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Abstract

Dynamic image analysis requires the estimation of time-varying model parameters (e.g., shape coe0cients). This can be11
seen as states of a dynamic model which are restricted to a subset of Euclidean space. This paper describes an algorithm
for the estimation of the state evolution on manifolds exploiting three sources of information: the manifold geometry, the13
motion model and the sensor model. Examples are provided to illustrate the performance of this method in situations where
classic procedures cannot perform well. ? 2002 Published by Elsevier Science B.V.15
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1. Introduction

Dynamic image analysis requires the estimation
of time-varying model parameters (e.g., shape co-19
e0cients). This can be seen as states of a dynamic
model which are restricted to a subset of Euclidean21
space. Typical examples are the estimation of objects
motions (e.g., cars) or the evolution of objects shapes23
(e.g., mouth contour, heart cavities) from video se-
quences. Hereafter, state is to be understood in this
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way. A common factor present in most estimation 25
problems is the fact that unknown variables exist in
high-dimensional spaces but they cannot take arbitrary 27
values. Instead, they are usually restricted to smooth
subsets (e.g., surfaces) (Fig. 1). These subsets often 29
have a complex structure and must be estimated from
the observation data. The following examples illus- 31
trate this point. Consider the problem of visual track-
ing of cars in a lane. A simple prototype situation is 33
considered below in this paper. Since the lane geom-
etry will enforce the trajectory, this is a valuable in- 35
formation for reducing the computational load of the
search algorithm and furthermore enhances the robust- 37
ness of the position estimation. Classical algorithms
i.e., which do not restrict the state variables to a man- 39
ifold, are more prone to yield instabilities in the track-
ing error. This drawback is even more serious when 41
the observations of the car position are drawn from
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Fig. 1. Trajectory on a manifold.

omnidirectional sensors which measure only the dis-1
tance to the target. An example is given below. Where
these examples refer to the actual position of the mov-3
ing object constrained to a manifold, one can also think
of its motion parameters also being constrained. For5
instance, let the car velocity be modeled as the low-
pass Gltering of white noise with a given bandwidth7
(BW). If BW slowly varies in time, being constrained
to some subset of values, the methods to be considered9
in this paper may also be applied with advantage.

In static problems (e.g., in image reconstruction11
and object recognition) attempts have been made
for incorporating known restrictions in the estima-13
tion process [6,11,13]. Two types of constraints are
usually considered: hard constraints which lead to15
the use of constrained optimization methods (e.g.,
POCS [1,7]) or soft constraints based on the use of17
regularization techniques or prior information [12].
In [6] three-dimensional object views are represented19
as a linear combination of eigen images multiplied
by appropriate coe0cients. Although the number of21
coe0cients is very high, the number of degrees of
freedom is much smaller i.e., when the view changes23
the coe0cients describe a trajectory on a low dimen-
sion manifold. Advantage is taken of this fact for25
object recognition.

In dynamic scene analysis, state constraints play an27
even more important role for two main reasons: (i)
they signiGcantly improve the trajectory estimates (the29
improvement being often dramatic, e.g., a nonobserv-
able system may become observable if appropriate re-31
strictions are used) and (ii) they allow one to formulate
the estimation problem in a lower dimension subspace33
(the dimension of the working subspace depends on
the manifold dimension and not on the data dimen-35

sion). Both eKects are instrumental for achieving good
results and should be considered in the design of tra- 37
jectory estimation algorithms [3,2]. In [3] geometric
restrictions are used for lip tracking. Although lips are 39
represented by 40 control points belonging to a space
of dimension 80, by exploiting the constraints in the 41
control point movement, estimation has only to be per-
formed in a space of dimension 5. Other examples are 43
provided by in the analysis of Human gestures. In [2]
gestures are described by a one-dimensional manifold 45
denoted as principal curve.

In this paper, by considering a general framework 47
for trajectory estimation on manifolds, a speciGc algo-
rithm to solve this problem under a general hypothe- 49
sis is proposed. By relying on discrete approximation
and hidden Markov model (HMM) techniques, an al- 51
gorithm for trajectory estimation on manifolds is de-
rived. Illustrative examples are presented. 53

2. Estimation framework

The problem is stated as follows: Let x be an un- 55
known trajectory deGned in a manifold M ⊂ Rn. The
trajectory x is to be retrieved from a sequence of non- 57
linear and noisy observations y. It will be assumed that
x is a realization of a stochastic process deGned on the 59
manifold and y consists of nonlinear and noisy obser-
vations of x values; these processes are characterized 61
by a motion model p(xt=xt−1) and by a sensor model
p(yt=xt) that have to be estimated from the data. 63

The overall solution to this problem involves three
steps: (i) manifold learning; (ii) motion and sensor 65
model learning; and (iii) trajectory retrieval. The Grst
steps are performed oK line while the last step is per- 67
formed on line. It will be assumed that a set of (x; y)
sequences is known forming a training set employed 69
in steps (i) and (ii).

In the Grst step the manifold is estimated from 71
known x trajectories (Fig. 2). The manifold is seg-
mented into a set of regions and each region is de- 73
scribed by a parametric function deGned on a local
coordinate system: a hyperplane is Gtted to each re- 75
gion deGning a low dimension subspace of indepen-
dent variables; the projection error is not neglected, 77
being modeled as a dependent variable.

In the second step, two models, a motion model 79
and a sensor model, are estimated from the data. The



UNCORRECTED P
ROOF

SIGPRO2053
ARTICLE IN PRESS

J.S. Marques et al. / Signal Processing ( ) – 3

Map 1

Map 4

Map 2

Map 3

u1i

u4q

u3p

u2j

Fig. 2. Manifold model.

motion model deGnes the allowed transitions between1
points in the manifold and the corresponding probabil-
ity associated with the transitions. Three approaches3
can be considered for describing the motion of a point
on the manifold: a continuous time approach, a dis-5
crete time approach with continuous state and a dis-
crete approach based on time and state discretization.7
The Grst approach requires the use of a stochastic dif-
ferential equation deGned on the manifold. This topic9
has been addressed in the controls literature [4,5] and
can be pursued in the context of trajectory estima-11
tion. The second approach leads to the use of diKer-
ence equations. The third approach is based on dis-13
crete time and discrete state models, discrete Markov
models being an appealing solution.15

A sensor model deGning the probability distribu-
tion of the observed data for each manifold point is17
also needed and has to be estimated from the data.
The previous steps concern manifold learning and19
motion=sensor learning. The third step is the estima-
tion of trajectories on the manifold assuming that the21
manifold and the motion=sensor models are known.
The solution of this problem depends on the models23
considered. The continuous time approach is based on
stochastic diKerential equations, leading to the use of25
nonlinear observers on manifolds and will not be pur-
sued here. A second approach based on the discrete27
state formulation is adopted in this paper, leading to
a set of HMMs (a model per manifold region) linked29
by transitions among diKerent regions.

In the example considered in Fig. 2 it is assumed31
that a point moves clockwise with a limited velocity.
This results in a Markov chain with transitions to one33
of two consecutive states (see Fig. 3). This is just an

u11 u12 u13 u14 u15 u16 u17

u21 u22 u23 u24 u25 u26 u27

u31 u32 u33 u34 u35 u36 u37

u41 u42 u43 u44 u45 u46 u47

Fig. 3. Motion model: local and global Markov models.

example of a Markov chain which can arise in such 35
a type of problems. Other structures of the Markov
chain modeling motion may be considered. 37

3. The discrete manifold analysis (DMA)
algorithm 39

This section describes an algorithm for the es-
timation of trajectories on manifolds. This algo- 41
rithm, denoted as DMA, provides a solution for the
three problems described before: manifold learning; 43
motion=sensor model learning and trajectory retrieval.

3.1. Manifold learning 45

The DMA algorithm splits the manifold into M re-
gions and approximates each region by a set of cen- 47
troids (Fig. 2). Centroid computation is performed in
a low dimension hyperplane estimated from the data. 49

Let X be a set of manifold points (training set). It
will be assumed that the elements of X are realiza- 51
tions of a random variable whose distribution is ap-
proximated by a mixture of Gaussians 53

p(x) =
M∑
k=1

ckN (x; �k ; Rk); (1)

where M is the number of modes and N (x; �; R)
denotes a normal density function with mean � 55
and covariance matrix R. Under this hypothesis the
expectation-maximization method (EM) is used to 57
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estimate the means �i and covariances Ri of the1
Gaussian modes [9] according to

Fuzzy classi3cation (E-step):3

�k(x) =
ĉkN (x; �̂k ; R̂k)∑M
i=1 ĉiN (x; �̂i; R̂i)

: (2)

Update (M -step):

ĉk =
1

#X

∑
x∈X

�k(x); (3)

�̂k =
1

#X ĉk

∑
x∈X

�k(x)x; (4)

R̂k =
1

#X ĉk

∑
x∈X

�k(x)(x − �̂k)(x − �̂k)
T; (5)

where #X denotes the cardinality of set X . All data5
points contribute to estimate the means and covari-
ances associated to all mixture modes but with diKer-7
ent weights. Both steps are recursively computed until
convergence is achieved. The number of modes,M , is9
either assumed a priori known or estimated from the
data by a suitable method, e.g., minimum description11
length (MDL) [10]. The EM algorithm allows one to
split the manifold intoM disjoint regions,Mi, accord-13
ing to a set of discriminant functions deGned by the
squared Mahalanobis distance15

d(x; �i)2 = (x − �i)TR−1
i (x − �i): (6)

For the sake of describing the manifold one should
deGne local coordinates in each region. This can be17
done by applying principal component analysis (PCA)
[9] to each region, using the second order statistics19
�i; Ri. The PCA deGnes an orthogonal basis in each
region associated with the eigenvectors of the covari-21
ance matrix. Each point x∈Mi is given by

x = �i + Vixi; (7)

where �i is the mean of the ith region, Vi is a23
n × n matrix whose columns are the eigenvectors of
the covariance matrix and25

xi = V T
i (x − �i) (8)

are the local coordinates of x on Mi.

If the smallest eigenvalues of the covariance ma-
trix are close to zero an approximation may be con- 27
sidered in which their corresponding eigenvectors are
removed from Vi. In this case, Vi becomes a n × m 29
matrix and equation x̂=�i +Vixi deGnes the orthogo-
nal projection of x on the hyperplane spanned by the 31
columns of Vi.

The hyperplane dimension (number of basis func- 33
tions) depends on the eigenvalues of the covariance
matrix. To keep the mean square error small, only the 35
axes corresponding to small eigenvalues can be dis-
carded. The mean square error, E2, is given by 37

E2 =
n∑

i=m+1

�i: (9)

Fig. 4a shows the original data points on a parabolic
surface (the surface is assumed to be unknown). Us- 39
ing the EM method and PCA, this set is decomposed
in disjoint classes, each one being approximated by a 41
local hyperplane (Fig. 4b). The data points are pro-
jected into the closest local hyperplane, their local co- 43
ordinates being computed according to (8) (see Fig.
4c). The data points are projected into the local hyper- 45
plane and their local coordinates are computed. The
data inside each region is approximated by a set of 47
prototypes (centroids) obtained by the k-means algo-
rithm [9]. The set of centroids associated to all the 49
regions is denoted by U . The DMA algorithm adopts
a discrete representation of the manifold, each mani- 51
fold region being approximated by a set of prototypes
Ui = {ui1; : : : ; uini} expressed in local coordinates. 53

3.2. Motion and sensor model learning

A set of local Markov models is used to describe 55
state trajectories inside the manifold regions. These
local models are integrated in a global Markov model 57
by considering trajectory transitions across the region
borders. In this framework, trajectories are sequences 59
of points on the manifold, corresponding to centroids
on the hyperplanes. 61

Let x = (x(1); : : : ; x(N )); x(t)∈M , be a trajectory
on the manifold and u = (u(1); : : : ; u(N )); u(t)∈U a 63
sequence of centroids obtained by projecting each
manifold point, x(t), onto the closest hyperplane 65
and approximating the projected point by the closest
prototype (Fig. 5). 67
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(a)

(b)

(c)

Fig. 4. Manifold learning: (a) original data points; (b) approxi-
mation of the manifold by local hyperplanes using EM (shifted
downwards); (c) representation of projected data by centroids on
the hyperplane.

Fig. 5. Motion model: state trajectory and orthogonal projection
and approximation by the nearest centroids.

It will be assumed that u is a random process which 1
satisGes the Markov property of Grst order (P stands
for probability) 3

P(u(t)=u(t − 1); : : : ; u(1)) = P(u(t)=u(t − 1)): (10)

The u trajectory inside a region Mi takes values in
Ui and is described by a local Markov chain with 5
transition matrix Aii = (aiikl),

aiikl = P(u(t) = uik =u(t − 1) = uil): (11)

The u sequence is denoted as the discrete state se- 7
quence. Repeating this procedure for all manifold
regions leads to M local Markov chains which deGne 9
the motion models inside the regions.

To deal with transitions between two regions 11
Mi;Mj; i �= j, cross transition matrices Aij = (aijkl),

aijkl = P(x(t) = uik =x(t − 1) = ujl) (12)

are considered. The cross-transition matrices link all 13
the local Markov models into a global model (Fig. 3)
with transition matrix deGned by 15

A=



A11 A12 : : : A1M

...
...

...
...

AM1 AM2 : : : AMM


 : (13)

In general A is a stochastic matrix whose entries
may all be nonnegative. However, A is actually a 17
sparse matrix in many situations (e.g., when a mo-
tion is being considered as in the example of Fig. 3) 19
since most of the cross transitions have zero proba-
bility. This property stresses the physical meaning of 21
the local Markov chains which describe the motion
inside the manifold regions. Although the motivation 23
for building matrix A stems from time and state dis-
cretization of a diKusion model which represents the 25
motion considered, it is remarked that the methods de-
scribed in this paper apply to general Markov chains. 27
It should also be mentioned that the complexity of
matrix A should be low enough so as to allow its es- 29
timation from available data.

In this paper, matrixA is estimated by computing the 31
relative frequencies of all possible state transitions, a
procedure justiGed by the strong law of large numbers. 33
This amounts to assume available a su0ciently rich
set of trajectories covering the whole manifold. The 35
estimates converge almost surely to the true value as
the number of points tends to inGnity. To estimate the 37
manifold sequence a sensor model is required. Let
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y = (y(1); : : : ; y(N )) be an observation sequence. It1
will be assumed that y(t) is an instantaneous measure-
ment of u(t) being characterized by the probability3
function p(y(t)=u(t)) which has to be estimated from
the data.5

The motion model P(u(t)=u(t − 1)) and the sensor
model p(y(t)=u(t)) deGne a hidden Markov model.7

3.3. Trajectory retrieval

It is not usually possible to estimate u(t) from a9
single observation y(t) since in this case it is not pos-
sible to exploit the dynamical properties of the state11
trajectory u. The estimation of the manifold trajec-
tory x is performed in two steps: (i) estimation of13
u and (ii) projection of u onto the manifold. Projec-
tion is performed by (7). Therefore, only the Grst step15
has to be addressed. This is a well-known problem in
HMM theory which can be solved either by using the17
forward–backward algorithm or the Viterbi algorithm
[8]. The Grst is used when an on-line estimate of the19
state variable is required, relying only on current and
past observations while the Viterbi algorithm provides21
the optimal state trajectory assuming that all observa-
tions (including future observations) are known.23

4. Experimental results

Hereafter, the DMA algorithm is evaluated with25
both synthetic and real data. Three examples will be
described to illustrate the concepts presented in the27
paper.

4.1. Example 129

Fig. 6 shows the retrieval of trajectories on a sphere
from incomplete and noisy measurements. In this31
example, the motion is a known Markov chain on
the sphere and the observations are obtained by33
y = [1 − 11]x + v where v is white Gaussian noise,
i.e., y is a linear combination (projection onto a line)35
of the Cartesian coordinates of the point x on the
sphere, corrupted by additive noise.37

Since the observation model is noninvertible, the
state cannot be recovered from a single measurement.39
Each observation deGnes a plane which intersects the
sphere at an inGnite number of points, located along41

0 5 10 15

0

2

-2

(a)

(b)

(c)

Fig. 6. Trajectory estimation on manifolds: (a) true trajectory
(b) noisy observations (c) retrieved trajectory (arrows deGne the
motion Geld; the starting point of each arrow corresponds to a
centroid).

a circle. To recover the x trajectory it is necessary to
use information about the motion dynamics and the 43
manifold geometry.

In this example, a velocity Geld was deGned on the 45
sphere. The velocity Geld is used to compute the al-
lowed transitions among the centroids. Fig. 6a shows 47
the centroids and the velocity Geld deGned on the
sphere surface. A state trajectory generated by the 49
HMM is also displayed. Figs. 6b and c show the ob-
servation sequence associated to the trajectory and the 51
trajectory estimate obtained by the DMA algorithm.
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Fig. 7. Digital elevation map and road network (the car trajectory is displayed in bold and the receiver is identiGed by a circle).

A perfect reconstruction was achieved (the right cen-1
troids were selected), except at the Grst two instants
of time. We stress that this problem cannot be solved3
by standard estimation methods which do not restrict
the state to lie on the manifold.5

4.2. Example 2

The second example considers the problem of7
estimating the position of a vehicle moving along
trajectories in a three-dimensional manifold given by9
the roads in a map. It is assumed that only the dis-
tance to the receiver is known. Since the road map11
is assumed to be known, the Grst step of the DMA
is not actually used in the example. Fig. 7 shows the13
manifold contour map together with the traject to be
detected (bold line). The units in both scales are [m].15
From the point located with a dot, radar observations
are made according to the model17

yt = cos(!dt) + wt; (14)

where yt is the signal measured at time t; !=0:02; dt
is the distance to the observation point and wt is white19
noise, wtÑ (0; !2 = 0:05).

Fig. 8 shows the estimated path of the vehicle
yielded by the DMA algorithm. 21

4.3. Example 3

The third example illustrates the performance of the 23
DMA algorithm in a tracking experiment. Fig. 9 shows
the results of the DMA algorithm in the estimation of 25
a slot-race car trajectory on a video sequence of 593
images obtained at 12 fps. For this sake a background 27
image is subtracted from each new frame. The image
diKerence is then compared to a threshold and the 29
number of active pixels in the vicinity of each centroid
is computed. Let yt denote the tth image. It is assumed 31
that

p(yt=uk) =

{
cnk ; 06 nk6L2;

0; otherwise;
(15)

where nk is the number of active pixels in a L × L 33
square region centered at uk .

Figs. 9a and d show four consecutive images ex- 35
tracted from this sequence. Due to motion, the car is



UNCORRECTED P
ROOF

8 J.S. Marques et al. / Signal Processing ( ) –

SIGPRO2053
ARTICLE IN PRESS

Fig. 8. Estimated trajectory.

not always easy to detect. This di0culty will be over-1
come by using the manifold and the motion restric-
tions. Fig. 9e shows the car trajectories used to train3
the model as well as the local frames computed by the
DMA algorithm. The estimation of the car position in5
the training phase was performed manually. However,
trajectory retrieval experiments use automatic image7
processing techniques.

The HMM parameters (transition matrix and sen-9
sor model) were estimated from the training set by
the strong law of large numbers. Fig. 9f shows the11
tracking results obtained with the DMA algorithm
for a sequence of 7 consecutive images. Since all13
the frames are known, the Viterbi algorithm was
used for trajectory retrieval. The true locations are15
also displayed for comparison. Good results were
achieved even when the car is occluded by the17
bridge.

None of the problems described in this section can19
be solved without the geometric information learned
from the training set in an early stage of the procedure21
and deGning the manifold on which the state vector is
assumed to exist. This information is embodied in the23
centroid positions.

5. Conclusion

This paper exploits geometric restrictions for solv- 25
ing estimation problems in dynamic scene analysis.
Although the primary motivation stems from image 27
processing problems, the methods described may also
be used in relation to control systems where param- 29
eters slowly move on a manifold due to changes in
plant operating condition. An algorithm is proposed 31
to estimate unknown state trajectories in manifolds.
This algorithm denoted as discrete manifold analysis 33
(DMA) allows to use the available information about
the manifold geometry, as well as the motion dynam- 35
ics and the sensor model. The manifold is split into
disjoint regions, each of them being approximated by 37
a hyperplane. This allows to reduce the dimensionality
of the unknown data and to simplify the description 39
and estimation of the state trajectories. A set of local
hidden Markov models (HMM) is used to represent 41
the state trajectories inside each region and the obser-
vation sequence. To allow transitions between diKer- 43
ent regions, a global HMM is deGned by completing
the local descriptions, valid inside the manifold re- 45
gions, with transition models. The state trajectory is
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 9. Results of DMA algorithm: (a–d) input images; (e) training data, local frames and centroids; (f) true and retrieved trajectories
(black dots represent centroids, single dots represent training observations, straight lines represent principal axis (e) and car trajectories (f)).

recursively estimated by dynamic programming. The1
experimental results presented in the paper show the
ability of the DMA algorithm to estimate state trajec-3
tories on manifolds, exploiting the information on the

manifold geometry as well as the motion and sensor 5
information.

To sum up, the advantage of the proposed approach 7
comes from: (1) the use of hyperplanes for manifold
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approximation; (2) discretization, which allows for the1
possibility of using the nonlinear HMM description.
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