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Abstract Living organisms exhibit a strong mutual coupling between physical
structure and behavior. For visual sensorimotor systems, this interrelationship is
strongly reflected by the topological organization of a visual sensor and how the
sensor is moved with respect to the organism’s environment. Here we present an
approach which addresses simultaneously and in a unified manner i) the organiza-
tion of visual sensor topologies according to given sensor-environment interaction
patterns, and ii) the formation of motor movement fields adapted to specific sensor
topologies. We propose that for the development of well-adapted visual sensorimo-
tor structures, the perceptual system should optimize available resources to accu-
rately perceive an observed phenomena, and at the same time, should co-develop
sensory and motor layers such that the relationship between past and future stimuli
is simplified on average. In a mathematical formulation, we implement this request
as an optimization problem where the variables are the sensor topology, the layout of
the motor space, and a prediction mechanism establishing a temporal relationship.
We demonstrate that the same formulation is applicable for spatial self-organization
of both, visual receptive fields and motor movement fields. The results demonstrate
how the proposed principles can be used to develop sensory and motor systems with
favorable mutual interdependencies.
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1 Introduction

Visual perception is often considered a one-way process which passes a recorded
stimulus along a sensory pathway at the end of which a conclusion is reached regard-
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ing the observed scene. However, by simply observing an animal relying on visual
perception in its natural environment, it becomes immediately clear that the animal’s
motor apparatus is permanently engaged in supporting perception by orienting and
relocating the visual sensory organs. Motor and sensory systems are working in a
very close relationship where not only visual input affects future actions, but mo-
tor actions also actively contribute to the process of perception by “shaping” the
sequence of recorded stimuli. Thus, in living organisms, the process of visual per-
ception does not merely consist of visual stimuli being analyzed along the sensory
pathway, but must be considered as a closed sensorimotor loop in which the ani-
mal’s body plays an important role [13]. In developmental psychology, this point of
view has most prominently been advocated by Gibson [5]. But also more recently,
O’Regan and Nog argue that visual percepts are acquired through training and exe-
cution of so-called sensorimotor skills [11]. In their view, a visual percept is “cre-
ated” through exploration of sensorimotor contingencies during interaction with the
observed environment. From this perspective, it is clear that sensor and motor sys-
tems must closely function together to support perception and consequently, from a
developmental point of view, must also evolve together. In this work we follow this
line of thinking and propose an approach where sensor and motor structures develop
conjointly into a well concerted sensorimotor system.

1.1 Related Work

The exploration of the advantages of temporally extended sensorimotor loops for
perception and their implementation in artificial agents is still on-going work. On
the one hand, sensorimotor learning traditionally focuses on learning a generally
nonlinear coordinate transformation from a sensor related reference frame to mo-
tor space such that sensory input can be translated into a motor action appropriate
for a task at hand [10, 14]. Moreover, with the advent of motor theories of percep-
tion [2, 3], a mapping of sensor and motor systems in the opposite direction — i.e.
forward models predicting stimuli from motor commands — has gained attention
in the robotics community too [18]. On the other hand, work which also considers
structural adaptations of sensor and motor systems to obtain adequate sensorimotor
maps, as addressed in this paper, is less widespread. This fact seems opposed to
the importance of the induced coupling between a given motor apparatus and the
physical structure of a sensory system which has been described by roboticists early
on; e.g. for visual perception in [4], but also in general for embodied agents with
different sensor modalities in [13]. A notable exception is a structurally adaptive
sensorimotor system described in [8]. There a robot evolves a 1-dimensional vi-
sual sensor such that projected stimuli undergo a uniform translation during straight
locomotion.

In a broader context, [9] analyses the causal structure present in the information
flow induced by sensorimotor activity using information theoretic measures. The
results in essence confirm that the characteristics of recorded stimuli have strong
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ties to spatiotemporal relationships defined by the physical embodiment and the
movement strategies executed by the considered artificial agent.

The authors of this article investigated in previous work the structure of linear
stimulus prediction models for visual sensors [15]. It was found that the pairing of
a particular sensor topology and sensor actuation strategy has a profound impact on
the complexity of a visual stimulus prediction model. The adaptation of motor prim-
itives with respect to a given visual sensor topology and, vice versa, the adaptation
of a sensor topology given a particular interaction pattern were previously addressed
in [16] and [17] considering these two problems independently.

1.2 Contribution

In this work, we develop a computational approach to conjointly synthesize visual
sensor topologies and visual motor layers according to a given agent-environment
interaction. The presented method takes as input an agent’s interaction pattern with
its environment and evolves a spatial layout for both, light receptive fields and motor
movement fields. The resulting sensorimotor structure is tuned to the characteristics
of the agent’s interaction with its environment. We show that visual receptive fields
and motor movement fields can evolve simultaneously when minimizing a simple
error measure which contemplates the reconstruction error for recorded stimuli with
respect to given input signals, and the prediction error for stimuli resulting from
self-initiated actions. Driven by the predominantly low spatial frequency of natural
images, spatially coherent and smoothly overlapping receptive fields organize on the
sensor side without any further constraint on spatial shape. At the same time on the
motor side, individual movement fields evolve such as to displace the sensor ensur-
ing high temporal coherence of visual stimuli. Compared to [16], we additionally
relax here the constraint that movement fields must implement a Gaussian model
and instead allow them to evolve freely. At the beginning of the adaptation pro-
cess, both, visual receptive fields and motor movement fields can be initialized with
randomly chosen activation functions and eventually develop into compact fields.

2 Self-Organization of Visual Sensorimotor Structures

A common line of thinking in biology proposes that evolutionary adaptation im-
plicitly optimizes some underlying criterion which is related to the fitness of an
organism [12]. From an abstract perspective, it can be argued that similarly any au-
tonomous artificial system should optimize a certain overall cost function in order to
temporally maximize its resource-efficiency, task completion rate, or in general its
functional subsistence. In the remainder of this work, we consider an artificial agent
inhabiting a given world or ecological niche (N) developing so as to optimize an
underlying cost function c,genc. Clearly, the function cagent strongly depends on the
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agent’s body and behavior, where the body of the agent can be further decomposed
into its perceptual abilities (S) and its motor apparatus (M). The behavior (Q) is de-
fined as a lifelong sequence of motor actions which depends on the agent’s partic-
ular survival strategy. We propose that a developmental process for the considered
artificial agent should implicitly strive to optimize a loosely defined optimization
problem

(;R}%) Cagent(vaaQ§N)7 (D

which can always be separated into
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Note that in this form, the full problem can be locally solved by iteratively optimiz-
ing first variables S and M while keeping Q constant and then optimizing Q while
keeping S and M constant. Here, we are interested in optimizing sensorimotor struc-
tures (S,M), and hence we address only the inner problem in (2) and consider O
fixed. In this case, the agent’s interaction with its environment can be recorded as a
set of efferent and afferent signals experienced during lifetime according to Q." In
line with observations made in living organisms, the first hypothesis in this work is
that the characteristics of such lifelong sensorimotor activity is the principal driving
force for the co-development of sensorimotor structures (S, M). With this hypothesis
the inner optimization problem given in (2) can be rewritten as

min(S,M) Csm (SaM;[07117a) ) (3)
s.t. (Ip,I1,a) ~ B(Q,N)

where the agent’s behavior Q and environment N enter the problem as overall ex-
perienced before-and-after signals (Ip, /1) when executing actions a. The function B
defines how triplets (/y, 11, a) are sampled from Q and N.

In problem (3), S and M describe the agent’s sensorimotor structure. Again, from
an abstract perspective, both, sensory and motor systems can be considered a phys-
ical implementation which reduces in a specific way the dimensionality of perceiv-
able stimuli and possible actions. In this sense, S can be thought of as a descriptor
of the sensor’s structure which defines how the agent records a stimulus from avail-
able signals /. For visual sensors, such a structure is typically implemented as a
2-dimensional spatially non-uniform distribution of light sensitive receptors which
linearly integrate luminance through receptive fields. In motor systems, a reduction
in dimensionality can be considered to be present when lower level actions are or-
ganized into directly addressable higher level movements with some added value
for the acting agent. For an example on how such a reduction in dimensionality is
implemented in a biological system, see e.g. [6]. In this work, we address such a

! In neuroscientific terms, a motor signal sent from the central nervous system to the periphery
of an organism is called efference. Conversely, a sensory signal traveling from the periphery of an
organism to the central nervous system is called afference.
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reduction in dimensionality for a very early motor layer. Similarly as for the sen-
sory system, the structure of the motor system M is composed of discrete motor
movement fields covering the available motor space non-uniformly in a way which
provides an advantage for the considered agent. An example of such first layers
of motor structures in biology are the motor layers in the optic tectum or superior
colliculus as found in mammalian species [7].

With S and M encoding the structure of the agent’s sensorimotor system, we now
incorporate the second hypothesis of this paper which addresses the co-development
of S and M. We propose that sensory and motor systems organize so as to minimize
the expected error between available signals / and stimuli which the agent actually
records via S(7). Reducing such an error directly relates to the request for the sen-
sorimotor system to optimize available resources in favor of accurate perception.
To measure a distance between S(/) and 1, a reconstructed signal S (S(7)) is com-
pared to the original signal I, where S™ projects the low-dimensional signal back
into the original sensor space. Furthermore, for the perceptual process to work as
a continuous sensorimotor loop, we not only want an accurate spatial relationship
of the agent to its environment, but also maintain this relationship in a coherent
manner over time. We thus include a coupling of sensory and motor systems via
a prediction mechanism (P) capable of predicting future sensory stimuli from ex-
ecuted motor actions a.”> Hence, the second hypothesis proposes that cgy is of the
form

mins py p) E {HS+ (P(M,a,S(l))) — I m : )

s.t. (Io,11,a) ~ B(Q,N)

where the norm is used to measure the reconstruction error of a predicted stimulus
and the actually experienced signal. Other distance measures could be considered
instead. The interested reader can find an excellent review on the ubiquity of stimu-
lus prediction in living organisms e.g. in [3].

2.1 Realization

To solve problem (4), sensor and motor spaces are discretized as regular grids which
yield sensor signals and motor activity as vectors Iy, I, and a, sampled according
to B(Q,N). Note that similarly, as I represents recorded activation on the given
sensor surface, a motor action a is a vector describing an activation profile on the
motor space. Here it is assumed that the considered agent possesses a given motor
system which transforms activation profiles a into specific motor actions. Such a
transformation can e.g. be thought to be a weighted vector sum of activated locations
in the motor space, compare also [7] for an example in biological systems.

2 Note that for a complex agent, the consequences of an action a might depend on the current
state of the agent in which case the predictor P must be state aware. In this paper, as described in
Sect. 2.1, we consider only cases where prediction is state independent.
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Sensor and motor structures S and M are represented as positive matrices (S, M)
which when applied to I and a yield visual stimuli SI and motor movement field acti-
vations M " a. We choose S and M to be positive since on the sensor side S represents
light integrating receptive fields, and M on the motor side encodes movement fields
integrating activation from the underlying motor space. To predict sensory stimuli,
we consider P to be a stateless predictor represented as a mixture of linear predictors
of the form P(M,a,SIy) = [¥; 4;:(M,a)P;] SIy, as introduced in [16]. Additionally,
we relax the constraint that A; must be composed solely of Gaussian receptive fields
as in the previous work and instead allow for arbitrary field shapes A;(M,a) =m; 'a,
where m; is the i-th column of M. After prediction, the signal is reconstructed using
the adjoint operator S'. In this sense, we rewrite (4) as

(S*,M*,P*) = argming nyp) Xy ||S X [(m; "a) P;] SIp — I ||2 (5)
st.§>0, M>0, P>0

The savvy reader will notice that the apparent ambiguity which arises by the inter-
action between P and M nearly disappears with the positivity constraints.

agent sensor topology S ns environment
discretized sensor space

motor topology M

behavior Q world N
\i /
>

discretized motor space

Fig. 1 The sensorimotor loop considered when organizing lower-dimensional sensory and motor
topologies S, M and learning the stimulus predictor P. On the motor side, the agent generates motor
commands a of size ny according to a given behavior Q. On the sensor side, the agent experiences
input signals I of size ng which represent a projection of the world onto the sensor. When executing
the full sensorimotor loop, each action a changes the input signal I and generates a triplet (Ip, I1,a).
During learning, the lower-dimensional sensor and motor topologies S and M evolve according to
given triplets (Ip,I;,a). At the same time, the prediction operator P is learned such as to predict
future sensory stimuli SI; from previous stimuli SIj for any action a.
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2.2 Method

We consider the organization of Ng = 16 visual receptive fields taking place on a
sensor surface in the shape of a disk discretized at ng = 481 locations in a grid-like
layout. Similarly, experiments presented in Sect. 3 consider Ny = 16 motor move-
ment fields evolving on 2-dimensional motor spaces discretized at ny; = 15 x 15
locations in a grid-like layout, see also Fig. 2. The environment is given as a plane
textured by a very high resolution image (2448 x 2448 pixels) depicting a real world
scene. In this article we assume the sensor surface to be parallel to the plane record-
ing grayscale images I. The sensor can interact with the environment through four
types of actions, translations in x- and y-directions, rotations and changes in dis-
tance to the plane (zoom). A set of 22500 triplets (Ip,I;,a) is obtained via B(Q,N),
where for the presented experiments the underlying Q selects actions a with sharp
activation profiles (all entries in a are zero except one) according to a uniform dis-
tribution over the discretized action space. Each triplet is obtained by positioning
the agent in a random position on the environment and taking the chosen action
a. To find (S*,M*,P*), we iteratively improve the optimization problem given in
Eq. (5) using a projected gradient descent method [1]. While it is no problem to find
a solution with an online method, convergence is much slower, we therefore choose
here the batch approach for practical reasons. However, we note that under different
circumstances an online implementation might be preferable, e.g. for a purely bio-
logically inspired implementation in a robot with stronger memory constraints and
a longer exploration phase. The experiments presented in Sect. 3 were initialized as
follows: the motor layout M randomly according to a uniform distribution between
zero and one; S randomly such that each discrete sensor location belongs to exactly
one receptive field (row of S), scaled so as to obey SST = I. The prediction matri-
ces P; were initialized with given random S and M to the least squares solution to
predict SI; with [¥; A;(M,a)P;]SIy and subsequently projected according to P > 0.
It is important to note that with a randomized initialization, nothing prevents the
adaptation process from converging to a locally optimal solution. However, from a
biological point of view, we accept these solutions as possible branches of evolu-
tionary development.

2.3 Implication

The presented approach for the co-development of visual sensor and motor struc-
tures is based on two main hypotheses. The first states that sensorimotor structures
can be decoupled within problem (2) in the sense of (3), and the second proposes
that S and M evolve such as to optimize i) the reconstruction of higher dimensional
signals, and ii) stimulus predictability. Per se, it is not clear if these hypotheses
are justifiable. However, if the proposed framework is capable of reproducing some
characteristics of in nature observed sensorimotor structures, then an indication is
provided that the implementation captures some inherent principles present in phy-
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Fig. 2 (a) Discretization of the given sensor space; (b) discretization of the given motor space for
a behavior with horizontal and vertical translation actions; (c) discretization of the given motor
space for a behavior with dilation and rotation actions. Sensor area and translation distances are
specified in world coordinates ranging from —1 to 1 in x- and y-direction.

logenetic and or ontogenetic development of biological systems. In this case, even
though we are not aware of the true evolutionary cost function, we might claim that
the made assumptions could hold, and that the proposed framework with its simple
underlying principles has explanatory power.

3 Results

Two different behaviors Q; and Q, were considered to co-develop sensor and motor
topologies S, S5 and M}, M. In a first setup, B(Q;,N) samples sensor translation
actions from a 2-dimensional motor space of a given range as shown in Fig. 2(b).
Triplets (Ip,I;,a) are sampled choosing actions a with uniform probability from the
available discrete actions. This scenario relates to translational unbiased oculomotor
control causing random stimulus displacements. The second behavior is composed
of mixed zoom and rotation actions where B(Q»,N) samples combined sensor rota-
tions and stimulus dilations from a 2-dimensional motor space as shown in Fig. 2(c).
As for Qy, triplets (Ip,I;,a) were sampled with uniform probability from the avail-
able discrete actions. Behavior 0, mimics an object manipulating agent where the
oculomotor system stabilizes the sensor on target, mechanically compensating for
image translations but not image rotations or scaling. The resulting sensor and motor
topologies Si, S, and M{,M; are shown in Fig. 3. The results demonstrate that dif-
ferent behaviors Q induce sensorimotor structures of different macroscopic nature.
Note that even though the proposed algorithm is unaware of the topological order
present in recorded stimuli I, visual receptors cluster as smoothly overlapping re-
ceptive fields and motor primitives appear as spatially coherent Gaussian-like areas.



Self-Organization of Visual Sensorimotor Structures 9

activation
oo
o =i

rotation rotation rotation

rotation

dilation dilation dilation dilation

(c) Motor topology M7, 2-dimensional shifts (d) Motor topology M3, rotation / dilation

Fig. 3 Sensor and motor topologies obtained under behaviors with actions uniformly sampled from
motor spaces as shown in Fig. 2(b) and Fig. 2(c). Resulting sensor layouts are shown in (a) and
(b) where each color denotes a different visual receptive field, and each dot shows the activation
of that field at the respective location on the sensor surface. In the translation only case we can
identify a tendency for hexagonal tiling structures, whereas in the rotation and dilation case the
receptors organize more radially. In (c) and (d) the evolved motor movement fields are shown. For
the translation only case, motor fields organize as compact Gaussian-like areas, whereas in the
rotation and dilation case, elongated elliptic fields develop reflecting the higher axial resolution
of sensor S3 compared to its radial resolution. Note that some motor fields happen to overlap and
therefore appear less pronounced as their contribution is combined according to Eq. (5).

4 Conclusions and Outlook

This paper investigated how the behavior of an artificial agent can shape the sen-
sorimotor structure of its visual system. We proposed that well adapted sensor and
motor layouts organize such as to accurately represent given input signals not only
spatially but also temporally for a set of motor actions characteristic for the behav-
ior of the considered agent. We showed that this criterion is captured by comparing
the reconstruction of a predicted future stimulus and the actually experienced signal
and can be used to conjointly develop visual receptive fields and motor movement
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fields. In living organisms, comparable structures mapping visual sensory input to
motor output can be found in the optic tectum or superior colliculus in mammals.

In future work, we intend to address larger scale problems with an optimized
version of the current implementation, which eventually could also serve as a design
tool for synthesizing behavior-specific sensorimotor structures for artificial agents.
Furthermore, we plan to apply the introduced principles to other sensory modalities,
e.g. in a frequency domain for auditory perception.
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