature detectors and descriptors available in literature that can be used to

autonomously identify visual features within an image and extract a descriptor for each feature

in such a way that all matched descriptors correspond to the same feature. This thesis covers two

feature detectors that require no prior data about the environment: SURF [16] and ORB [17].

Although there are more reliable feature detectors such as SIFT, this work is to be processed in

real time, requiring more efficient techniques.

2.2.2 SURF: Speeded Up Robust Features

SURF (Speeded Up Robust Features) is a scale and rotation invariant feature detector and

descriptor that extracts blob-like features using integral images It, defined from an image Im by

It(u, v) =
u∑
ū=1

v∑
v̄=1

Im(ū, v̄). (2.102)

With It, one can compute the integral of any rectangular section (u, v, du, dv) within Im

easily:
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Figure 2.8: Visual depiction of matched feature correspondences.

dv
(u,v)

du

Figure 2.9: The integral within the black section of Im is given by just three operations.

u+du∑
ū=u

v+dv∑
v̄=v

Im(ū, v̄) = It(u+ du, v + dv) + It(u, v)− It(u+ du, v)− It(u, v + dv). (2.103)

Since SURF uses the determinant of the Hessian matrix to identify all interest points, equa-

tion (2.103) becomes fruitful when computing image convolutions over box filters representing

second-order Gaussians in a rough way, allowing a scale-space analysis for feature detection.

After computing all determinants, the local maximums above a certain threshold are selected

as features. The determinant of the Hessian Matrix can also be used as a good measure for the

feature’s strength.

For the descriptors, it is first assigned an orientation to each feature using Haar-wavelets,

thus making SURF invariant to rotations. Knowing the orientation and the scale at which the

feature was detected, a neighbour region is selected and the descriptor is computed from it.

Most SURF implementations return each descriptor as a vector of 64 or 128 floats. While

128 sized descriptors are more precise, their computation is slower.

The chances that two descriptors correspond to the same feature is bigger when the eu-

clidean distance between those same descriptors is small. Any matching process that minimizes

the euclidean distances between descriptors can be used, but there are always chances of getting

bad matches.

To prevent false-positives, SURF calculates the sign of the laplacian of each feature. If

two matching candidates have different signs, they will surely not match. Also, one can valid

a match only when the best match distance is q times smaller than the second best match to

avoid mismatches between different features with similar descriptors (e.g. q = 0.7).
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Algorithm 1 Matching process for SURF

for each landmark in state do
if landmark is visible then

m1 ← +∞, m2 ← +∞
for each feature from current image do

if landmark.laplacian == feature.laplacian then
dist← |landmark.descriptor − feature.descriptor|
if m1 > dist then

m2 ← m1

m1 ← dist
best candidate← feature

else if m2 > dist then
m2 ← dist

end if
end if

end for
if m1 < q ∗m2 then

landmark has a match with best candidate
end if

end if
end for

Algorithm 1 presents the matching procedure between landmarks in state and features

from when a new image is acquired and processed with SURF.

2.2.3 ORB: Oriented FAST and Rotated BRIEF

ORB (Oriented FAST and Rotated BRIEF) is a rotation-only invariant feature detector and

descriptor. Although less reliable than SURF and no scale invariant, it still behaves with great

accuracy for small scale changes. While both methods have good performances, ORB is faster

but less accurate than SURF regarding scale changes. However, if those changes are considered

small, ORB accuracy suffices the SLAM needs. ORB computes FAST features with added ori-

entation information from the intensity centroid. For the descriptors, it uses BRIEF descriptors,

calculated from binary intensity tests and rotated using the orientation assigned.

The ORB implementation from Willow Garage in OpenCV returns each descriptor as a

set of binary values (32 bytes). A good matching process minimizes the Hamming distance

between two descriptors, as presented in algorithm 2.

Also, as with SURF, one can valid a match only when the best match distance is q times

smaller than the second best match. Algorithm 3 presents the matching procedure between

landmarks in state and features from when a new image is acquired and processed with ORB.
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Algorithm 2 Hamming distance for ORB descriptors

function distanceORB(descriptorA, descriptorB)
dist← 0
for i = 0 to 32 do

if descriptorA[i] 6= descriptorB[i] then
dist← dist+ 1

end if
end for
return dist

end function

Algorithm 3 Matching process for ORB

for each landmark in state do
if landmark is visible then

m1 ← +∞, m2 ← +∞
for each feature from current image do

dist← distanceORB(landmark.descriptor, feature.descriptor)
if m1 > dist then

m2 ← m1

m1 ← dist
best candidate← feature

else if m2 > dist then
m2 ← dist

end if
end for
if m1 < q ∗m2 then

landmark has a match with best candidate
end if

end if
end for

2.3 Dimensional-bounded Extended Kalman Filter

2.3.1 Introduction

One of the major problems regarding the Extended Kalman Filter is the fact that its computa-

tional complexity increases over a quadratic order with the number of entries in the state. As

stated on subsection 2.1.2, the state is represented by the camera pose and set of landmarks

representing a map. The number of entries in state vector st is given by

sizest = 7 + 6nlandmarks (2.104)

where 7 parameters have respect to the robot pose and nlandmarks correspond to the number of

landmarks represented in state, each having 6 parameters. It has almost double the number of

entries if all landmarks were to be represented in XYZ coordinates. It is suggested by Civera et
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Figure 2.10: DBEKF flowchart

al [12] to convert a landmark’s inverse depth parametrization to XYZ in state when the error

covariance is low, but it does not interfere with the computational complexity of EKF.

By upper limiting the number of landmarks in state by a value Mlandmarks, EKFs compu-

tational complexity becomes upper bounded. However, only upper limiting without any criterion

and without removing old landmarks prevents the EKF filter to acquire new features. As such,

new landmarks are only added when needed and those state landmarks that are not contributing

to reduce the uncertainty should be removed. Since in practice, it is very difficult (although

possible) to process loop closure with visual data retrieved from feature detectors when revisited

in a different perspective, it is of no priority to keep old landmarks in state. However, it does

not have to eliminate any landmarks unless it is needed, and a criterion for when new landmarks

are needed must be defined as well.

This thesis introduces a Dimensional-bounded Extended Kalman Filter (DBEKF) which

encompasses EKF with special criterion for landmarks insertion and removal. For that, a new

Landmark Classifier is defined.

The flowchart in figure 2.10 shows how DBEKF is processed, having in blue the differences

from normal EKF in figure 2.2.

2.3.2 Landmark Classifier

For the DBEKF, a landmark yi is said to be visible in state st, yi ∈ Vst , if it is observable

within the field of view of the camera from state st. Also, yi is detected at instant t, yi ∈ Dt, if

the feature detector points out a corresponding feature. In a perfect scenario, assuming that no
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landmarks have physical occlusions

Vst ⊂ Dt, (2.105)

that is, if the landmark is visible then it should be detected•. However, feature detectors are

far from having a perfect behaviour: descriptors can fail to point out some correspondences

and miss features from being detected. This inaccuracies are crucial to classify each landmark’s

usability in state. Since it is assumed that no landmarks have physical occlusions, a visible but

not detected landmark can only represent a failed match.

Since the state in EKF has only gaussian distributions representing landmark pose esti-

mates, a Temporal Difference Learning approach [7] is used to predict a measure of the utility,

utilit, at instant t:

utilit =

Gutilit−1 + (1−G)1iDt
if yi ∈ Vst

utilit−1 else
, G ∈ [0, 1] (2.106)

where G is an adjustable weight factor and the indicator function, 1iDst
, is defined for detectabil-

ity,

1iDst
=

1 if yi ∈ Dst

0 else
. (2.107)

The initial value for utility is

utili0 = 1. (2.108)

From equations (2.106) and using the condition from (2.108), it can be shown that

∀G∈[0,1] ∀t, utilit ∈ [0, 1]. (2.109)

Regarding the weight factor G, it represents the influence at instant t of 1iDst
over utilit.

The lower G is, higher the influence. If G = 0, the utility at instant t assumes the same value as

1iDst
. If G = 1, the utility stays equal to the initial value utili0, having no influence from 1iDst

.

if G = 1 : ∀t utilit = 1, (2.110)

if G = 0 : ∀t utilit = {0, 1}, (2.111)

if G ∈]0, 1[: ∀t utilit =]0, 1]. (2.112)
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Algorithm 4 Landmark Removal

for each landmark in state do
k ← 0
if landmark is visible then

if landmark was detected then
utilit ← 1 +G ∗ (utilit−1 − 1)
k ← k + 1

else
utilit ← G ∗ utilit−1

end if
end if

end for

n← mobservations − k
for each landmark in state do

if n > 0 then
landmark is removed
n← n− 1

end if
end for

for each landmark in state, sorted in ascending order of utilt do
if utilit ≤ T or pi ≤ 0 then

landmark is removed
end if

end for

2.3.3 Landmark Removal

Assuming Mlandmarks as the maximum number of landmarks imposed by the user to the DBEKF,

the Landmark removal procedure is composed of three criteria simultaneously imposed to all

landmarks:

1. Utility Threshold: Regarding the utility utilit, one can interpret utilit = 1 as a maximum

score and utilit = 0 as a minimal score (although it can only be equal to zero if G = 0). A

simple but effective approach for a landmark removal criterion is that when utilit reaches

a value bellow T at instant t, it is discarded from the state, where T ∈ [0, 1].

2. Negative Inverse Depth: From the first-order linearisation nature of EKF, it may

happen that a landmark estimation in state gets a negative inverse depth. This situation,

although not common, can damage the whole process. As such, all features with negative

inverse depth are automatically discarded from the state.

3. Emergency Removal: Although the aforementioned two criteria are enough for a land-

mark quality control, the risk of filling the state and not being able to add new, im-

portant, landmarks for the observation of new areas maintains. As such, a used defined

value mobservations is presented, stating the minimal number of matched landmarks per
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Algorithm 5 New Landmark Insertion

n←Mlandmarks − nlandmarks
for each feature in observation, sorted in descending order of strengh do

if n > 0 and did not match any landmark in state then
state← newlandmark from feature
n← n− 1

end if
end for

observation. Note that

mobservations ≤Mlandmarks. (2.113)

If only n landmarks were matched and n < mobservations, the number of landmarks to

eliminate should be, at least, of mobservations−n. Older landmarks are picked for removal.

Algorithm (4) shows in pseudocode how the Landmark Removal is processed.

2.3.4 New Landmark Insertion

As of new landmark insertion, the only criterion is to add nnewlandmarks new landmarks to the

state

nnewlandmarks = min(Mlandmarks − nlandmarks, nfeatures), (2.114)

where nlandmarks is the current number of landmarks in state and nfeatures is the number of

features without landmark correspondence given an observation at instant t. Algorithm (5)

shows in pseudocode how the New Landmark Insertion is processed.
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Chapter 3

Implementation

This chapter presents with more detail the grounded Search and Rescue (SAR) robot used

for this thesis, as well as all work implemented, from system architecture to sensors calibra-

tion. Section 3.1 covers RAPOSA-NG specifications, as well as all sensors and actuators from

RAPOSA-NG relevant for this thesis, and section 3.2 describes the software and communication

architecture implemented on RAPOSA-NG.

3.1 RAPOSA-NG Specifications

3.1.1 Introduction

As stated in subsection 1.2, IdMind c© upgraded the SAR robot RAPOSA and made it available

for commercial purposes as RAPOSA-NG. An unit was acquired by Instituto Superior Técnico

for research purposes without any sensors except for encoder and battery sensors readout.

The main body contains all of the electronic and motor boards responsible for the robot

control and power management. It has two DC motors for differential drive motion with rotary

encoders and one linear actuator with potentiometer to elevate the frontal body. The frontal

body includes diverse sensors, some of them used for this thesis: a stereo camera and an Inertial

Measurement Unit (IMU). Figure 3.1 identifies the main body and the frontal body, and shows

RAPOSA-NG layout with some specifications regarding size measures.

3.1.2 Differential Drive Motors with Rotary Encoders

Although RAPOSA-NG uses two pairs of tracked wheels, it works in a similar fashion to a

differential drive, as shown in figure 3.2. Each pair of tracks are coupled with a Maxon R© DC

rotor. To control them, a serial message must be sent to the motors microprocessor with values

vleft and vright, for the left and right tracks, respectively. Both vleft and vright values range from

−1100 to 1100 and are proportional to the linear velocity from the respective track.

37
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Figure 3.1: RAPOSA-NG size measurements from top view (left) and side view (right)

Vleft

Vright

Figure 3.2: RAPOSA-NG differential drive

Each rotor has an incremental rotary encoder attached to it that sends a pulse to the

motors microprocessor each time a fixed angular displacement is done. When asked through

serial communication, the motors microprocessor returns the number of pulses counted from the

last query to the current one. The number of pulses from each encoder, npulsesleft and npulsesright , are

directly proportional to the distance travelled in meters, rleft and rright, by a respective constant

Kleft and Kright,

rleft = Kleft n
pulses
left and rright = Kright n

pulses
right (3.1)

To get an estimation of Kleft and Kright, a set of pairs of different distances and pulse

counts were acquired for each wheel. Since the relationship between pulses and travelled distance

is purely linear, a simple linear regression with no constant term is enough to get proper estimates

for Kleft and Kright. The values obtained for Kleft and Kright are present in table 3.2.

Table 3.1: Estimated values of Kleft and Kright in meters per pulse

Kleft Kright

1.61× 10−5 1.48× 10−5

To have an absolute measure of distance travelled by each wheel from a given time, rleftt and

rrightt , the driver used for odometry readings initializes them to zero and increments whenever

new measures are acquired by the software driver that communicates via serial with the motors

microprocessor.
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Figure 3.3: RAPOSA-NG inclination arm limits

3.1.3 Linear Actuator with Potentiometer

RAPOSA-NG has a linear actuator from Firgelli Automations R© that controls, αinc, the shortest

angle from the intersection of the planes defined by the two wheel axis from the base body and

the two wheel axis from the frontal body. Figure 3.3 depicts the minimum and maximum

physical inclination limits in degrees. It also possesses a potentiometer for inclination feedback

connected to the motors microprocessor to return a value T inc that is related to αinc by a

first-order polynomial function,

αinc = Ainc T inc + binc (3.2)

where Ainc and binc are constant values. In order to obtain Ainc and binc, a linear regression

was made from multiple measures of different T inc and hand-measured αinc pairs. The values

obtained for Ainc and binc are present in table 3.2.

Table 3.2: Estimated values of Ainc and binc

Ainc binc

-0.2 129.1

To control the linear actuator, a serial message must be sent to the motors microprocessor

with T incdes , a value calculated from the desired inclination αincdes by

T incdes =
αincdes − binc

Ainc
. (3.3)

3.1.4 Stereo Camera with Rectification Software

A stereo camera Bumblebee 2 R© from Point Grey R© was acquired for RAPOSA-NG for vision. It

uses IEEE-1394 interface with firewire for communication and is able to process 640x480 color

images triggered at same time from both cameras at 48fps. A software library named Triclops R©,

property of Point Grey R©, uses internal information kept with the stereo camera, regarding the

intrinsic parameters from each camera and their baseline, to rectify both cameras and calculate

their disparity.

For this thesis, both rectified cameras are used. Most rectification processes reduce each
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Figure 3.4: Bumblebee 2 R©(left) and Microstrain 3DM-GX2 R© (right)

camera’s field of view in a way that is preferable to use unrectified images and compensate any

distortion inside the Extended Kalman Filter (EKF). However, this software allows a proper

rectification without losing much field of view, and as such there is no need to add more non-

linearities to the EKF. Table 3.3 shows all intrinsic parameters for both cameras with 640× 480

rectified images, acquired from the Bumblebee 2 R© using the Triclops R© library.

Table 3.3: Both rectified intrinsic parameters for both cameras with image size of 640 × 480
from Triclops R©

mu fC mv fC cu cv
285.0663 285.0663 319.3656 254.4078

3.1.5 Inertial Measurement Unit

For an Inertial Measurement Unit (IMU), RAPOSA-NG has a Microstrain 3DM-GX2 R© which

uses MEMS sensor technology. It combines a triaxial accelerometer, triaxial gyroscope and

triaxial magnetometer on an onboard microprocessor for unbiased, well calibrated measurements

of angular velocities, linear accelerations and orientation in different representations. It uses

serial communications for data acquisition, as well as writing configuration parameters on an

EEPROM inside the IMU.

One of the biggest problems with gyroscope readings comes with the bias associated to each

axis. This can prove to be quite problematic to the SLAM if the bias is not included to the EKF

state. However, this IMU is able of self calibration as long as neither the IMU or the magnetic

map surrounding the IMU is disturbed during the calibration procedure (a proper calibration

takes aproximately 10 seconds). Since magnetometer readings can prove to be problematic,

e.g. due to some proximity with metal, one can always use only the gyroscope readings for

orientation changes measurement and use the magnetometer for calibration purposes only.
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Figure 3.5: Software and Communications Architecture for SLAM on RAPOSA-NG

3.2 System Architecture

The RAPOSA-NG used for this thesis has a motherboard Commell LV-679, a Mini-ATX with

an Intel Core 2 Duo 1.6Ghz processor welded. It has two Kingston 1GB 667Mhz DDR2 for a

total of 2GB of RAM and a Solid State Drive from Kingston with 64GB. It communicates serial

messages to the motors microprocessor through USB, using a FTDI Serial-USB converter.

Figure 3.5 shows how the software and communications architectures needed for SLAM

on RAPOSA-NG are implemented. Each gray block represents a driver application and both

blue blocks represent all of SLAM software. As for the others:

• Feature Detector processes each pair of images retrieved through the Camera Driver from

the stereo camera and returns all feature points from either ORB or SURF detector, as

well as their respective descriptors.

• Visual SLAM is the key application that processes all measurement informations and

observations from RAPOSA-NG and runs the SLAM presented in this thesis, returning a

new pose and an updated map at each step.

• Interface SLAM is responsible for the startup configuration of Visual SLAM, where all

user-defined parameters are given in a XML format, as well as for monitoring all of its

activity. It is done on a different computer that can be connected to RAPOSA-NG either

with a LAN cable or wireless.

All software nodes were implemented using C/C++ and Python with the Robotic Oper-
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Figure 3.6: Software and Communications Architecture for SLAM using offline data.

ating System (ROS) framework1, where most data communications use publish–subscribe mes-

saging design and includes a vast repository with different drivers and libraries for free usage

(although for this thesis, both Motors drive and Camera drive had to be implemented).

Figure 3.6 shows how the software and communications architectures needed for SLAM

using offline datasets are implemented. ROSBAG, for ROS, has a set of tools that allows the

recording and playing back of all observation data needed for the SLAM to work. It respects all

messages serialization and emulates data transfer times from when it was recording, producing

near-real datasets for experimentation.

1http://www.ros.org



Chapter 4

Experimental Results

This section presents all experimental results obtained using robot RAPOSA-NG. Section 4.1

introduces this chapter by presenting two datasets used for the test purposes. Section 4.2 shows

a comparison between two different feature detectors and descriptors, SURF and ORB, when

applied for this Simultaneous Location and Mapping (SLAM) algorithm. Section 4.3 shows

how each experiment behaves with Dimensional-bounded EKF (DBEKF) using monocular only,

stereo only and with the novelistic approach of both monocular and stereo features in a hybrid

way. Section 4.5 shows DBEKF SLAM regarding the utility weight with two extrema situations.

Finally, section 4.6 shows DBEKF executing without Inertial Measurement Unit (IMU) and

odometry readings, functioning as a random walk for motion model.

4.1 Introduction

All test results presented in this thesis are from two different datasets made with RAPOSA-NG,

both recorded in the Laboratório de Robotica Móvel from Instituto Superior Técnico (IST) at

Campus Alameda. Both were recorded using ROSBAG application from middleware ROS. Also,

the stereo camera is attached to a Pan&Tilt structure in RAPOSA-NG that is not being used

for this thesis work but makes the camera sway a little vertically when moving. While slightly

observed with the camera, these small camera movements are not caught by the IMU and may

incur against the condition presented by the motion model that requires both camera and IMU

frames to share the same orientation for all time.

Each dataset contains odometry readings from left track, right track and inclination arm

position at 10Hz each, angular velocity readings from IMU at 30Hz, rectified images from both

cameras at 15Hz and all features retrieved from image readings using feature detector and de-

scriptor ORB at 15Hz. In order to run and replicate the experiments, the architecture presented

in subsection 3.2 and shown in figure 3.6 is used. However, results may slightly vary for the

same dataset in different runs. Unless it is said otherwise, all tests performed with DBEKF have

an upper bound of Mlandmarks = 60 landmarks in state, an utility weight factor of G = 0.8, an

43
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AAA
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Figure 4.1: Datasets “A” (top) and “B” (bottom). The blue line represents the trajectory trav-
elled by RAPOSA-NG during the experiment, in the direction pointed by the green arrowhead.

utility threshold of T = 0.01 and a minimal number of matched landmarks per observation of

Mlandmarks = 10.

The datasets are as follows, both depicted in figure 4.1:

• Dataset “A” - Square Trip

On this dataset, RAPOSA-NG performs a near-squared trip of 3 × 3 meters in a soccer

field full of newspaper pages, wooden planks and other sort of objects, simulating debris.

Newspapers were scattered around the floor to present a larger spectrum of landmark

candidates from feature detection, while messing with odometry readings when turning.

The inclination arm angle is zero for all time, and the stereo camera is always parallel

to the floor. The robot never stops moving, even when rotating every 90o degrees. Also,

it finishes the trajectory facing the same plane from the starting point. This dataset

helps to evaluate how the SLAM deals with planar trajectories when performing 3D pose
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Figure 4.2: Stairs used for dataset “B”.

estimation, as well as how the SLAM behaves when, after turning, faces an entirely new

plan that requires new observations. It has a duration of 2 minutes and 48 seconds.

• Dataset “B” - Stairs Trip

On this dataset, RAPOSA-NG climbs up and down a set of stairs, placed in the same

scenario as dataset “A”. As depicted on figure 4.2, the stairs set has 0.615 meters of height.

The distance in ZW from the starting point to the farthest point the robot reaches is of

approximately 2.5 meters. Upon reaching the stairs top, RAPOSA-NG drives backwards

along the same path until it reaches the starting point again. Stair climbing offers a number

of challenges for SLAM: it highly affects odometry readings, it offers a huge amount of

feature occlusions while climbing and the robot movement has no smoothness. This dataset

has a duration of 1 minute and 38 seconds.

4.2 Comparison between SURF and ORB

Both ORB and SURF were properly introduced in section 2.2. The speed and performance of

those feature detectors is compared by performing a DBEKF with both datasets and using each

of them. Both SURF and ORB algorithms used are available from OpenCV image processing

libraries in C++ 1.

Table 4.1: Average time and landmarks removed by DBEKF using ORB and SURF with datasets
“A” (top) and “B” (bottom).

Dataset “A” Time (average) Number of landmarks removed (average)

ORB 0.015 seconds 1.13 landmarks per iteration

SURF 0.26 seconds 2.27 landmarks per iteration

Dataset “B” Time (average) Number of landmarks removed (average)

ORB 0.013 seconds 1.75 landmarks per iteration

SURF 0.18 seconds 1.79 landmarks per iteration

1http://opencv.willowgarage.com/wiki/
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(a) Dataset “A”
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Figure 4.3: Time duration (top) and number of removed features (bottom) per DBEKF iteration
for datasets “A” (a) and “B” (b) with both monocular and stereo observations.

Table 4.1 presents the average value per iteration of both feature detector processing time

and number of landmarks removed by DBEKF using ORB and SURF with datasets “A” and

“B”. It is clear from processing times that ORB takes much less computational time than

SURF. Since one of the DBEKF removal criteria stands for the utility classifier introduced in

subsection 2.3.2, where a landmark is said to be useful if it has a corresponding feature match

every time it is visible, the fact that the number of landmarks removed from state with ORB

is less or similar than with SURF clarifies that ORB shows greater performance over SURF

for this application. Note that SURF loses some performance by taking too much time being

processed for each iteration, prejudicing EKF and consequent estimates in the process.

For this test, only monocular observations from the left camera were used. If stereo

observations were used, the feature detector would take at least double the time per iteration

for each pair of stereo observations than with monocular observations. For the remainder of this

chapter, all tests will be performed using ORB, as it showed to be faster and more efficient than

SURF for this application.

4.3 Computational load and feature removal with DBEKF

As aforementioned in section 2.3.1, by upper limiting the number of landmarks in state by a value

Mlandmarks, EKF computational complexity becomes upper bounded as well. If there are enough

observations to grant Mlandmarks in state for estimation at every iteration, the computational

load should be constant for all time. This situation happens to all experiments presented on

this thesis.

Figure 4.3 shows the time duration and number of removed features per DBEKF itera-

tion with both monocular and stereo observations from datasets “A” and “B”, respectively. As
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Figure 4.4: Average time per iteration for different upper bounds in DBEKF for datasets “A”
and “B”.

expected, the computational complexity is near constant for all time during both experiments,

presenting some peaks and fluctuations due to new landmark initialization, the number of fea-

ture observations per update and other processing tasks unrelated to this software. Regarding

dataset “A”, one can notice some time intervals where a larger number of features are removed.

These intervals happen when the robot finishes rotating 90 degrees and faces a new plane of

observations, requiring space for new landmarks in state. It then discards older landmarks in

order to acquire new ones. Dataset “B” presents some peaks regarding the number of feature

observations as well, where the robot experienced drastic observation changes due to the rough

movement of RAPOSA when finishing climbing up or starting to climb down the stairs.

From the average time reading in both experiments, it is clear that the SLAM algorithm

fully performs in real time. However, it does not take into account the time needed for feature

acquisition using feature detectors such as SURF or ORB. With the system architecture pre-

sented in subsection 3.2, one can use processing power from RAPOSA-NG onboard CPU for

feature acquisition and use an external computer fully dedicated to SLAM.

Figure 4.4 shows the average time per iteration for different upper bounds in DBEKF with

both datasets. As expected, despite the dataset, the time per iteration rises near a cubic order.

It is important that, although the computational power becomes constant, a reasonable upper

bound is chosen to avoid large time intervals for the EKF that can otherwise reveal linearity

problems.
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Left Right

Figure 4.5: Pair of stereo image with visual features. Monocular features are represented with
a red dot, while stereo features are represented with a green dot and matched with a green line.

4.4 Mono, Stereo and Hybrid SLAM using DBEKF

Both monocular and stereo observations can be used to correct the a priori state estimation

in an elegant way using the novelistic approach presented in this thesis. This section compares

this solution over monocular only and stereo only solutions. Note that for the monocular only

solution, the left camera was chosen arbitrarily for feature acquisition. Using epipolar geometry

and feature descriptors, one can identify a stereo feature by matching a pair of monocular

features that share the same horizontal axis.

Figure 4.6 shows the number of stereo and monocular features acquired with the stereo

camera Bumblebee2 using ORB for both datasets “A” and “B”. While for dataset “A” the

stereo acquisition seems constant during all experiment, a huge increase of stereo features (and

decrease of monocular features) can be observed during the middle of dataset “B” experiment,

while climbing up and down the stairs. During this period, the robot observes the upper part

of the scenario, contributing with observations that suffer no perspective problems, unlike the

stairs that are in close proximity with the robot. This results suggest the need of coupling both

monocular only and stereo observations for state estimation.

Figures 4.7 and 4.8 present SLAM graphical results for datasets “A” and “B” using monoc-

ular only, stereo only and both monocular and stereo observations with DBEKF. Figure 4.9

shows the pose covariance trace through time for all the experiences aforementioned. Regarding

monocular observations only, both datasets suffer from scalability problems when estimating

the trajectory. While it strives to correct the pose and orientation using pallarax changes only,

the pose covariance following the robot trajectory tends to increase more over time due to the

disparity between odometry measurements and the assumed scale from the observations.

As for stereo observations only experiments, it outperforms SLAM with monocular only

in both datasets. Unfortunately, stereo observations seem to be not enough to cover the obser-

vations space, and as such some errors in pose estimation may still occur.

Finally, using both monocular and stereo observations, it performs better to stereo ob-
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Figure 4.6: Number of stereo and mono features acquired with ORB for each dataset “A” and
“B”.

servations only by correcting further some trajectory errors. While with dataset “A” the pose

covariance trace is always inferior to both monocular and stereo only experiments, with dataset

“B” it is inferior to the monocular experiment but similar to the stereo experiment. The number

of available features is superior when using both stereo and monocular observations, allowing

for a better observation coverage when stereo observations are missing. Also, with this ap-

proach, one can use monocular features while suffering no scalability problem, proving to be

advantageous over using monocular or stereo observations only.

4.5 DBEKF with different parameters

As previously mentioned in section 2.3, the utility weight factor G can vary from 0 to 1. When

G = 0, a landmark is immediately eliminated if for once it should be visible but is not detected.

When G = 1 no landmark is removed regardless of its utility. However, the other two criteria are

still applied, removing both landmarks with negative inverse depth and older landmarks when

required.

Figures 4.10 and 4.11 present SLAM graphical results for dataset “A” and “B” with

G = 0 and G = 1, respectively, while figure 4.12 shows the pose covariance evolution for

those conditions. Regarding test results with G = 0, it is clear that the pose covariance rises

significantly over time. This is due to the fact that it only takes one simple mismatch or occlusion
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(a) Mono Only

(b) Stereo Only

(c) Mono and Stereo

Figure 4.7: SLAM results using DBEKF with dataset “A”, using only monocular observations
from left camera (a), only stereo observations (b) and both monocular and stereo observations
(c). Two different camera trajectories are presented in each graph: in blue is the camera
trajectory with only odometry and IMU, while the black one used SLAM estimation. Both final
positions have their orientation represented using RGB colors for each XYZ orientation axes,
respectively. All landmarks are represented as small circumferences, and their color intensity is
proportional to their utility from DBEKF (black=1, white=0). Finally, the areas in purple and
yellow represent the final pose covariance and landmarks covariance, respectively.
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(a) Mono Only

(b) Stereo Only

(c) Mono and Stereo

Figure 4.8: SLAM results using DBEKF with dataset “B”, using only monocular observations
from left camera (a), only stereo observations (b) and both monocular and stereo observations
(c). Refer to figure 4.7 for graphical notation.

to remove a landmark from the state, forcing the removal of landmarks that could otherwise

be helpful for the state estimation. For test results with G = 1, results are near as good as

with G = 0.8 and T = 0.01, presented in section 4.3. However, it does not discard unwanted

landmarks by their utility criteria from state, and if many of them are in state, they can risk
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Figure 4.9: Trace of the pose covariance from SLAM using DBEKF for different types of obser-
vations with dataset “A” (a) and “B” (b).

the EKF estimation with dubious information regarding the map layout.

4.6 DBEKF without odometry or IMU

If no odometry nor IMU readings are available, one can apply a random walk strategy for the

SLAM problem. With random walk, the motion model assumes an additive Gaussian distributed

impulse to the angular and linear velocities,


rt+1

qt+1

vt+1

wt+1

 =


rt + (vt + Vt+1) ∆τ(t,t+1)

qt × q((wt+Wt+1) ∆τ(t,t+1))

vt + Vt+1

wt +Wt+1

 , (4.1)

Vt ∼ N (0, σ2
v I(3×3)) and Wt ∼ N (0, σ2

w I(3×3)), (4.2)

where σv and σw are standard deviations for linear and angular velocities, respectively. Both

linear velocity vt+1 and angular velocity wt+1 are added to the camera state for this model.

q((wt+Wt+1) ∆τ(t,t+1)) stands for the quaternion correspondent to the rotation of ((wt+Wt+1) ∆τ(t,t+1)).

Figure 4.13 shows SLAM results using DBEKF with Random Walk with dataset “A” and

“B”. With dataset “A”, as the model assumes smooth changes to both velocities, the estimate is

in conformity with the trajectory executed. In fact, using visual observation only it is possible to

compute the trajectory developed, as long as the motion model has correct information regarding

motion behaviour and velocity changes during dataset “A” were smooth as well. However, with

dataset “B” it has some problems dealing with the roughness of the robots movement while



4.6. DBEKF WITHOUT ODOMETRY OR IMU 53

Figure 4.10: SLAM results using DBEKF with different parameters with dataset “A”, where
G = 0 (top) and G = 1 (bottom). Refer to figure 4.7 for graphical notation.

climbing the stairs, producing some peaks over the position estimated path.



54 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.11: SLAM results using DBEKF with different parameters with dataset “B”, where
G = 0 (top) and G = 1 (bottom). Refer to figure 4.7 for graphical notation.
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Figure 4.12: Trace of the pose covariance from SLAM using DBEKF with different parameters
with dataset “A” (a) and “B” (b).
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Figure 4.13: SLAM results using DBEKF with Random Walk with dataset “A” (top) and “B”
(bottom). Refer to figure 4.7 for graphical notation.
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Chapter 5

Conclusion and Future Work

The usage of both cameras as a stereo vision decreases the uncertainty from all landmarks and

allows a better initialization for the Simultaneous Localisation and Mapping (SLAM) algorithm,

but the lack of stereo features may offer some problems to the SLAM problem if no other

type of observations are used. With this work, both stereo and monocular features are used

as observations, and as such one can use monocular information without worrying with the

scalability problem as long as stereo observations are available. From the presented results, it

is clear that using both monocular and stereo observations in the way introduced by this thesis

increases the overall quality of SLAM over monocular only or stereo only observations, covering

a bigger space of observations and suffering no lack of scale.

Although the usage of the Extended Kalman Filter (EKF) has been extensively used to

solve the SLAM problem, its computational complexity grows with the number of landmarks to

a point in time that it becomes unusable. This thesis showed that, with DBEKF, one can achieve

good estimations with constant complexity when removing landmarks from state according to

an evaluation criterion. It also became clear the need to estimate the utility of each landmark

in regard with past evaluations.

The presented SLAM has a lower computational effort using the feature detector ORB

when compared with SURF, proving to be a good source for pose estimations for a later use

with other mapping algorithms that are visually more compelling for the operator.

From the test results, it can be noticed that even without odometry and IMU measure-

ments one can achieve a acceptable estimate of the real trajectory, unless big variations are

observed that can compromise the EKF behaviour.

While some particular problems were addressed, other important factors may be of interest

for further development, such as:

1. A more sophisticated learning method for landmark classification, with regard to other evo-

lution parameters besides utility, such as landmarks spatial distribution and the innovate

covariance.

57
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2. Incorporation of the dimensional-bounded concept to other Kalman Filter variants, such

as Unscented Kalman Filter for SLAM [6];

3. Experimentation with new parametrizations for both monocular and stereo cameras be-

sides the inverse depth camera, such as the inverse scale variant [23].
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