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Abstract—This paper discusses a class of S-estimators for covari-
ance matrices applied to a mapping application. Two alterna-
tive solution methods are discussed, namely using an iterative
formulation described in the literature, and an optimization
formulation.

Simulation results on a mapping example are presented to
illustrate the discussion.
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I. INTRODUCTION

In recent years environment mapping and SLAM (Simultane-
ous Localization and Mapping) have been recurrent issues in
robotics. Both problems deal with uncertain information on
detected landmarks, namely position and eventually orienta-
tion. Uncertainty measures on the detected landmarks are thus
very important.

Covariance of the estimated measures is general a preferred
statistic to assess uncertainty as it includes spatial information
(in the dimensions of the datasets). For example, some meth-
ods will discard points that are likely to be outliers while others
do not make any discrimination among the dataset. Clearly, if
the potential outliers are indeed outliers a robust method will
yield an uncertainty measure better than a method that does
not discard outliers (in the sense that the influence of outliers
is reduced).

Common formulations for SLAM problems assume that sen-
sors move. At the core of most approaches is the use of
EKF estimation for the simultaneous estimation of position
of robots and landmarks. The covariance of estimation error
is obtained directly from the EKF equations. The use of the
EKF implicitly assumes that some model of the motion of the
sensor is available Covariance intersection has also been used
as alternative for fusing covariances obtained from unrelated
sources. When a motion model is not available, sensor noise
is unknown, or outliers are likely to corrupt data, uncertainty

must be estimated through robust strategies able to reduce the
influence of disturbances.

II. S-ESTIMATORS

Estimators that are simultaneously robust and high breakdown
are computationally complex so that the best estimators cur-
rently available tend to focus on complexity (see for instance
the discussion in [5]).

This paper aims at testing the performance of a S-estimator in
mapping applications using two different solution strategies.
The first strategy uses closed form expressions, available in
literature, to estimate mean an covariance and an iterative
procedure that is not guaranteed to converge. The second
strategy addresses the estimation as a constrained optimization
problem.

Given an n-variable dataset x, of length m, the class of
S-estimators for a covariance matrix can be obtained by
minimizing the volume of the error ellipsoid of the covariance
estimate, det(ﬁl), subject to a constraint on the Mahalanobis
distance of the form (see for instance [1], [9]), that is,

min det(3) (1)

subject to
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where [ and 3 are the estimates of the mean and covariance
for the given data, p is a symmetric C! function, and by a
constant (which can be given the interpretation of an average
value of the p function).

The argument of p(+) is just the Mahalanobis distance of the i-
th data point to the mean /. In a sense, the p function imposes



the admissible shape for the stream of Mahalanobis distances.
For example, this function weights specific regions in the range
of Mahalanobis distances and hence constraining S to give
relevancy only to the data in the right regions.

A. Iterative strategy

The typical behavior of the S-estimator is first assessed in this
paper through a set of simulations using the iterative procedure
described in [1] (see Table I). The results are shown in Figure
1 for two different datasets.

1. Compute & and b3
2. Scale 3 so that constraint (1b) is verified

3. Iterate from step 1 until det(3) stops decreasing

Table I
THE ITERATIVE PROCEDURE FROM [1]

The core of this iterative algorithm is the scaling step 2.
Choosing p as the Tukey function,

p(di) = di/2 — 2d; [sC§ + d3 /6Cy

monotonic over each of the half-spaces d; > 0 and d; < 0 (it
is easy to check that the stationary points are at {—Cy, Cp, 0},
and using the simple scaling

scale factor = Z p(d;)/(bom)

i=1
achieve good results (though convergence is not guaranteed).

The computation of ji and 3 follows the expressions in [1].
The results were obtained for normal populations with iden-
tical characteristics, with the exception of 2 samples in plot
b which were replaced by outliers, show a good performance
rejecting the influence of these outliers. Also, the volume of
the error ellipsoid associated with the S-estimates (in blue)
can be considerably smaller than that of the usual maximum-
likelihood sample covariance estimation (in red). In both runs
bo =1 and OO = 10.

B. Solution as an optimization problem

Given that the unknowns are /i and -1 the solution is found
in two steps. In the first step it is assumed that -1 is known
and solve for fi. Once a solution is found for ji the problem
is then solved for £71.

If necessary, the procedure iterates until convergence of both
values or some limit number of iterations is reached (see figure
2).

For the procedure to converge it is necessary and sufficient
that fog and go f both have fixed points, that is if both maps
are non-expanding (see [2]). The proof that the maps involved
are indeed non-expanding is given in the following sections.
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(a) Normally distributed data

Dataset, mean, and covariance estimates
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(b) Normally distributed data with outliers

Figure 1. Typical performance of the iterative S-estimator
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Figure 2. Solution strategy



1) Estimating [i: In this step (1b) is solved simply through
the quadratic problem

This is a convex problem, easily solved using standard opti-
mization software. Figure 3 shows results obtained for differ-
ent values of by and Cy for 100 runs using a normal dataset
with 1000 points with ;o = (0,0) and ¥ = I,. The plot shows
two surfaces each interpolated from one coordinate of the i
obtained.

. estimation example

Figure 3. /i estimates for 0 < bp < 10 and 0 < Cp < 10

As Cy, by — 0 the estimate /i tends to the real value (Cy =0
is a singularity of the Tukey function that yields no solution).

The plots show the convergence of the two coordinates to
the correct value as by goes to 0, that is, as the Mahalanobis
distance is required to go to O.

Let the constraint (1b) be written as,

>o (S ) =Y b @
i=1 =1
i bi = bo (2b)
=1

where ¢ = p(v/(.))/m, vi = x; — i, and the b; are
unknowns to be determined as part of the solution process
(and constrained to (2b) ).

Without loosing generality, Expression (2) can be written as a
large system,

for some pg verifying

Po = Ez ¢_1(bi)
>ibi =bo

The solution of (3) can be easily obtained as a function of pg.
Let P and A be the eigenvector matrix in the diagonalizing
transformation of IT and the diagonal eigenvalues matrix,
respectively. Then, the solution is of the form,

y= PA71/2\/po 1, = PA~Y2¢

where 1,, is a column vector corresponding to an element in
the unit (n — 1)-simplex. When spanning the (n — 1)-simplex
one obtains the whole range {y} of solutions.

Using Cauchy-Schwarz inequality,

po = ly" Tyl < [ly|/? |11 (4)
and

lyll < IPIIAT (el < [IPIIA~2|C ®)

for some constant C' > ||c||. Since P can be made a unitary
matrix

1/2
y4) —1/2
— | <[yl <[A7C (6)
<||H||>
that is, ||y|| is bounded by the eigenvalues of A~1/2. Since A
is diagonal, ||[A~1/2|| = ||A~!||'/? and hence
lyll < A7H2C ™

||A=1|| depends, essentially, of the eigenvalues of ¥ (the exact
amount depending on the norm chosen) and hence a decrease
in ||| leads to a decrease in ||[A~!|| and to a smaller decrease
of |[A=Y||*/2 for ||A7Y| > 1.

This means that the map |X|| — |ly|| is non-expanding for
values of ||X|| above 1 and expanding for values below 1 (in
worst case as (7) is an upper bound).



2) Estimating $: Each of the terms in the sum (2) can be
represented in multiple forms, as for instance,

¢ (yi =" 'ys) = bi ®)
Since now X! is unknown, (1b) must be first converted to a
form suitable to use the same strategy as before. Using theorem
7.5.2 in [3],

-1 T T
YT =vvy 4. o0,

(€))

with the v; orthogonal vectors and n =
quadratic term y! X'y, is decomposed as

rank(X), then the

ny_lyi = yZT (vlvlT + ...+ vnvg) Yi =
=y v10] Yit- . Ay vpvt Yy = V1 Yyl vite Al vyl v, =

= v?Tivl +... v,:f'fivn (10)

with vl'v; =0, i # j, leading to,

d)(v?'rivl + ... v};Twn) =b; 11

Applying the same idea over the complete set of samples, that
is, ¢t =1,...,m, yields,

qi)(v?Tivl—F...vz;Twn) =b, it=1,....,m (12)
> bi=bo (12b)
i=1

vyv; =0, i#ji=1,...,n (12¢)

with m + 1 4 n(n — 1)/2 equations and n™ + m unknowns.
Thus, in problems of practical interest (n > 2), the number
of unknowns is bigger than the number of equations and the
domain defined by (12-12c) is not empty (or even a singleton).

Following (1), the natural choice for the criterium to choose
among a solution in this domain is,

min det(3) (13)

The cost function (13) is non convex but using a monotonic
transformation such as

min log ‘det(i)’ (14)

one gets a convex problem (see for instance [7], [8]).

The solution of (14) is obtained by exhaustive searching on
the set of points obtained from (12a-c).

It is not difficult to see that points of the form

[’Ul,...

can be made solutions of the above optimization problem.
Since the matrices of the form v;v] are singular one concludes

i

that (9) becomes singular at these solutions.

A straightforward approach to tackle this problem is to add
the following constraints,

(15)
(16)

||vi|| Z Umin

Vi,j =1, [luill = [lvjll

For the purpose of the paper, Vi, = le 3.

Figure 4 shows a consistency test for the X estimator. A
random normal dataset, with 100 points of null mean and
identity covariance, is fed into the estimator. Figure 4b shows
the aggregate results for det(ﬁ) in a test with 100 runs.
Moreover, Cy = 20 and by was chosen as the result of the
computation of the lefthand side of (1b). The average for
det(%) is 1.0235, close to the unit value of the true estimator.
In case the dataset includes outliers the results the S-estimator
shows an interesting robustness property. Figure 5 shows a run
using a dataset with identical statistical characteristics to the
previous experiments but where two outliers were added, at
positions (4,2) and (5, 6). In this test Cjy and by, were chosen

identical to the previous tests.

The true covariance (without outliers) error ellipse is shown
in green. The influence of the outliers in the ML estimate
including the outliers is clearly visible as the corresponding
error ellipse (in red) has a dominant eigenvector pointing
towards the outliers. The S-estimate (in blue) is closer to the
true covariance than the ML estimate (in red).

The major drawback in this straight optimization approach is
that the dimension of the problem increases with the dimension
of the dataset which in turn increases the computational effort.

The analysis of the map 1 +—> 3 follows the same general
ideas of its reverse map in section I[-B1. Expanding (12) as,

vlTTlvl—l—. . .—|—ng11}”+. . .—&—U{val—&—. . .—H),?van =
=l (T 4+ )+l (T ) v, =

=po (17

for some py = > ", ¢~ (b;), one can write the more compact
matrix form,
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Figure 4. Consistency assessment for the 3 estimator; 100 runs
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with T =Y T,

Let v = [v],0v],...,vl]. Expressing the orthogonality
between pairs of vectors v; ,v; can be written in matrix form
as,

0 I

ij

v vszPijv:viijzo (19)

Sample run
T T T

dataset
outlier

* * + 4

outlier

ML w outliers
ML w/o outliers
S-estimate

Figure 5.  Sample run with 2 outliers

where I;; is an n X n identity matrix located at block position
1,].
Let V be a mn x m block diagonal matrix of the form,
v 0
0 » O

0 .

r o 0 po O
- 0 Pis 0 0 O
Vv : V= : . (20)
0 .. Py 0 0

Expression (20) can also be written in a more compact form
as

VI(AV) = Ry 1)

where, by construction, A is a singular matrix.

The solution of (21) can be obtained using a least squares
approach as

V= (ATA) " ATP,

where A is constructed from A and the constraints that define
the equality of the v in the columns of V, Py is the vector
formed by stacking the columns of Fy, and V is the solution



vector with structure corresponding to the stacking of n vectors
v. Then, using Cauchy-Schwartz inequality,

VI < I (ATA) " IANIPol

1

and, using property || (ATA) " || > ||[I]|/[|.ATAJ., and theo-

rem 5.6.9 in [3],

AT Poll
< -
Vi< "tz

with p(AT A) the spectral radius of AT A.

Given that ||V < nljv
n = 1, one can write

, n > 1, and the equality holding for

Aol
< W PR
Ioll <

(22)
When ||y|| decreases the eigenvalues of the Y;, and those of
T1+...+7,,, also decrease and hence also the eigenvalues of
T'. This means that ||A]|, and hence ||.A||, decreases However,
for p(ATA) > 1 expression (22) decreases faster than |.All
this meaning that the map |jy|| — ||| is non-expanding.
The region defined by p(A”A) < 1 corresponds to scenarios
where ||y|| is small.

Let f1 : |2 — |yl and f2 : |jy|| — ||| be the maps defined
by bounds (7) and (22). If the variations of f; are big enough
then map f, enters a non-expanding region, and similarly
about big enough variations of f;. This amounts to have
variations in ||y|| from the loop formed by the composition
of f and f; bounded by a negative semi-definite function,
and similarly for variations in ||3|| generated by loop with
the composition of f; and fs. From the generalized version
of the Lyapunov stability theorem (see for example theorem
8.2 in [6]), this means that the overall loop is stable (though
eventually not asymptotically stable).

III. EXPERIMENTS

This section presents a series of simulations using the es-
timator in (1)-(1b) under the two versions described in the
previous sections, that is, based in [1], and using a mixture of
an iterative technique with standard optimization.

The motivating application is the estimation of position of
a set of targets and of the corresponding uncertainty, by a
single vehicle equipped with a range sensor. Sensing data is
acquired at a non uniform rate as the range is limited. At each
measurement event the sensor sweeps the 27 with a beam of
2° aperture and if there is a target in range the corresponding
measurement is returned.

While moving the vehicle keeps a local map with the targets
detected. Once a measurement is acquired a data association

procedure defines if the measurement belongs (i) to a newly
detected target, or (ii) to a target already in the map.

The association procedure encompasses three stages and is
based on grouping neighbor measurements. In the first stage
a measurement is fused with the existing map if it falls inside
the error ellipse of some target already in the map. If this
condition is not verified the measurement is added to the
map as a new target. At the second stage, after the end
of the run, any two targets with overlapping error ellipses
are fused together. The final stage groups targets lying in a
small common neighborhood and selects only one of them
to represent the real target. No fusion occurs at this stage.
The covariance estimate is thus computed only at the first and
second stages.

A measurement detecting a target has associated a position
and a covariance matrix. The covariance estimate is computed
by first joining the target position estimate corresponding to
the measurement to the complete set of measurements taken
by the robot along the path that were associated to this target,
and applying the algorithm in Table I afterwards.

In all experiments by = 1 and Cy = 10.

A. Iterative strategy

Figure 6 illustrates the performance of the S-estimator in [1],
in the mapping application, and in the absence of outliers and
for two different gaussian noise levels. The real and estimated
locations of the targets are marked o (blue) and + (green),
respectively. For each estimated target the corresponding error
ellipse, obtained from the estimated covariance is also shown
(red). The red/black straight line are just the actual and
reference flight paths.

Figure 7 shows the results for the same mapping application
when outliers are generated such that the time between them
is exponentially distributed.

The fact that the real targets are detected to high accuracy
whilst the phantom targets tend to show a much higher
uncertainty is a consequence of the fact the phantom targets
are constructed using only a small number of measurements
(hence the uncertainty)

These results suggest that an additional filtering step can be
used to remove some of the phantom targets, namely by
sorting the targets according the 2-norm of the corresponding
uncertainty. The idea is suggested by the fact that targets
estimated from a bigger number of measurements will have
smaller uncertainty and hence smaller 2-norm for the respec-
tive covariance matrix.

B. Optimization based strategy

As in the previous section, Figure 8 illustrates the performance
of the S-estimator in the mapping application in the absence
of outliers and for different gaussian noise levels. The exper-
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Figure 6. Mapping results for different noise levels and no outliers

iments are similar to those in the previous section. To reduce
the computational burden, the number of measurements was
reduced to 10% of those in the previous section.

Figure 9 shows the results for the same mapping application
when outliers are generated such that the time between them
has the same exponential distribution of the similar experiment
in the previous section.

The results in this section seem to be slightly better than
those obtained using the iterative approach described in [1].
Moreover, they also suggest improved performance over the
hybrid OGK-CI estimator reported in [4].

IV. CONCLUSIONS

The paper addresses the use of a S-estimator in mapping
applications. Two solution approaches are described and their
performance assessed through simulation experiments and the
results suggest a good performance by both strategies. The
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Figure 7. Mapping results for different noise levels and with 6 outliers

optimization based approach proposed in the paper was shown
to converge.

ACKNOWLEDGMENTS

This work was partially supported by FCT project PEst-
OE/EEI/LA0009/2011.

REFERENCES

[1] N.A. Campbell, H.P. Lopuhai, and P.J. Rousseeuw. On the Calculation
of a Robust S-Estimator of a Covariance Matrix. Statistics in Medicine,
17:2685-2695, 1998.

[2] Kung-Ching Chang. Methods in Nonlinear Analysis. Springer Mono-
graphs in Mathematics. Springer, 2005.

[3] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 21 edition, 2007. First published, 1985.

[4] A. Tsourdos J. Sequeira, S.B. Lazarus. Robust covariance estimation for
data fusion from multiple sensors. [EEE Transactions on Instrumentation
and Measurement, 2011. To appear.

[5] David J. Olive and Douglas M. Hawkins. Robust Multivariate Location
and Dispersion. 2010.



S-estimator based map

T T T
10 q
sk i
° -]
6L i
ot
4k o
o

2L 4
> 0f a
2f 4
4t ® B
6f i
8| o
-10f i

I I I ! . 1 I I I I I

10 8 6 4 2 0 2 4 6 8 10

X
(a) noise 0.6
S-estimator based map
T T T
10F =
sk i
£ [
6L i
%
4k |
R d

2L 4
> 0f g
2 4
4+ + g
6| i
8| i
-10f i

I I | . ! 1 I I I ! I

10 8 6 4 2 0 2 4 6 8 10

X
(b) noise 1

Figure 8. Mapping results for different noise levels and no outliers

[6] G. Smirnov. Introduction to the Theory of Differential Inclusions. Grad-
uate Studies in Mathematics, vol 41. American Mathematical Society,
2002.

[7] Gilbert Strang. Inverse problems and derivatives of determinants. Archive
for Rational Mechanics and Analysis, 114(3):255-265, 1991.

[8] Chengjing Wang, Defeng Sun, and Kim-Chuan Toh. Solving log-
determinant optimization problems by a Newton-CG primal proximal
point algorithm. SIAM Journal on Optimization, (20), 2010.

[9] Rand R. Wilcox. Introduction to robust estimation and hypothesis testing.
Elsevier, 2005.

S-estimator based map

T T T T T T T T
10 4
8 4

L4 -
6 4
+
154
4t =
[+
2t 4

> 0f .
2t i
at o ° ]
e il
8l |
o} il

. | I L L 1 | I I 1 I

10 -8 6 -4 -2 0 2 4 6 8 10

X
(a) noise 0.6, 13 outliers
S-estimator based map
T T T
10 4
8 - -
ik +
6 4
+
4t 4
)

2t il

> 0F il
2+ il
41 & B

a5
s il
8F |
o} il
I | I L L 1 | I | 1 I
10 -8 6 -4 -2 0 2 4 6 8 10
X
(b) noise 1

Figure 9. Mapping results for different noise levels and outliers



