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Abstract

This paper presents a multi-scale algorithm for the reconstruction of Human anatomy
from a set of ultrasound images. Reconstruction is formulated in a Bayesian frame-
work as an optimization problem with a large number of unknown variables. Human
tissues are represented by the interpolation of coefficients associated to the nodes
of a 3D cubic grid.

The convergence of the Bayesian method is usually slow and initialization depen-
dent. In this paper, a multi scale approach is proposed to increase the convergence
rate of the iterative process of volume estimation.

A coarse estimate of the volume is first obtained using a cubic grid with small
number of nodes initialized with a constant value computed from the observed data.
The volume estimate is then recursively improved by refining the grid step.

Experimental results are provided to show that multi-scale method achieves faster
convergence rates compared with single scale approach. This is the key improvement
towards real time implementations. Experimental results of 3D reconstruction of
Human anatomy are presented to assess the performance of the algorithm and
comparisons with the single scale method are presented.
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1 Introduction

Three-Dimensional free-hand ultrasound aims to reconstruct the geometry and
acoustic properties of Human organs from a set of ultrasound (US) images ob-
tained during a clinical session. These images are associated to non parallel
planes with known position and orientation [Quistgaard,(1997)], [Rohling et al.,(1996)]
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Fig. 1. US cross sections

(see Fig. 1). The reconstruction algorithm must be able to interpolate the data
in regions which are not intersected by any inspection plane and must also
be able to reduce the multiplicative noise associated to the observed images.
Several algorithms have been proposed for 3D ultrasound imaging. These algo-
rithms usually perform volume reconstruction in two steps [Nelson et al.,(1999)],
[Carr,(1996)], [Steen et al.,(1994)], using a voxel representation of the region
of interest (cuberille [Chen et al.,(1985)]). In the first step, voxels are filled
with the data obtained from the inspection planes. In the second step, an av-
erage value is computed in the intersected voxels and an interpolation method
is adopted to fill empty voxels.

3D reconstruction of medical objects has also been addressed in a Bayesian
framework [Sanches et al.,(2000b)]. Reconstruction is formulated as an huge
optimization problem where the unknown variables are to be estimated based
on a set of incomplete and noisy data (US images). The images were ob-
tained using a free-hand commercial ultrasound equipment with a spatial lo-
cator attached to the US probe [Pholhemus,(1993)]. In this way, the positions
and orientations of the cross sections are stored together with the images
and used during the estimation process. This approach has a sound theoreti-
cal basis and compare well with other reconstructions techniques as show in
[Sanches et al.,(2000b)]. However, the Bayesian method exhibits a slow con-
vergence rate.

This paper tries to overcome this difficulty by using a multi-scale strategy in
the volume estimation.

First a rough estimate of the volume is obtained with a small number of
parameters. The volume is approximated by an interpolation of the intensity
values associated with a coarse cubic grid. Then the grid step is recursively
reduced allowing to achieve more accurate estimates of the volume of interest.

This approach has two benefits. First it significantly reduces the computational
time. The first iterations estimates a small number of coefficients (few dozens)
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being therefore much faster. Only the last iterations optimize the objective
function with respect to a large number of coefficients (millions). Therefore
significant computational gain is achieved by using the multi scale approach.

Second, the use of low resolution descriptions in the first iterations allows a
faster propagation of information along the 3D lattice which helps to overcome
the problem of missing data in specific 3D regions.

2 Single Scale Algorithm

This section summarizes the MAP algorithm described in [Sanches et al.,(2000b)]
used for a single scale (SS) description of the volume of interest.

The comparison of the method with other (e.g. [Nelson et al.,(1999)], [Carr,(1996)],
[Treece et al.,(1999)], [Nelson et al.,(1997)], [Gee et al.(1999)]) is performed in
[Sanches et al.,(2000b)]. It is concluded that the MAP method performs better
but it is much slower.

The multi scale approach presented in section 3 will overcome this drawback.

Let f be a function describing the acoustic properties of the tissue in a given
region of interest, Ω ⊂ R3.

It is assumed that f is a linear combination of basis functions (interpolation
functions) φi : Ω → R, i.e.,

f(x) = Φ(x)T U (1)

where Φ(x) = [φ1(x), φ2(x), ..., φN(x)]T is a vector of basis functions and U =
[u1, u2, ..., uN ]T is a Nx1 vector of coefficients which defines the volume of
interest. The basis functions, φp(x) are obtained by shifting a function h :
R3 → R according to

φp(x) = h(x− µp) (2)

where µp ∈ R3 are the nodes locations of a 3D cubic grid (see Fig. 2) defined
in Ω and h(x) is a tri-linear interpolation function defined by:

h(x) =

{ ∏3
k=1(1− |xk|

∆
) x ∈ δ

0 otherwise
(3)

where xk is the k-th coordinate of x, δ = [−∆, ∆]3 and ∆ is the grid step.
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Fig. 2. 3D Grid and voxel representation.

Fig. 3. Measurement of plane position and orientation.

A spatial locator is attached to the ultrasound probe (see Fig. 3). This al-
lows to accurately measure the position and orientation of the inspection
plane, provided that a careful calibration procedure is performed (e.g., see
[Prager et al.,(1998)]). This allows to compute the 3D positions of the pixels
associated with all the observed slices.

Therefore the available data is V = {yi, xi} where yi is the intensity of the
i-th pixel and xi is its corresponding 3D position. The 3D coordinates xi

are assumed to be accurately 1 known. Only the image intensities yi are
considered random variables. The 3D ultrasound problem aims the estimation
of coefficients U, given V. This can be addressed using a MAP method as
follows [Sanches et al.,(2000b)]

1 The registering problem is not treated in this paper. This problem was published
in [Sanches et al.,(2000a)], [Sanches et al.,(2002)].
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Û = arg max
U

ln(p(V |U)p(U)) (4)

where p(V |U) is the sensor model and p(U) the prior density.

Suitable probability distribution must be defined for p(V |U) and p(U). This
topic will be addressed below.

In this paper, pixel intensities are considered as independent random variables
with a Rayleigh distribution leading to the likelihood function

p(V |U) =
∏

i

yi

f(xi)
e
− y2

i
2f(xi) (5)

where f is the function to be retrieved.

These assumptions are not always true but they provide an acceptable model
for the observed data which allow us to derive analytic expressions for the
estimates. Several authors consider the pixel intensities as statistically in-
dependent [Dias et al.,(1996)] although the point spread function is some-
times greater than the inter pixel distance. The Rayleigh model is one of the
model used in ultrasound imaging [Burckhardt,(1978)], [Abbot et al.,(1979)],
[Wells et al.,(1981)] and it is assumed to be appropriate for the examples
treated in this paper,

Intensity errors in US images are due to contructive/destructive interference
phenomenon appearing in the ultrasound images as a kind of multiplicative
noise (the US wave is a coherent radiation producing effects similar to those
obtained in laser systems [Abbot et al.,(1979)], [Achim et al.,(2001)]). The
Rayleigh model arises if the number of scatters per resolution cell is large,
the echo complex magnitude components, in phase and quadrature, are nor-
mal distributed and the complex phase is uniformly distributed. When the
number of scatters is small or some of them are stronger than the others
(which happens in strong specular reflections associated to the organ bound-
aries) the Rayleigh model is no longer valid. In these cases other distribu-
tions should be used to describe the observed data (e.g., the K-distribution
[Jakeman et al.,(1976)]). Furthermore, the ultrasound equipment usually per-
form a pre-processing of the raw data in order reduce the dynamic range of
the RF signal for visualization purposes. This operation modifies the data dis-
tribution. However, it is possible to estimate the pre-processing function from
the observed data and compensate the pre-process compression, obtaining an
estimation of the original raw data [Sanches et al.,(2001)].

In this paper, it is assumed that the original data is described by the Rayleigh
model and that the observed data is decompressed.
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Fig. 4. Neighborhood representation.

The prior P (U) plays an important role in the reconstruction process because
it introduces a interpolation effect which allows to recover the function coeffi-
cients even when there is no data in its vicinity. This is the basic mechanism
that allows to fill the volume gaps that were not intersected by any cross sec-
tion. Furthermore, the prior also helps to avoid unstable behaviours during
the optimization process [Katsaggelos,(1991)].

In this paper a Gaussian prior is used [Geman et al.,(1984)]

p(U) =
1

Z
e
−α

∑
g∈G

∑
i∈δg

(ug−ui)
2

(6)

where G denotes the grid nodes, δg are the neighbors of the g-th node (see
Fig.2), and Z is a normalization factor. This prior models the correlation
among intensity coefficients on the volume of interest, Ω. In the Bayesian
context, this prior takes into account the a priori knowledge about the volume
to estimate. The adoption of this prior is equivalent to consider f as being
bandwidth limited, i.e., neighboring nodes should have similar values.

This model depends on a parameter α which accounts for intensity changes
between neighboring nodes. Each grid node is connected to 6 neighbors, except
boundary nodes. The α parameter controls the strength of each connection.
A high values of α correspond to imposing strong connections between neigh-
boring nodes while low values of α correspond to imposing weak connections.
Therefore, choosing large values of α leads to smooth estimates while small
values of α leads to noisy estimates of the volume, with sharper transitions.
The choice of α is a trade off between noise reduction and the ability to cope
with intensity transitions. Furthermore, a high value of α allows to rapidly
fulfill the gaps (i.e., regions which were not intersected by any cross section).
In this paper the α parameter was obtained by trial and error and is some-
times modified during the estimation process, starting with high values being
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gradually reduced.

The MAP reconstruction is the output of an optimization problem

Û = arg max
U

L(U) (7)

where L(U) = ln(P (V/U)P (U)) is the objective function to maximize. Using
equations (5) and (6) we obtain

L(U) =
∑

i

[ln (
yi

f(xi)
)− y2

i

2f(xi)
]− α

∑

g∈G

∑

i∈δg

(ug − ui)
2 (8)

The optimization of eqn (8) with respect to U is a difficult problem since
the number of parameters to estimate is very large (typically millions of co-
efficients). Furthermore, L(U) is a non convex and nonlinear function, for
which there is no close form solution [Li,(1998)]. Therefore, numerical meth-
ods should be considered.

To solve eqn (7) the ICM algorithm proposed by Besag [Besag,(1986)] is
used where the joint optimization problem is converted into a sequence of
1-dimensional optimization procedures. In each iteration, this method consid-
ers the objective function L(U) as being a 1D function depending of a single
parameter, keeping all the others constant. Along the iterative process all the
parameters to estimate are updated sequentially until convergence is achieved.

Let L(up) denote the objective function as a function of up coefficient, keeping
all the others constant. To maximize L(up), the following stationary condition
must be met,

∂L(up)

∂up

= 0 (9)

After straightforward manipulation this leads to

1

2

∑

i

y2
i − 2f(xi)

f 2(xi)
φp(xi) + 2αNv(up − ūp) = 0 (10)

where Nv is the number of neighbors of up, φp(xi) is the basis function as-
sociated to the p-th node computed at xi and ūp = 1

Nv

∑
i∈δp

ui is the mean
intensity associated to the p-th node neighbors .

This equation can be numerically solved by using the fixed point method
[Press et al.,(1994)] leading to
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Fig. 5. Evolution of L(U) along the iterative process for α = 10−12 and α = 5.10−11.

n+1ûp =
1

4αNv

∑

i

y2
i − 2f(xi)

f 2(xi)
φp(xi) + ūp (11)

where f(x) and ūp are computed by using the estimated values computed in
the previous iteration.

3 Multi-Scale Algorithm

As it was stated before the Gibbs prior has a stabilization effect in the con-
vergence process of the algorithm having, at the same time, a regularization
effect in the final solution. This last effect can be controlled through the α pa-
rameter which plays a key role in enforcing the convergence of the algorithm
as well as in reducing the multiplicative noise present in ultrasound images.
However, the prior, leads to a decrease of the convergence rate of the optimiza-
tion algorithm due to the propagation of information along the lattice nodes.
This effect increases with the increase of α, since an increased dependence is
enforced among neighboring nodes. Fig.5 shows the evolution of the objective
function along the iterative process using synthetic data, for two different val-
ues of α, 10−12 and 5.10−11. As shown, convergence rate for α = 5.10−11 is
clearly smaller than for α = 10−12.

To overcome this difficulty [Herman et al.,(1999)], a multi-scale (MS) ap-
proach is proposed to speed up the convergence of the sequence defined in
eqn (11).

The idea is simple. First we start with a low resolution grid (e.g. 8 nodes)
and compute the node intensities for this grid. Then we increase the number
of nodes during the optimization process until the final resolution is achieved.
The initial volume for each resolution is computed from the final estimate
obtained in the grid with lower resolution.
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Fig. 6. Interpolation method to propagate the volume estimated in resolution grid
n to the next resolution grid.

It will be shown that this strategy improves the convergence rate of the algo-
rithm.

To implement this strategy it must be guaranteed that the objective function
does not change during the grid refinement. This is achieved if the following
conditions are met in every scale change (see appendix B):

• the resolution doubles from one grid resolution to the next, and
• the α parameter is proportional to the step of the grid.

The first condition guarantees that the vectorial spaces are nested, i.e, the nth
vectorial space is a subset of the (n+1)th space. This is shown in appendix A.
In this case, the ratio of discretization step in two consecutive scales is

r =
∆n

∆n+1
= 2 (12)

where ∆n and ∆n+1 are the steps associated to grids n and n+1 respectively.
With this strategy of grid refinement the number of nodes per coordinate
increases from two like 2, 3, 5, 9, 17, 33, 65, 129, ..., N, 2N −1, .... The initializa-
tion of the volume in the grid n + 1 is easily computed from the estimated
volume in grid n by keeping unchanged the nodes that already belong to n-th
grid and interpolating between them to compute the value of the new ones,
as shown in Fig.6.

To met the second condition, let us consider the simplest case in which grid
step is the same for the three dimensions and equal to ∆n for the highest
and final resolution grid, and ∆i for the grid step of one of the intermediate
resolution grid. Let use, for each resolution grid i, different prior parameters
defined as

αi =
∆i

∆n
α, i = 1, .., n (13)
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Therefore the MS strategy is implemented as follows

1) The algorithm starts with a low resolution grid, e.g., 2× 2× 2.
2) The i-th grid is obtained from the previous one by doubling its resolution

(see eqn (12)). The nodes of the new grid are pre initialized with the values
of f(x) computed in the previous grid (see eqn (1)) at the locations of the
new grid nodes (see Fig.6), i.e., (up)

i
0 = fi−1(µ

i
p), where µi

p is the 3D location
of the ui

p node.
3) For each grid the new estimation of U is obtained using eqn (11) where

the α parameter is given by eqn (13).

In this way the objective function is invariant under grid refinements as re-
quired. Only one iteration is performed per grid scale during the first n iter-
ations. The scale is then kept constant until a stop condition is met. The α
parameter is used in eqn (13) is defined by the user and it is obtained by trial
and error. It was concluded however that the reconstruction results are not
strongly influenced by the choice of α when the multi scale approach is used.

In the first iteration each grid coefficient is initialize according to

u0
p =

2ȳ2

π
(14)

where ȳ is the mean value of the observed data in the volume of interest Ω.

This estimate is derived from the expression of the expected value of a set of

variables with Rayleigh distribution, E(x) =
√

πf
2

.

The MS approach also simplifies the initialization procedure because only
8(2 × 2 × 2) nodes must be initialized. Furthermore, this initialization is al-
ways obtained from the observed data (see eqn 14), because, in the first reso-
lution level (coarser grid), all nodes are intersected. On the contrary, in the SS
method, the initialization procedure is more complex because it is necessary
to adopt a strategy to fill the gaps corresponding to the nodes that were not
intersected by any cross sections.

4 Experimental results

The multi-scale and single scale algorithm are evaluated based on three figures
of merit: the a posteriori probability L(U) (see eqn (7)), the signal to noise
ratio of the reconstruction results, SNR and the number of iterations needed
to achieve convergence.
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Fig. 7. Synthetic image with Rayleigh noise. a)background noise; b)cube intersec-
tion.

α = 10−12 α = 5.10−12 α = 10−11

SS MS SS MS SS MS

SNR(dB) 18.03 18.15 17.12 20.20 11.61 15.13

L(U)×10−6 -8.277 -8.277 -8.302 -8.299 -8.313 -8.306

Table 1
Simulation results using a synthetic cube for α = 10−12, 5.10−12, 10−11.

Tree examples are presented. The first two examples use synthetic data, i.e.,cross
sections extracted from a single cube or from a set of cubes. The third example
uses a set of medical data corresponding to cross sections of a gall bladder.

In all these experiments a grid with 65×65×65 nodes are used to reconstruct
the data in the volume of interest. This means that 274625 coefficients have
to be estimated. The reconstruction process is performed during fifteen itera-
tions for the synthetic data and during twenty iterations for the medical data.
From the figures representing the evolution of the objective function along
the iterative process it is possible to conclude if convergence was or not was
achieved and how far is from the convergence.

4.1 Example 1

The first set of tests uses a sequence of 50 parallel cross-sections extracted
from a synthetic cube. Images with 128 × 128 pixels were computed by cor-
rupting the cross sections with Rayleigh distributed noise. Fig.7 shows images
corresponding to two different cross-sections: one extracted from the back-
ground and one intersecting the cube. The cube was reconstructed with the
MAP algorithm for three values of α (α= 5.10−12, 10−11, 5.10−11) after 15
iterations.

Figs.8-10 show the reconstruction results for α = 10−12, 5.10−12 and 10−11 re-
spectively. These figures show two cross sections of the reconstructed volumes
using the SS and MS algorithms and the intensity profiles along the main
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Fig. 8. Reconstruction results with α = 10−12:a,b) cross section extracted from
the estimated volume obtained with SS algorithm and MS algorithm respectively.
c)intensity profiles along the diagonal for the SS algorithm(thin line) and MS algo-
rithm (thick line).

Fig. 9. Reconstruction results with α = 5.10−12:a,b) cross section extracted from
the estimated volume obtained with SS algorithm and MS algorithm respectively.
c)intensity profiles along the diagonal for the SS algorithm(thin line) and MS algo-
rithm (thick line).

diagonal of the images.

Both methods provide similar results for small values of α (α = 10−12) but
the reconstruction results become different for larger values of α.

Better results are always achieve by the MS method which shows a smaller
bias.

This difference can also be observed in Table 1 which shows the SNR and the
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Fig. 10. Reconstruction results with α = 10−11:a,b) cross section extracted from
the estimated volume obtained with SS algorithm and MS algorithm respectively.
c)intensity profiles along the diagonal for the SS algorithm(thin line) and MS algo-
rithm (thick line).

Fig. 11. Convergence of the single scale(SS) and multi scale(MS) algorithms.
a)α = 10−12, b)α = 5.10−12, c)α = 10−11

L(U) values for each experiment. The MS method achieves the best scores for
all values of α.

Fig.11 represents the evolution of the objective function along the iterative
process for both methods considering three values of α. It is visible from these
figures that the MS approach converges faster than the SS algorithm achieving
higher values of the objective function. The differences in the convergence rate
are larger when the prior is stronger. Large values of α produce a long range
smoothing which is easily propagated using the low resolution grid adopted in
the first iterations of the MS method.
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Fig. 12. Cross-sections extracted from three volumes with different number of tran-
sitions with no noise (upper row) and corrupted by Rayleigh noise (bottom row).

4.2 Example 2

Instead of considering an homogeneous cube as before, the volume of interest,
Ω, is now filled with non overlapping cubes with two intensity levels. Three
cases were considered ranging from a small number of cubes(8) to a high
number of cubes(256) inside Ω.

Fig.12 shows three cross-sections extracted from the three volumes (left col-
umn) as well the corresponding images corrupted with Rayleigh noise (right
column). Each volume was then reconstructed using α = 5.10−11 by both
methods using 50 parallel cross sections of the volume of interest with 128×128
pixels.

Table 2 shows the SNR and L values obtained for each experiment. Better
results are achieved by using the MS method as in the previous example.

This experiment also shows that the improvement obtained with the MS ap-
proach is data dependent. The improvement is higher when the number of
transitions is small. This can be explained from the structure of the objec-
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Fig. 13. Evolution of the objective function along the iterative process for three
different original volumes with different number of transitions.

8 Cubes 64 Cubes 256 Cubes

SS MS SS MS SS MS

SNR(dB) 10.21 12.77 10.52 11.32 10.78 11.08

L(U)×10−6 -8.58 -8.56 -8.34 -8.32 -8.59 -8.58

Table 2
Simulation results for three volumes filled with homogeneous cubes.

tive function L. The difference is more pronounced (2.5dB) when the volume
exhibits large homogeneous regions which are better represented with small
resolution scales. The multi-scale method allows to achieve reasonable recon-
struction results, in this case, after the first two iterations, using low resolution
models. This is not true when the volume of interest exhibits a large number of
transitions. In this case higher resolution models are required to approximate
the function f .

Fig.13 shows the evolution of the objective function along the optimization
process. Faster convergence rates are obtained by the MS approach. The con-
vergence rate of the MS approach does not depend on the experiment while
the SS method converges slower when the volume of interest has large homo-
geneous regions(small number of transitions). It should also be stressed that
each iteration in the MS scheme is faster than in the SS method, during the
first stage of the optimization process corresponding to a computational gain.

4.3 Example 3

The experiments with real data were performed using a set of 62 images with
176× 176 pixels corresponding to non-parallel cross-sections of a gall bladder
obtained with an ultrasound probe. Fig.14a shows two ultrasound images be-
longing to the data sequence and the corresponding cross sections extracted
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Fig. 14. a)Two cross sections belonging to the data set, b) and c) show the corre-
sponding cross extracted from the estimated volumes using the SS and MS approach
respectively.

Fig. 15. Profiles extracted from the cross sections displayed in a)the first row and
b)second row of Fig.14. US - Ultrasound image, SS-Reconstructed volume using the
SS approach and MS-Reconstructed volume using the MS approach.

from the estimated volumes using the SS (Fig.14b) and MS (Fig.14c) ap-
proaches. Both methods lead to similar reconstructions results. However, the
MS approach is faster and achieves a higher value for the objective function
(see Fig.17). Fig.15 shows the main diagonal profiles extracted from the im-
ages displayed in Fig.14 and Fig.16 shows a 3D surface reconstruction of the
gall bladder extracted from the estimated volume computed using the MS ap-
proach. This figure was obtained by applying a data segmentation algorithm
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Fig. 16. Representation of the surface of the gall bladder extracted from the esti-
mated volume using ray casting techniques.

Fig. 17. Evolution of the objective function along the estimation iterative process
of the gall bladder.

and using ray casting techniques.

The evolution of the objective function along the optimization procedure is
displayed in Fig.17 for both methods (SS and MS).
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5 Conclusions

This paper presents a Bayesian multi-scale algorithm for 3D reconstruction
of Human organs from a set of ultrasound images. 3D data is approximated
using a sequence of nested spaces with increasing resolution. Each space is
spanned by a set of basis functions associated to the nodes of a cubic grid. An
optimization method is proposed allowing to: i) estimate a linear combination
of the basis functions for each resolution and to ii) predict the value of the
coefficients in a space with higher resolution. These two steps alternate starting
from a low resolution space until the desired resolution is achieved.

In this paper, volume reconstruction is performed using a set of cross sec-
tions of the region of interest. The position and orientation of each cross
section are measured by a spatial locator sensor and therefore they are as-
sumed to be known. This assumption is not always valid in practice. The 3D
measurements provided by the Pholemus sensor used in this work are accu-
rate. However, the pressure of the ultrasound probe against the human tissues
causes geometric deformation which can not be omitted. This problem has
been addressed by several authors [Nelson et al.,(1999)], [Treece et al.,(2001)],
[Rohling et al.,(1998)] and by us in previous work[Sanches et al.,(2002)]. The
methods described [Sanches et al.,(2002)] can be easily incorporated in the
MS algorithm described here.

Experimental tests are presented to evaluate the algorithm with ultrasound
data. It is concluded that the multi-scale concept leads to fast convergence
rates. Convergence of the estimates using the MS method is achieved in less
than 10 iterations, suggesting the possibility of using Bayesian estimation
methods for interactive 3D ultrasound imaging.

The initialization procedure is also simplified using the MS method. In fact,
only the 8 nodes of the coarsest grid (MS) must be initialized instead of
the million nodes of the finest grid(SS). Initialization of these 8 nodes with
a constant value, computed from the observed data, avoids the adoption of
complex strategies to initialized the millions of nodes of the SS method, where
some of them are not intersected by any cross-section.

Acknowledgment

This work was partially supported by FCT under project HEART 3D (SAPI-
ENS). The ultrasound images were kindly provided by R. Prager and A. Gee
from the University of Cambridge.

18



A Refinement

In this appendix we will show that doubling the resolution of the 3D grid leads
to a sequence of nested vector spaces. Any function defined in a low resolution
space can be easily expressed as a linear combination of the basis function
associated to a high dimension space.

Consider a new 3D grid formed by a set of nodes at locations µλ = (x0 +
i∆x/2, y0 + j∆y/2, z0 + k∆z/2), where (x0, y0, z0) is the coordinate of the left-
bottom corner of the region of interest(ROC).

To prove that the new set of base functions span a vectorial space that contains
the older we just have to show that any basis function defined in the nth grid
can be expressed as a linear combination of the basis functions defined in the
(n+1)th grid.

Let

φ1
n(x) = h(x/∆1

n) (A.1)

be the first component of the basis function defined in the nth grid.

Thus

φn(u) = φ1
n(u1)φ2

n(u2)φ3
n(u3) (A.2)

where u = (u1, u2, u3) and

h(x) =
{ ∏3

i=1(1− |xi|) x ∈ δ
0 otherwise

(A.3)

We shall assume without lack of generality that φ1
n(x), represented in Fig.

A.1, is centered at the origin since any other base function can be obtained
by simple shift it.

It is easy to show that (see Fig.A.1)

φ1
n(x) =

1∑

i=−1

φ1
n(i

∆1
n

2
)h(

x− i∆1
n/2

∆1
n/2

) (A.4)

where h(x−i∆1
n/2

∆1
n/2

) = φ1
(n+1)(x − i∆1

(n+1)) is the first component of the basis

function defined in the (n+1)th grid and φ1
n(i∆1

n/2) is the value of the first
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Fig. A.1. 1D Basis function.

component of the nth grid basis function calculated at the nodes of the (n+1)th
grid. Replacing eqn (A.4) in eqn (A.2) leads to

φn(u) =
1∑

i=−1

(φ1
n(µ1

i )φ
1
(n+1)(u

1 − µ1
i ))

1∑

j=−1

(φ2
n(µ2

j)φ
2
(n+1)(u

2 − µ2
j))

1∑

k=−1

(φ3
n(µ3

k)φ
3
(n+1)(u

3 − µ3
k)) (A.5)

(A.6)

where µg = (µ1
i , µ

2
j , µ

3
k) is the position of the g-th node in the (n+1)th grid.

After rearranging the terms the basis function defined in the nth grid can be
written as follows

φn(u) =
∑

g=(i,j,k)

φn(µg)φ(n+1)(u− µg) (A.7)

Eqn (A.7) shows that a basis function defined in the nth grid can be obtained
as a linear combination of the basis functions associated to the (n+1)th grid
where the coefficients are the values of the nth grid basis function calculated
in the positions of the nodes of the (n+1)th grid. This means that the space
defined in the nth grid is nested in the space defined in the (n+1)th grid.
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B Invariance of the objective function under grid refinement

Let us consider a general Gibbs distribution

P (f) =
1

Z
e−αE(f) (B.1)

with energy defined by

E =
∫

R⊂Ω

| ∇f(x) |2 dv (B.2)

where f(x) =
∑

p upbp(x).

Let us discretize this integral using a 3D grid with step (∆1, ∆2, ∆3.) The
approximated value is

E ≈ ∑

p∈G

| ∇fd(xp) |2 ∆1∆2∆3 (B.3)

where G is the set of all index of the grid and xp is the 3D position of the p-th
node.

The gradient can be approximated by first order backward differences,

∇fd(xp) =




(up − s1)/∆
1

(up − s2)/∆
2

(up − s3)/∆
3


 (B.4)

where s1, s2, s3 are the neighbors of up (see Fig. 4).

Substituting eqn (B.4) in eqn (B.3) leads to

E =
∑
p

Cx(up − s1)
2 + Cy(up − s2)

2 + Cz(up − s3)
2 (B.5)

where C1 = ∆2∆3

∆1
, C2 = ∆1∆3

∆2
and C3 = ∆1∆2

∆3
.

When ∆1 = ∆2 = ∆3 = ∆ eqn (B.5) takes the next form

E = ∆
∑
p

∑

i

(up − si)
2 (B.6)
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and substituting in eqn (B.1) leads to

P (U) =
1

Z
e−α∆

∑
p

∑
i
(up−si)

2

(B.7)

Therefore, instead of using eqn (6) to define the prior to perform the MAP
estimation we should use the eqn (B.7) that is a better approximation of eqn
(B.5) which is independent of the discretization grid.

Furthermore, this approximation depends on the error by approximating f(x)
by fn

d (x) and the gradient ∇f(x) by eqn (B.4). However, in this case,

• since we are dealing with functions belonging to a finite dimension vectorial
space (see eqn (1)) with linear derivatives with respect to the coefficients
and

• the vectorial space associated to nth grid is nested in the vectorial space
associated to the (n+1)th grid (as proved in appendix A)

then

En
d (Un) = En+1

d (U (n+1)) (B.8)

where En
d (Un) and E

(n+1)
d (U (n+1)) are the approximated discrete energies com-

puted in nth and (n+1)th grids respectively.

Thus, our discrete energy, En
d (Un), that is to be maximized is kept constant

under a grid refinement(q.e.d).
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