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Abstract—Detection and tracking of an unknown-color spher-
ical object in a partially-known environment using a robot with
a single camera is the core problem addressed in this article. A
novel color detection mechanism, which exploits the geometrical
properties of the spherical object’s projection onto the image
plane, precedes the object’s detection process. A Kalman filter-
based tracker uses the object detection in its update step and
tracks the spherical object. Real robot experimental evaluation
of the proposed method is presented on soccer robots detecting
and tracking an unknown-color ball.

I. INTRODUCTION

Detecting and tracking relevant objects in a known or
unknown environment forms a vast area of research not only
in the domain of image processing and computer vision [1]
[2] [3] [4], but also in that of mobile robotics [5] [6] [7] [8].
Often the objective in the former is to classify complex objects
based on their color and shape irregularities [1]. However,
in mobile robotics the focus is more on computationally fast
methods for object tracking (including detection) and thereby
using the objects’ information to achieve other complex goals,
e.g, robot’s self-localization [7] and high-level decision making
[9]. The gain in an object tracker’s execution speed is due
to using the object’s shape as a prior knowledge and/or
using less-complex shaped objects, e.g, spheres. Although it is
often practical to assume the presence of less-complex shaped
objects in most environments, the same cannot be true with
regard to the object’s color. Moreover, the lighting conditions
of the environment irregularly change the apparent colors of
the objects over time rendering the prior knowledge of the
object’s color useless.

In this article we present a method to solve the problem of
detecting and tracking spherical-shaped objects in a partially-
known environment without the necessity of the object’s
color information as a prior knowledge of the tracker. The
partially-known environment implies that the most dominant
colors contributing to the environment’s background are known
beforehand. The method essentially consists of the following
three modules:

• automatic color detection of a spherical-shaped object,
• spherical object detection method and
• a Kalman filter-based (KF) tracker that uses the spherical

object detection method in its update step.

The automatic color detection, which consists of a sweep
over the HSV color space, is performed only once before
initiating the tracker. Therefore, the object should be in the

field of view of the camera at the beginning of the track-
ing process. The detected color is subsequently used by the
spherical object detection method which along with the KF-
based tracker runs continuously to track the object. Since the
automatic color detection method itself is computationally fast,
it can be scheduled to run intermittently without the need
of manual intervention in environments where the lighting
changes frequently causing the apparent color of the object
to change. In order to experimentally validate our proposed
method, the tracker was implemented on real soccer robots to
track an unknown-color soccer ball.

The rest of the article is organized as follows. In Section II
we briefly overview the existing literature in the context of
object detection and tracking. The novel contributions of the
article concerning automatic color detection is presented in
Section III along with the spherical object detection and the
KF-based tracker’s theoretical details. Real robot experimental
results are presented in Section IV, followed by Section V
where we conclude the article with comments on future work.

II. RELATED WORK

An extensive literature exists in the area of object detection
where researchers have explored concepts ranging from con-
tour recognition, e.g., Hough transform (HT) [10] to structure
tensor techniques [4]. While some of these assume a prior
knowledge of the object’s color [8], innovative algorithms have
been proposed recently to overcome this assumption, e.g, [5]
[6]. In [5] the authors present a color histogram mismatch-
based method to distinguish a spherical object of known
size from the background. This removes the dependency on
the prior color information and enables the spherical object
detection in 3D space. However, since its accuracy depends
on the number of pixels required to perform the histogram
mismatch (the higher the number of pixels used, the better the
accuracy is) at every frame, the execution speed is adversely
affected causing the method to be inefficient for real-time
applications.

In [11] the authors present a circular HT-based method to
identify the circular projections of the spherical object to detect
them. Apart from being computationally expensive, the method
explicitly requires a fine-tuning of the edge-detection system,
required by the HT, every time the lighting condition of the
environment changes. A possible solution to this problem is
proposed in [12], where the image projection of the spherical
object is an exact ellipse and radial and rotary scan lines are
used to look for matching color variations to detect the outer

Proceedings of the 13th International Conference on Mobile Robots and Competitions 
April 24, 2013. Lisbon, Portugal

© 2013 IEEE 

Robotica 2013 was organized under the IEEE Robotics & Automation Society Technical Co-Sponsorship 
978-989-97531-2-9

88



2

edge of the ellipses. The method is fast and suitable for real-
time detection of unknown-color spherical objects. However, it
is too specific to a certain kind of vision system that consists
of a special mirror with a hyperbolic part in the middle, a
horizontal isometric mirror and a vertical isometric mirror in
the outer parts. In this article we show that our method is fast,
adapts automatically to lighting changes in the environment
and requires an easily available perspective lens-based camera
making it diversely usable.

III. DETECTION AND TRACKING MECHANISM

To detect and track a specific type of object in an image,
some of its characteristics must be known beforehand. These
are usually the object’s shape and color. In this article we deal
with spherical shaped objects, henceforth referred simply as
objects. Detecting a spherical object assuming a prior knowl-
edge of its color is a relatively easy and previously solved
problem. However, in order to solve the generic problem of
detecting objects in any lighting condition, the known-color
assumption needs to be dropped. Our solution to this problem
involves automatic color detection (ACD) of the object before
initiating its detection and tracking process. This consists of
sweeping the hue-saturation-value (HSV) color space in hue
intervals, and then applying the color detection mechanism,
explained further, to each hue interval. The output of this
method is the most likely hue interval that corresponds to the
color of the object. This process should be repeated after a pre-
determined time interval to adapt to varying lighting conditions
of the environment in which the detection is done. Since the
ACD is a fast method (< 1 second) the tracker can easily
afford to execute the ACD without affecting its own execution
speed. The resulting hue interval information is then used by
the object detection mechanism (ODM) by filtering each image
frame using only that hue interval.

The approach mentioned above includes the use of only a
perspective lens-based camera fixed to the robot and pitched
down towards the ground plane (GP). The GP is where the
robot moves (translates on the GP’s X − Y plane and rotates
around an axis passing through the robot’s center of mass and
perpendicular to the ground plane). To calculate the distance to
the object from the robot we use the perspective transformation
between the the image frame and the GP, assuming that the
robot is at the origin of the coordinates and the object is on the
GP. This allows a linear pixel-to-meter relationship for every
pixel belonging to the GP. Once the pixel corresponding to the
object’s contact point with the GP is known (by the ODM), we
use the aforementioned relationship to calculate the distance to
it in meters. Furthermore, using simple geometric calculations,
the object’s center’s coordinates in the robot-centric frame of
reference is calculated. Finally, the ODM acts as a classifier
for the update step of a KF-based tracking method to track the
object’s position and velocity. The robot’s odometry is used in
the KF’s prediction step.

As mentioned previously, we assume that the detection and
tracking is done in a partially known environment meaning that
the GP consists of a few dominant colors which contribute to a
large, useless part of the image. Assuming the prior knowledge

of this information, we simply eliminate their corresponding
image pixels, facilitating a much faster ACD of the object and
the ODM.
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Fig. 1: Automatic color detection algorithm

A. Automatic Color Detection (ACD) Mechanism

The ACD operates only on the first image (also assuming
that the object is present in that image) but can be executed
later if required, as mentioned previously. At first the acquired
image frame is blurred to remove noise. A color filter (con-
sisting of the known dominant colors of the GP) is applied to
this to remove the regions consisting of the GP background.
This leaves only the object to be detected along with other
objects which might be present on the GP. Note that a rather
trivial assumption here is that the GP’s dominant color is not
the same as that of the object. Subsequently the following two
steps are performed:

• Sweep of the HSV color space in hue intervals:
Consecutive color filters are applied for every interval
in the hue range. Although the hue space is swept
in the tonality in intervals of ten, the value and sat-
uration intervals are constant in order to get different
intensities for each color. For each hue interval we do
the following. Take the GP color-filtered image and re-
filter it for the hue interval in consideration. The output
image now consists only of the pixels belonging to
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that hue interval. We then find the contours on this
output image. If the area of any contour is less than
a certain predefined threshold value, it is discarded as
noise. We then compute the minimum enclosing circles
for each of the remaining contour and the area of those
enclosing circles. The relative error between the area of
each enclosing circle and the respective internal contour
is also computed. The minimum relative error among
all the contours corresponding to that hue interval is
compared with the absolute minimum relative error from
all the previous hue intervals (already processed), saving
only the smallest.

• Detecting the color: After the sweep is finished, the
hue interval that has the contour with the least relative
error is the one corresponding to the color of the object.
The entire ACD algorithm detailing these two steps is
presented in Figure 1.

The reason why the contour and the hue interval corresponding
to the least relative error is considered to be that of the object
(object to be detected) lies in the circular shape of the object’s
projection. In an ideal scenario, the contour of the object’s
projection will be circular in shape and the minimum inclosing
circle for that contour will be the contour itself causing the
relative error to be zero.

B. Spherical Object Detection Mechanism (ODM)

Once the color of the object is detected, every subsequent
frame is filtered by the hue range found by the ACD. The filter
consists of a threshold function, which sets a pixel to the value
one (white) if it belongs to the hue range of the object, and zero
(black) in the other case. Further, we compute (after removing
noise) the centroid (x̄, ȳ) of all the white pixels, resorting to
the image’s spatial moments. The centroid pixel corresponds
to the position of the object (center of the spherical object) in
the robot’s frame, which is the output of the ODM.

mji =
∑
x,y

I(x, y)xjyi

x̄ =
m10

m00
, ȳ =

m01

m00

C. Kalman Filter-based Object Tracking

In order to track the object efficiently and robustly we used
a standard Kalman Filter (KF). The ODM is used as the
measurement source for the object’s position and is used in
the KF’s update step. For the prediction step, the motion of
the robot and that of the object was taken into account. Most
of the KF’s mathematical details presented here are adapted
from [13].

The object’s motion is assumed to be a constant velocity plus
zero mean Gaussian acceleration noise model and the robot is
assumed to move with a constant linear and angular velocities
with negligible accelerations. The conversion of the object’s
velocity from the global frame to the robot frame is done as
follows.

Let vr
o denote the object’s velocity in the robot’s frame, vg

o

denote the object’s velocity in the global frame, vr denote the
robot’s linear velocity (always in global frame) and ωr denote
the angular velocity of the robot about an axis passing through
its center of mass and perpendicular to the GP. pr

o denotes the
position of the object in the robot frame. The differentials of
these variables are denoted in the dot-format.

{
vr

o = vg
o − vr − ωr × pr

o

v̇r
o = v̇g

o − v̇r − ω̇r × pr
o − ωr × vr

o

(1)

Since the the robot’s and the tracked object’s accelerations are
assumed to be zero, i.e, v̇r

o = v̇r = ω̇r = 0.

v̇r
o = −ωr × vr

o (2)

To obtain the object’s velocity in the robot frame, the robot’s
velocity adds negatively to the object’s velocity in the global
frame. An intuitive reasoning is that a static object (implying
zero global velocity) would be seen as moving in the opposite
direction of the robot’s velocity direction when the object is
viewed from the robot frame. The robot’s angular velocity also
affects negatively to the apparent object movement in the robot
frame for the same reason.

The state to be estimated by the KF is denoted by x where

x = [pr
o vr

o]
�

=
[
pr

ox pr
oy vr

ox vr
oy

]�
, which consists of the

2D position and velocity of the object in the robot’s frame of
reference . The discrete time state transition model and the
observation model is given by (3). Henceforth (t) associated
to any variable denotes its value at the timestep t.

x(t) = Φ(t)x(t− 1) + Γ(t)u(t)

z(t) = H(t)x(t) (3)

where

Φ(t) =

⎡
⎢⎢⎣

cos(Δθ) sin(Δθ) Δtcos(Δθ) Δtsin(Δθ)

−sin(Δθ) cos(Δθ) −Δtsin(Δθ) Δtcos(Δθ)

0 0 cos(Δθ) sin(Δθ)

0 0 −sin(Δθ) cos(Δθ)

⎤
⎥⎥⎦ ,

Γ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Δtsin(Δθ)

Δθ

Δt(cos(Δθ)− 1)

Δθ

Δt(cos(Δθ)− 1)

Δθ

−Δtsin(Δθ)

Δθ

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

H(t) =

[
1 0 0 0

0 1 0 0

]
, (4)

Δt is the time interval between timestep t and t−1, Δθ is the

angular displacement and u(t) = [ux(t) uy(t)]
�

is the linear
displacement of the robot between those timesteps acquired
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Fig. 2: Perspective lens-based camera mounted on top of a
soccer robot

from the robot’s odometry measurement. z(t) denotes the
object’s observation measurements obtained at the tth timestep
from the ODM.

The KF’s prediction step and the update step are given
by (5) and (6), respectively. The prediction is performed
whenever new odometry readings are acquired and the update
is performed when the object’s measurements are obtained by
the ODM.

• Prediction Step

x̄(t) = Φ(t)x(t− 1) + Γ(t)u(t)

P̄(t) = Φ(t)P(t− 1)Φ(t)� +Q(t)
(5)

• Update Step

K(t) = P̄(t)H(t)�
(
H(t)P̄(t)H(t)� +R(t)

)−1

x(t) = x̄(t) +K(t)
(
z(t)−H(t)x̄(t)

)
P(t) =

(
I−K(t)H(t)

)
Φ(t)P̄(t)

(6)

The a priori and the a posteriori error covariance matrices
are represented by P̄(t) and P(t) respectively. Both were
initialized as identity matrices, whereas the process noise co-
variance matrix, Q, and measurement noise covariance matrix,
R, are based on the ODM’s measurement and odometry errors.
K denotes the Kalman gain and I denotes an identity matrix.

IV. TESTBED, IMPLEMENTATION AND RESULTS

A. Testbed and Implementation
Our experimental testbed is the RoboCup Middle Sized

League (MSL) where one of the most important prerequisites
for the soccer playing robots is to detect and track the soccer
ball which is a spherical object. As the official rules of the
MSL have evolved, one of the major technical challenges
in the recent years is to detect and track an unknown color
ball. This makes MSL a suitable choice for implementing and
evaluating the method proposed in this article. We used one
of our omnidirectional soccer robots for the implementation
of the proposed algorithm. The robots acquire new odometry
readings every 30 milliseconds. To perform the ball’s detection,

a perspective lens-based camera (see Figure 2) was fixed on
top of the robot at a height of 80cm above the GP and pitched
down at an angle of 40◦ w.r.t the GP. Images from this camera
were acquired at 30 frames per second (fps). All involved
distance computations are based on the perspective camera pro-
jection model. An example of the distortion-corrected image
from this camera is presented in the Figure 3. All the robot’s
softwares run on a Sony Vaio laptop, equipped with an Intel
Core i3 2.2GHz (quad core) CPU and 4GB of RAM, which is
connected to the robot’s sensors and actuators through plug-
and-play connections (USB and Firewire).

The ACD, ODM and the KF-based tracker were imple-
mented using the robot operating system (ROS) and OpenCV
libraries for image processing related processes. Green and
white were considered as the dominant color in the background
and were filtered out before the ACD was initiated.

Fig. 3: An example of the distortion-corrected image from the
perspective camera.

B. results
Experiments were conducted for various balls (note that

every ball was uniformly colored, meaning without any signif-
icant patterns on it), each of a different color. The robot was
able to successfully detect and track the balls upto 6m from
itself. Table I shows the range in which the robot was able
to detect and track 2 different balls. In Figure 4 we show a
series of three images to demonstrate the ACD process. In the
first image a red colored ball (color unknown to the detection
system) is place in the field of view of the robot’s camera.
The second image shows result of filtering the background
dominant colors: green and white. The third image shows the
contours detected on the remaining image, the enclosing circles
on those contours and eventually the chosen circle with the
minimum relative error corresponding to the actual ball and
its color (marked with fluorescent green color on the image).

We further present the statistical results of the KF-based
tracker’s implementation in case of the red ball for three
separate experiments.

Experiment 1: In this experiment the ball was first placed
in the field of view of the robot (as it is necessary for the ACD)
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Colour Start Distance (m) End Distance (m)

Red 2.0 6.2

Yellow 2.0 4.1

TABLE I: Range of tracking achieved by the proposed method
on two different balls.

and then moved around the MSL field while the robot was kept
static. The robot was able to track the ball successfully even
in the case of short-term occlusion. The plots in the Figure 5
present the ball’s estimated distance to the robot during the
experiment and the KF’s innovation over time. The region
marked Occlusion in the plot of Figure 5 shows the sharp
increase in the filter’s innovation during the period in which
the ball is occluded from the camera’s field of view.

Fig. 5: Results of Experiment 1 where only the ball was
moved while the robot was static.

Experiment 2: In this experiment the ball was kept static
while the robot was rotated around its central axis perpendicu-
lar to the GP so that initially the ball is in the robot’s camera’s
field of view, loses it during the robot’s rotation and eventually
gets it back in the field of view. Results of this experiment is
plotted in the Figure 6 where we show the estimated distance
to the ball from the tracking robot, the bearing to the ball w.r.t
the robot’s heading and its corresponding residual referred to
as the KF’s angular innovation.

Experiment 3: In this experiment both the ball and the
robot were moved, however, the ball never left the camera’s
field of view. Results of this experiment are plotted in the
Figure 7 which show both the estimated distance to the ball
from the robot and the filter’s innovation. From this results
we infer that the innovation was slightly noisy (variance of
∼ 7 cm2) but with a low mean of ∼ 3 cm. The reason behind
the higher variance lies in the constant velocity plus zero mean
Gaussian acceleration noise model used in the KF for the ball’s

Fig. 6: Results of Experiment 2 where the ball was static while
the robot was rotated around its central axis perpendicular to
the ground plane.

motion update. To cope with the erratic movements of the ball,
that causes the spikes in the corresponding innovation plot,
a more sophisticated motion model would be required, e.g,
a mechanism that switches between different motion models
depending on the predicted trajectory of the tracked object.

Fig. 7: Results of Experiment 3 where both the ball and the
robot move.
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a) Unknown-color ball in the robot’s view b) Background dominant colors filtered c) Ball color detected

(marked as fluorescent green)

Fig. 4: Demonstration of the automatic color detection (ACD) process.

V. CONCLUSIONS AND FUTURE WORK

In this article we presented a novel method to automatically
detect the color of a spherical object before detecting and track-
ing it using a Kalman filter-based tracker. The fast execution
speed of the color detection method enables it to be executed
periodically while running the tracker to cope with the changes
in the lighting conditions of the environment. The method was
implemented on the soccer playing robots to track unknown-
color soccer balls with successful results. A few points that
could be enumerated for the purpose of future work are as
follows.

• In order to deal better with occlusions and to have a
smoother trajectory of the tracked object, cooperation
among multiple robots and innovative motion models
are required, e.g, an alpha-beta filter [14]. It is a steady-
state form of the nearly constant velocity filter. Since an
erratically moving object is affected by random positive-
mean acceleration, a good object motion model needs to
take this effect into account.

• Although the camera is pitched down in our application,
it still detects some irrelevant areas of the environment.
A possible future improvement would be to choose a
configuration where the camera’s field of view is better
optimized to make use of the maximum possible image
space.
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