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Abstract: A nonlinear vision based tracking system is developed to provide estimates
of the position and velocity of an Autonomous Underwater Vehicle (AUV) relative to
an Autonomous Surface Craft (ASC). Nonlinear estimator design builds on the theory
of linear parametrically varying (LPV) systems. The theoretical framework adopted
provides a powerful tool for estimator regional stability and performance analysis.
Simulations illustrate the performance of the tracker developed.
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1. INTRODUCTION

In recent years there has been increasing interest
in the use of fleets of autonomous vehicles to per-
form complex missions. Air, land, and sea exam-
ples of such cooperative missions can be found in
(SEMA, 2000) and the references therein. See also
(Pascoal et al., 2000; ASIMOV, 1998-1999) for
an example of cooperative motion control of the
DELFIM Autonomous Surface Craft (ASC) and
the INFANTE Autonomous Underwater Vehicle
(AUV) for marine science applications.

In the latter case, data exchange between the
two vehicles must rely on acoustic communica-
tions due to the strong attenuation experienced
by electromagnetic waves in the water. In order to
have access to higher bandwidth acoustic commu-
nications, the vertical channel must be used. This
constraint motivated the design of joint coopera-
tive missions where the ASC Delfim is positioned
in a vicinity of the vertical position of the AUV
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Infante with minimal exchange of navigation data
between the two platforms (Pascoal et al., 2000).

These requirements led naturally to the problem
of implementing a tracker on board the ASC to
provide estimates of the relative position and ve-
locity of both platforms. The paper proposes a
structure for the tracker that complements data
from a camera with that available from other mo-
tion sensors. This solution is plausible in shallow
water and under high visibility conditions, when
an artificial feature associated with the AUV can
be extracted from the image obtained on board
the ASC.

The key contribution of this paper is the devel-
opment of a vision based nonlinear tracker that
departs considerably from classical solutions. The
methodology developed for system design builds
on the theory of Linear Parametrically Varying
(LPV) Systems (Scherer, 2000), which are shown
to provide a new powerful framework for the
design of navigation filters for autonomous vehi-
cles that rely on inertial and vision sensors. The
new methodology leads to filter structures that
are intuitively appealing. Furthermore, it provides
tools to assess regional (non-local) stability and
performance.



2. MATHEMATICAL BACKGROUND

This section introduces some technical results for
the study of linear parametrically varying (LPV)
systems as a special case of linear time-varying
systems. The notation and the basic theory are
by now standard, see (Becker and Packard, 1994),
(Boyd et al., 1994), (Green and Limebeer, 1995),
(Scherer, 2000) and (Vidyasagar, 1985).

Let Q (a compact subset of Rp) denote a pa-
rameter variation set and let Fρ be the set of all
continuous functions mapping R+ to Q. We will
restrict ourselves to the class of LPV systems GFρ

with finite-dimensional state-space realizations

ΣGFρ
=

{
ẋ = A(ρ(t))x + B(ρ(t))w,
z = C(ρ(t))x

(1)

where ρ ∈ Fρ, x ∈ Rn is the state, w ∈
W = Rm is the input, and z ∈ Z = Rp is
the system output. The symbols A(ρ(t)), B(ρ(t)),
and C(ρ(t)) denote matrices of bounded, piece-
wise continuous functions of time, depending on a
continuous time-varying parameter ρ(t) of proper
dimensions. See (Becker and Packard, 1994; Boyd
et al., 1994; Scherer, 2000) and references therein
for an introduction to the subject. In an LPV
system the parameter ρ ∈ Fρ is assumed to be
unknown but measurable online. Note that the
symbol GFρ denotes both an LPV system and its
particular realization ΣGFρ

, as the meaning will
become clear from the context.

An LPV system GFρ : L2 → L2 is said to be stable
if its L2 induced operator norm
‖GFp‖2,i = sup

ρ∈Q
sup

{‖Gρw‖2
‖w‖2

: w ∈ L2, ‖w‖2 6= 0

}
(2)

is well defined and finite. The following result is
instrumental in computing the L2 induced opera-
tor norm of a system.

Theorem 2.1. Consider the LPV system GFρ :
W → Z with realization (1). Suppose there exists
a positive definite, symmetric matrix X ∈ Rn×n

such that for all ρ ∈ Q the matrix inequality
AT (ρ(t))X + XB(ρ(t))BT (ρ(t))X + XA(ρ(t)) +
C(ρ(t))CT (ρ(t))

γ2 < 0 holds. Then, for x(0) = 0,
w ∈ L2, ‖w‖2 < 1 and ∀ρ ∈ Q, limt→∞x(t) = 0
and ‖GFρ‖2,i < γ.

The extension of these definitions to the case
where the operator inputs and outputs belong to
the space of essentially bounded functions of time
is immediate. A system GFρ : L2 → L∞ described
by equation (2) is said to be finite-gain stable if
its ‖GFp‖2,∞ induced norm defined as
‖GFp‖2,∞ = sup

ρ∈Q
sup

{‖Gρw‖∞
‖w‖2

: w ∈ L2, ‖w‖2 6= 0

}
(3)

is well defined and finite. The GFp2,∞ induced
norm is also referred to as the generalized H2

norm.

Equipped with this set of results the tracking
problem will be formulated and a solution pro-
posed and analyzed.
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3. TRACKER DESIGN. MOTIVATION AND
DESIGN MODEL

This section describes the tracker problem which
is the main focus of this paper.

3.1 Notation

Let {I} be an inertial reference frame located in
the pre-specified mission scenario origin, at mean
sea level, and let {S} and {U} denote body-fixed
frames that move with the ASC and the AUV,
respectively, as depicted in figure 1. The following
notation is required:
IpS - position of the origin of {S} in {I};
IpU - position of the origin of {U} in {I};
p - position of the origin of {U} relative to {S},

expressed in {I}, i.e., p = IpU − IpS ;
IvS - linear velocity of the origin of {S} in {I};
IvU - linear velocity of the origin of {U} in {I};
λ := [φ θ ψ]T - vector of roll, pitch, and yaw

angles that parameterize locally the orientation
of frame {S} with respect to {I};

3.2 Vehicles kinematics and the sensor suite

Given two frames {A} and {B}, ABR denotes the
rotation matrix from {B} to {A}. In particular,
I
SR(λ) is the rotation matrix from {S} to {I},
parameterized locally by λ. Since R is a rotation
matrix, it satisfies the orthogonality condition
RT = R−1 that is, RTR = I. It is well known
(Britting, 1971) that

d

dt
IpS = IvS =IS R(�) S(IvS) (4)

where S(IvS) is the ASC velocity relative to the
inertial frame, expressed in S (i.e., body fixed
velocity).

It is assumed that the ASC is equipped with a
set of sensors and its own navigation system, as
described in (ASIMOV, 1998-1999). The naviga-
tion system provides estimates IpS and IvS of the
position and velocity of the body fixed frame {S}
relative to the inertial frame {I}, respectively.



Estimates for the attitude λ are also available and,
as a consequence, ISR(λ) is assumed to be known.

The tracker design problem at hand will be cast in
a structure similar to a complementary filter (see
(Oliveira, 2001)), based on measurements from
a set of sensors installed on board. The sensor
suite to be used and the available measurements
will be discussed in the following. A video camera
pointing down, able to discriminate some artificial
feature of the AUV such as a strobe light, will be
installed on board the ASC. The camera position
IpC and its orientation I

CR are given by (see figure
1)

IpC = IpS +IS R(�) SpC (5)

and I
CR(λ) =IS R(λ)SCR respectively where the

dependence of the position SpC and orientation
S
CR on the sensor installation procedure is obvi-
ous. The coordinates of the AUV in the {I} and
{C} frames can be related by

IpU = IpC +IC R(�)CpU . (6)

Using the relations (5) and (6), the coordinates
of {U} in the camera frame {C} are CpU =
C
SRSIR(λ)(IpU − IpS − I

SR(λ)SpC). Assuming
without loss of generality that CSR = I and SpC =
0, this relation degenerates into

CpU = [xc yc zc]
T =CI R(�)(IpU − IpS), (7)

which can be written in compact form as Cp =
C
IR(λ)p. Setting an artificial feature coincident
with the origin of {U} (such as a strobe light),
processing of the video images (i.e., threshold de-
tection) can be used to extract its 2D coordinates

[
uc

vc

]
=

[
fxc/zc

fyc/zc

]
, (8)

on the image plane, where f is the focal distance
for the pinhole model of the imaging system.
This key relation in the computer vision area
(Horn, 1985) corresponds to a nonlinear mapping
from R3 to R2, leading to an ambiguity in the
coordinate measurements in the image plane. To
solve this ambiguity, an additional measurement
related to the AUV position is required, such as
its depth or the distance between the two vehicles.
In what follows we assume a depth cell is used.
Assuming the ASC is at depth zero, the relative
z coordinate (which equals the AUV depth) is
obtained from the third row of equation (7) as

z = −s(θ)xc + c(θ)s(φ)yc + c(θ)c(φ)zc, (9)

where s(.) and c(.) are the trigonometric sinus
and co-sinus functions, respectively. This relation
assumes that wave effects can be identified and
removed from the equations due to the existence
of a navigation system on board the ASC.

In order to implement the desired estimator struc-
ture, the complementary measurement of the
AUV velocity relative to the ASC is required.
A sensor that would measure this relative veloc-
ity, based on the Doppler effect experienced by
acoustic waves travelling between the two vehi-
cles, would be a possibility. However, this option
requires sensors that are expensive or difficult
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to implement and will therefore not be used in
the proposed framework. Instead, an approximate
relation that is introduced next will be exploited
along this work. The relationship builds on the
assumption that the AUV travels at constant ve-
locity.

Consider the position of the AUV relative to the
ASC (as depicted in figure 1), written as IpU =
IpS +IC R(λ) Cp, where Cp is the relative position
expressed in the camera frame {C}. The velocities
of both platforms can be related as IvU = IvS +
d
dt (

I
CRCp). Consider for the time being that the

velocity of the AUV is zero (this restriction will
be lifted shortly). Then, d

dt (
I
CRCp) = −IvS , i.e.,

the velocity of the AUV as seen by the ASC
and expressed in the inertial frame {I} is, apart
from a change in signal, the same as the velocity
of the catamaran in {I}. Moreover, using the
fact that a Doppler log is installed on board the
ASC, this relation can be rewritten using (4) as
d
dt (

I
CRCp) = −ISR(λ)S(IvS).

The assumption above motivates the use of an
estimator with a bank of integrators aimed at
estimating biases in the velocity measurements.
The estimated biases corresponds to the deviation
in the estimated ASC velocity due to the actual
AUV velocity, which is different from zero.

3.3 Design model

In the following, the underlying design model that
plays a central role in the design of the tracker is
presented. The model is based on the kinematic
relations presented above. The resulting model G
has the realization

ΣG =

{
ṗ = −ISR(�) S(IvS)m + b + wv

ḃ = 0

ym = h�(Cp) + wy ,

(10)

where ym is the measurement of y = [uc vc z]T ,
i.e., the column vector of the variables from the
sensors’ measurements and hλ(Cp) : R3 → R3

is obtained by putting together relations (8) and
(9) for the camera model and depth measurement,
respectively. Vector b denotes velocity bias that
must be estimated. The velocity of the ASC is
considered as an input to the model. The overall
model structure is depicted in the block diagram
of figure 2.



4. TRACKER DESIGN AND ANALYSIS

The problem at hand can be described as that
of determining estimates of the relative position
and velocity of the AUV with respect to the ASC,
based on the sensor package described before. The
filter design model is the one in figure 2. In this
section, a structure for a nonlinear estimator is
proposed and analyzed.

Consider that the orientation of the camera frame
installed on board the ASC is constrained to be
in the compact set given by

Λc = {� : |φ| ≤ φmax, |θ| ≤ θmax}, (11)

and that the relative position of the AUV relative
to the ASC, expressed in {C}, is constrained to be
in

Pc =

{
Cp = [xc yc zc]

T :

x ≤ xc ≤ x,
y ≤ yc ≤ y,

0 < z ≤ zc ≤ z

}
. (12)

Notice that the yaw angle ψ is not constrained,
x . . . z can be chosen according to the mission
scenario and the expected vehicles dynamics, and
zc is positive given the fact that we are dealing
with an underwater vehicle and the inertial frame
origin {I} is located at mean sea level. Let the
estimates of the relative position Cp and velocity
Cv be written as p̂c and v̂c, respectively. It will
be required that the relative position estimate Cp̂
lie in the compact set

P̂c =

{
Cp̂ :

|x̂c − xc| ≤ x− x + dx,
|ŷc − yc| ≤ y − y + dy,

|ẑc − zc| ≤ z − z + dz

}
, (13)

where dx, dy, and dz are positive numbers and
dz < z.

The estimator structure proposed in this paper
builds on a key result that was introduced in
(Rizzi and Koditscheck, 1996). See also (Kaminer
et al., 1999), where the same structure is used
in a navigation system for automatic landing of
autonomous aircraft. This algebraic result, which
relates errors in the image plane with errors ob-
served in the inertial frame, is stated in the fol-
lowing lemma:

Lemma 4.1. Let hλ(. . .) be the mapping function
introduced in section 3. Then

h�(Cp̂)− h�(Cp) = L(Cp̂,C p)H(Cp̂)(Cp̂−C p),(14)

where L(Cp̂,C p) = diag(ẑc/zc, ẑc/zc, 1) and H(Cp̂)
denotes the Jacobian of hλ(Cp̂), with respect to
Cp̂.

According to the definition of hλ(Cp̂), the Ja-
cobian verifies |H(Cp̂)| = ẑ3

c/z, therefore it is
invertible in the compact set of positions where
the missions will take place. As a motivation to the
structure of the estimator to be proposed, invert
expression (14) to obtain

Cp̂−C p = H−1(Cp̂)L−1(Cp̂,C p)(h�(Cp̂)− h�(Cp)).

Assuming that ẑc/zc ≈ 1 yields L(Cp̂,C p) ≈ I,
i.e.,

(Cp̂−C p) = H(Cp̂)−1(h�(Cp̂)− h�(Cp)). (15)
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The importance of this nonlinear relation is
twofold: i) it can be used in the estimator as a
way to relate errors in the sensor measurements
with state variable errors, and ii) it holds the key
to bring the estimator dynamics into the form of
a LPV system.

4.1 Proposed solution

Motivated by the relation in (15), the solution
proposed for the problem addressed in this paper
is the tracker with realization

ΣT =





˙̂p = −ISR(�)S(IvS)m + b̂

+K1
I
CR(�)H−1(Cp̂)(h�(Cp̂)− ym)

˙̂
b = K2

I
CR(�)H−1(Cp̂)(h�(Cp̂)− ym),

(16)

where p̂ is the relative position estimate, b̂ is
the bias estimate, and K1 and K2 are gains to
be computed so as to meet adequate stability and
performance criteria. The estimator structure is
depicted in figure 3. The input, state and output
vectors are three dimensional. Clearly, this is an
LPV system.

We now address the problems of regional stability
and performance of the filter proposed, referred to
as P1 and P2 respectively, below.

P1 Regional Stability - Consider the design
model and the estimator structure introduced
before. Further assume that wv = wy = 0.
Given an envisioned mission scenario defined
by Pc, find a number α > 0 and observer
parameters such that the estimates p̂ of p and
v̂ of v verify the relationships
a) Cp̂ ∈ P̂c for t > 0,
b) ‖p̂− p‖+ ‖v̂ − v‖ → 0 as t → 0 and
whenever ‖[(p̂(0)−p(0))T , (b̂(0)−b(0))T ]T ‖∞ <
α.

The next theorem gives conditions under which
P1 has a solution. The proof is ommited. See
theorem 4.3 in (Kaminer et al., 1999) for a similar
result.



Theorem 4.2. Consider a mission scenario where
the orientation and position variables are con-
strained by (11) and (12) respectively, and let
P̂c be given. Let α < min(x − x + dx, y − y +
dy, z − z + dz) be a positive number and define

rz = z−z+dz
z < 1. Further let F =

[
0 I
0 0

]
and

C = [I 0]. Suppose there exists a matrix P =
PT > 0 ∈ R6×6 such that

F T P + PF +

[
−2(1− rz)2I 0

0 0

]
< 0, (17)

P −max




1

(x− x + dx)2
,

1

(y − y + dy)2
,

1

(z − z + dz)2


CT C > 0, (18)

I

α2
− P > 0. (19)

Then the filter with realization (16) and param-
eters K = [KT

1 KT
2 ]T = −P−1(1 − rz)CT solves

the filtering problem P1.

We now address the more complex problem of
filter performance in the presence of sensor noise.
Notice how filter performance is captured in terms
of a bound on the induced norm of a suitably
defined operator.

P2 Regional Stability and Performance -
Consider a mission scenario defined by Pc and
P̂c in (12). Consider also the design model (10),
with w = [wT

y wT
v ]T ∈ L2 and ‖w‖2 < 1. Given

positive numbers γ > 0 and α > 0 find (if
possible) the observer parameters such that
a) ‖Tew‖2,∞ < γ, where e = [(p̂−p)T (b̂−b)T ]T

and Tew : w → e;
b) Cp̂ ∈ P̂c for t > 0;
c) e(t) → 0 as t → ∞ when w = 0 and
‖[(p̂(0)− p(0))T , (b̂(0)− b(0))T ]T ‖∞ < α

The next theorem gives conditions under which
P2 has a solution.

Theorem 4.3. Consider a mission scenario where
the orientation and position variables are con-
strained by (11) and (12) respectively, and let P̂c
be given. Let α < min(x− x + dx, y− y + dy, z −
z + dz) be a positive number and define rz =
z−z+dz

z < 1. Let ε = minp̂c∈P̂c
λmax(H(Cp̂)HT (Cp̂))

and given γ, suppose there exists a matrix P =
PT > 0 ∈ R6×6 such that



F T P
+PF

+




I

γ2

−(1− rz)2(2− ε)I
0

0 0


 PF

F T P −I




< 0,
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P − 4max




1

(x− x + dx)2
,

1

(y − y + dy)2
,

1

(z − z + dz)2


CT C > 0, (21)

I

α2
− P > 0. (22)

Then, the filter with realization (16) and pa-
rameters K = [KT

1 KT
2 ]T = −P−1(1 − rz)CT

solves problem P2 if ‖[(p̂(0) − p(0))T , (b̂(0) −
b(0))T ]T ‖∞ < α.

Theorems 4.2 and 4.3 provide the tools for the
design and analysis of the proposed estimator with
complementary filtering properties.

5. EXPERIMENTAL RESULTS

This section summarizes the design and analyzes
briefly the performance of a non linear tracker
with the structure proposed in (16) for a simu-
lated mission scenario that requires the concerted
operation of the AUV and the ASC.

The nominal trajectories performed by the ASC
and the AUV are square shaped in the horizontal
plane, with constant nominal velocities S(IvS) =
[1.5 0 0]T m/s and U (IvU ) = [1.0 0 0]T m/s,
respectively. The ASC remains at the sea surface
(Izs = 0 m) and the AUV starts the mission at
a depth of Izu = 30 m. From time t = 60 s
until t = 80 s the AUV changes its depth with
a constant vertical velocity of I żu = 0.25m/s.

The envisioned missions are naturally constrained
by the ability of the video camera installed on
board the ASC to detect artificial features on
the AUV. This impacted on the choice of the
parameters for the compact sets Pc and P̂c, as
shown in table 1. The value of γ in Theorem 4.3
has a lower bound of γ2 > 55.8, which is a lower
bound on the induced norm ‖Tew‖(2,i).

From the LMIs introduced in theorems 4.2 and
4.3 and from the aforementioned parameters, the



Parameter Value

Λc φmax 5◦

θmax 5◦

Pc x = y −20 m

x = y 20 m
z 20 m
z 38 m

P̂c dx 0.1 m
dy 0.1 m
dz 0.1 m

Theorems 4.2 and 4.3 α 18.1 m
rz 0.905 m

Theorem 4.3 ε 0.0132

Table 1. Nonlinear tracker design pa-
rameters.
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value for the estimator gains are K1 = 0.74 I3×3

and K2 = 0.30 I3×3, respectively.

In the experiment, additive gaussian noise with
zero mean and a standard deviation of 0.1 m
for the depth sensor was considered. The relative
z coordinate was initialized at 35 m when the
nominal value was 30 m. The results for the
relative position p are depicted in figure 5, which
shows very small estimation errors. A stronger
impact of depth sensor noise on the AUV vertical
velocity estimate can be observed in figure 6, due
to the structure of the estimator chosen. However,

the vertical velocity changes are still estimated
reliably.

6. CONCLUSIONS

A nonlinear vision based tracking system was
developed to provide estimates of the position and
velocity of an Autonomous Underwater Vehicle
(AUV) relative to an Autonomous Surface Craft
(ASC). Future work will address the problem of
tracker stabily and performance in the presence
of out of frame events that arise when the camera
loses temporarily the target due to vehicle rolling
and pitching.
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