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Abstract Planning collision-free trajectories requires the combination of generation
and modulation techniques. This is especially important if temporal stabilization of
the generated trajectories is considered. Temporal stabilization means to conform to
the planned movement time, in spite of environmental conditions or perturbations.
This timing problem has not been addressed in most current robotic systems, and it
is critical in several robotic tasks such as sequentially structured actions or human-
robot interaction. This work focuses on generating trajectories for a mobile robot,
whose goal is to reach a target within a constant time, independently of the world
complexity. Trajectories are generated by nonlinear dynamical systems. Herein, we
extend our previous work by including an Extended Kalman Filter (EKF) to esti-
mate the target location relative to the robot. A simulated hospital environment and
a Pioneer 3-AT robot are used to demonstrate the robustness and reliability of the
proposed approach in cluttered, dynamic and uncontrolled scenarios. Multiple ex-
periments confirm that the inclusion of the EKF preserves the timing properties of
the overall architecture.

1 Introduction

The ability to plan collision-free trajectories for autonomous mobile robots includes
fundamental issues, such as trajectory modulation and generation. This issue be-
comes more relevant in the path planning problem if temporal stabilization of the
generated movements is considered, particularly in discrete movements.
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Temporal stabilization means to conform to the planned movement time, despite
varying environmental conditions or perturbations. Thus, robot movements must
compensate for disturbances, accelerating or decelerating. This timing problem has
not been addressed in most current robotic systems. For instance, the classical prob-
lem of autonomous navigation, tasks performed by the robot only require a conve-
nient overall speed and when a robot takes longer to arrive at a goal because of some
unforeseen disturbance such as obstacle circumnavigation, this change of timing is
not compensated for by accelerating the vehicle along its trajectory.

Timed actions, involve stable temporal relationships and this temporal stabiliza-
tion is critical in multiple robotic tasks including avoidance of moving objects,
catching, hitting, drumming, juggling, coordination between degrees of freedom,
human-robot scenarios and generating sequentially structured actions.

In this contribution we continue previous work attempts to tackle these spatial-
temporal problems. Herein, we extend our previous work aiming that the robot
reaches a goal location while avoiding obstacles within a specified movement
time [1]. However, the target which identifies the goal location was defined geo-
graphically. To make the application more realistic, in [2], the sensory loop was
closed by online acquiring the location of the target through the built-in robot’s vi-
sual system, such that action was steered by sensory information. However, when
the localization of a target is obtained from a vision system there may be situations
in which the robot’s visual system is unable to detect the respective target. Obstacles
in the environment occluding the target are an example of such situations.

An Extended Kalman Filter (EKF) is used to estimate the location of a ball rel-
ative to the current position of the mobile robot. We have chosen to apply an EKF
because this filter has a low computational cost, and it is an optimal estimator that
linearizes the nonlinear system around the estimation. Note that our focus is to de-
velop an architecture that integrates the dynamical systems theory and an EKF while
providing for the timed control of an autonomous mobile robot. The resulting archi-
tecture is useful in robotics applications that have to generate rhythmic movements
and simultaneously to deal with targets, which can be visible or undetectable during
periods of time.

However, an important question which has to be considered is whether the in-
clusion of an EKF affects the temporal nature of the previously proposed dynamical
system architecture, i.e., the robot has to keep reaching the target location within the
specified time.

Comparative examples of temporal solutions with and without the EKF are pre-
sented which show the intrinsic robustness of the system even in the presence of
non-modeled dynamics (Brownian motion of the target).

The proposed architecture is verified in a hospital environment. In such applica-
tion, the robot is expected to carry out a task or a sequence of tasks within a specified
timing. Specifically, if we consider tasks that require a human-robot interaction, or
if the mobile robot has to delivery or carry goods between different locations of the
hospital.
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In such case, it is required to guarantee that the response time will be inferior to a
certain value, which depends on the type of interaction, and which can be specified
by higher levels of the modular architecture herein presented.

The experiments were performed in a Webots simulation environment using a
Pioneer 3-AT robot. The EKF was able to robustly estimate the location of the tar-
get even when the path covered by the robot is subjected to variations not known
a priori, and to converge to the reference path after long periods of time without
observations. This is especially important if the robot has to navigate in cluttered
environments.

2 Related Work

The generation of timed trajectories embedded in feedback structures remains, to
the best of our knowledge, an issue currently receiving attention both in robotics and
in neurosciences. Usually the proposed control approaches are based on nonlinear
dynamical systems.

Research has been revolving around related themes considering learning by
demonstration, including the dynamical motor primitives [3], combining dynam-
ics for rhythmic and discrete motion, generation of synchronized movement for
robot with multiple degrees of freedom to achieve tasks which involve rhythmic
motions such as biped and quadruped autonomous adaptive locomotion over irreg-
ular terrain [4], juggling [5], drumming [3], playing with a slinky toy, basis field
approaches for limb movements [6] and locomotion [7] for instance, as well as su-
perposing movement primitives.

The proposed systems are robust against disturbances but temporal stabilization
is not effectively attempted. These ideas were previously extended to signal process-
ing in biped and quadruped locomotion [8], using a frequency-learning mechanism
for nonlinear oscillators in the presence of external signals.

In [9] the drumming problem is also addressed but it does not take into account
any kind of disturbance which may affect the rhythmic movement. Also [10], com-
bined rhythmic and discrete movements were able to generate movements in a Ball-
Paddling robotic application.

Human-like reaching has been implemented in a robot manipulator [11] to reach
a tracked ball by applying VITE-like dynamical systems. Recent studies include
robust manipulation through the learning of motion primitive goal [12].

Nevertheless, works addressing the generation of rhythmic movements in wheeled
mobile robots has not been addressed in most current works. In [13], rhythmic
movement is generated using limit cycle attractors for a wheeled mobile robot that
is able to perform a sequence of basic behaviors. However, an inherent limitation of
this approach is that it only generates a single continuing pattern of rhythmic move-
ment, remaining still limited with respect to the integration of multiple constraints
and discrete movements.
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These works have used nonlinear dynamical systems, including oscillators, and
the oscillatory behavior has been explored for responsiveness and flexibility as well
as for timing. The dynamical systems theory provides several advantages to address
the temporal stabilization problem such as low computational cost, smooth online
modulation while keeping the general features of the original movements, robust-
ness against small perturbations, and possibility to integrate sensory feedback.

The work in [14] has initiated the dynamical system approach to understand
movement coordination to generate timed actions, in which time is a controlled
variable against perturbations when a particular action is initiated and terminated.
In [15], this architecture was implemented in a real vehicle, where a temporal sta-
bilization mechanism was proposed. The same framework was modified in [16],
in which some changes to the approach were proposed, since they argued that the
included temporal stabilization mechanism was not able to preserve the temporal
constraint.

We continued to tackle this challenge and proposed a few novel adaptations to
the system in [1], by exploring the intrinsic properties of the used oscillator. The
main novelty was in exploring bifurcation theory to switch the qualitative dynamics
of the oscillators, instead of switching among different dynamical systems. Thus,
we generated sequences of both discrete and rhythmic movements through the same
system similarly to work in locomotion [17] and [4], but applied to a wheeled robot.
Further, an adaptive mechanism for frequency modulation of the velocity profile
based on the oscillators current state was proposed, allowing to set different times
for acceleration and deceleration.

The applied type of movements, discrete and rhythmic, is strongly supported by
research on human motor control [18].

In mobile robotics the EKF has been extensively used e.g., to smooth data from
ultrasonic sensors in order to estimate the location of objects [19] or in robotic arms
catching a flying ball [20],[21] where a ball is launched towards to the robotic arm,
and an EKF is used to track and to predict the position of the ball at each instant of
time. EKFs have been also widely spread in the literature addressing target tracking.
However, its effects in the overall dynamics have not received much attention, e.g.,
related to target occlusion during large periods of time. This is an aspect enforced
by the experiments presented here.

3 System Overview

The overall architecture of our system is depicted in fig 1. The system is hierarchi-
cally divided in two functional layers according to their level of abstraction. These
two layers implemented through a mesh of interacting dynamical systems, are mu-
tually coupled, however they work independently of one another, and each layer
sends sets of parameters to the other layer. The second layer mimics the role of
supra-spinal structures in biological systems. Basically, it is responsible for select-
ing the most adequate robot motor behavior accordingly to external conditions and
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Fig. 1 System overall schematic.

current states of the task at hand, map it onto the corresponding set of dynamical
parameters and send them to the first layer at the right timing.

The first layer focuses its operation on controlling the 2D motion of the robot
according to the dynamics of two behavioral variables: the heading direction ¢;, and
the forward velocity v.

In the following, we detail each layer of the overall architecture. For a complete
explanation please see [2, 1].

3.1 First Layer

For heading control, we motivate the choice of the dynamical systems approach [22],
because its properties allow for the integration of sensory-motor feedback and thus
for closed-loop control. The directional dynamics rules the robot’s heading direction
¢n by avoiding obstacles and following towards to the target.

The velocity v of the robot is the major determinant to the success of the move-
ment task within the specified timing constraints. Velocity is set as the solution of a
stable limit-cycle generated by a Landau-Stuart oscillator [2, 15, 1], which is mod-
ulated by the parameter modulation. The performed velocity consists of a single
oscillation cycle, adapted in order to accelerate or decelerate in the presence of dis-
turbances.
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The proposed oscillator is able to generate discrete, thythmic or a superimposi-
tion of both movements, resulting in a more complex movement. The choice and
switch among these different movements depends explicitly on the parameters val-
ues.

Timing adaptation is achieved by computing online an updating rule for the os-
cillator parameters. It is explained detail in [2] as well as obstacle avoidance.

This layer receives from the second layer at the right timing, sets of parameters
that specify and modulate in a simple and straightforward manner the generated
trajectories.

3.2 Second Layer

Commands are sent from the second layer, changing qualitatively the dynamic so-
lution by taking advantage of the Hopf bifurcation of the Landau-Stuart oscillator,
resulting in three motor behaviors, available in the level’s repertoire: stop, the robot
does not move; execution, the robot performs the rhythmic movement; rescue, dis-
crete movement.

The Behavior Switching module autonomously selects and sequences these mo-
tor behaviors accordingly to external conditions and current states of the task at
hand, such that action itself is elicited by perception.

The Extended Kalman filter module, employs an EKF in order to estimate the
localization of the target relatively to the robot’s position, i.e. the D, ﬁy projections
onto the robot X and Y-axes of the remaining distance to reach the target, and con-
sequently the distance D to the target and the direction 1, where the target lies'.

It receives from the Image processing module the measured D, and Dj.

Note that the timing adaptation is directly proportional to the estimation of D and
thus the EKF has a very important role in the overall architecture.

3.3 Timing Constraints

This timing architecture is very useful for robotic applications that need to generate
robust timed movements. Moreover, the architecture is able to generate rhythmic
movements that meet the requirements imposed by the dynamical parameters. This
means that the proposed dynamics are to a large extent independent from the phys-
ical implementation. The necessary modifications are only required at the level of
the heading direction dynamics.

However, these timing movements are bounded due to the robot physical con-
straints. Herein, we can identify physical limitations such as accelerations or decel-
erations of the robot or even the maximum velocity reached by the robot. Let us

1 Along the paper this robot frame refers to a reference frame that has origin located at the position
of the robot and is always aligned with an inertial world frame.
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Fig. 2 Representation of the variables involved in the motion of the robot relative to the target.
Variables are described in the robot coordinate system. The robot has linear and angular velocity
in both instants of time.

consider a complex and cluttered environment, for instance a hospital environment,
in which a mobile robot has to perform timed sequentially delivery tasks. The tim-
ing movements are constrained by the maximum velocity that the robot can reach in
such environments. This is dependent on the velocity that the users move in the en-
vironment, in the degree of clustering and also on its own achievable velocity. This
is a typical physical limitation of the robotic application and not from the proposed
timing architecture.

4 Extended Kalman Filter Formulation

The EKF needs a state space model of the dynamic system describing the time evo-
lution of the state to be estimated, herein the target position in the robot coordinate
system, expressed by the system state discrete variable x; = [Dxy, Dy, (bhk}T.

In order to calculate the localization of a target, we need to calculate the distance
D between the robot and the target, and the angle yi,, from the robot X-axes to
the target around the robot Z-axes. Figure 2 details the variables involved when
representing the motion of the robot relative to the target. All variables are defined
in the robot coordinate system.

The following relationships may be established among these variables:

Dx;, = Dxj_; —VkCOS(Qth)dt, (1)
Dy = Dyg_1 — vgsin(¢y, )dt, 2)
¢hk = (Phk,] + U.)kdt, (3)
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where Dxi,Dyy are the projections onto the robot X and Y-axes of the distance
between the robot and the target, @y, is the current heading direction of the robot, v
is the robot forward velocity and @y, is the robot angular speed.

The angle that the robot has to turn in order to face the target Y, and the dis-
tance Dy that the robot has to travel to reach the target at instant k are given by:

Dx;,
Wiar, = arctan (Dyk) , 4)

\/Dx? +Dy?. 5

A nonlinear system describing equations 1,2,3 can be expressed as follows:

Dy

X = f (X—1,Uk—1) + Wi, (6)
Ve = h(xe) + 2, @)
where u;_1 = [vi, @]7 are the control variables.

The random variables w; and z; represent the process and measurement noise
respectively. They are assumed to be white and independent of each other, and with
normal probability distributions.

Let us write the new governing equations that linearize an estimate about eqs. 6
and 7:

Xk R X+ F (1 — X)W, ®)
Yk =¥ +Hi (x—1 —%—1) +Zp 2x—1, )
where F and Hj are the Jacobian matrices of partial derivatives of f and i with
respect to x. Wy and Z; are the Jacobian matrices of partial derivatives of f and h

with respect to w and z respectively.
The EKF time update equations are:

£ = f(Dxx—1,Dyi—1,0n, 1 ;) (10)
P. =FP_ F +0, (11)

where P is the a priori error covariance, Py is the a posteriori error covariance, and
X, is the state estimated a priori. The EKF measurement update equations:

Ky = PC H{ (He P H{ +R)™! (12)
Ne = ye—h (%) =ye—h(%) (13)
X = % + K Ny (14)
P = (I—- Ky Hy) Py (15)

where K is the Kalman gain, N; is the innovation, and £; represents the state
estimated a posteriori. The initial error covariance F is set equal to R.
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R was obtained through some off-line samples of the measurements (Dxy, Dyy,
0n,), from which the respective covariance was computed.

5 Performance of the Extended Kalman Filter

In order to analyze the impact of the EKF in the timing properties of the architecture
and on the planned movement time, comparative examples of the robot moving
towards a target with and without the EKF are evaluated.

In these experiments the robot has to reach a target at a distance of 4 m within
30 s, no obstacles appear during its direct path and the target is always visible to the
robot’s vision system. Table 1 shows the obtained results for several performance
indexes defined ahead. The target position is perceived by the robot’s visual system
as if the target is moving inside an hypothetical circumference, whose radius is
varied in the different experiments.

Due to the robot’s physical constraints, we consider that the noise in the target
position is perceived only during the first 27 s of each experiment. After this instant
of time the target will remain in the same position in order for the robot to have
enough time to reach it.

The value APy indicates the Euclidean distance between the target position and
the final position of the robot. AP is the Euclidean distance between the robot and
the target at t = 27s. In the same experiment without noise, the value of AP is
0.197 m. AT indicates if the time constraints were verified. It is calculated as the
ratio between the time needed by the robot to reach the target and the specified
movement time. If this value is smaller than 1 the timing properties are verified.

Table 1 Performance of the system resulting from different perceptions of the target noise.
Radius AP (m)[AP;(m)[AT (s)] E

5 cm |without Kalman| 0.222 | 0.034 | 0.970 |0.1155
Scm | with Kalman | 0.181 | 0.023 | 0.957 |0.1148
[T0 cm [without Kalman] 0.231 | 0.036 | 0.966 [0.1163]
[10cm | with Kalman | 0.185 | 0.011 | 0.93 |0.1140]
[20 cm [without Kalman] 0.195 | 0.039 | 0.960 [0.1166]
[20cm | with Kalman_| 0.196 | 0.007 | 0.921 [0.1104]
[30 cm [without Kalman] 0.184 | 0.040 | 0.957 [0.1166]
[30cm | with Kalman | 0.189 | 0.031 | 0.939 |0.1105]

From table 1, when the EKF is used the error in the final position of the robot,
APy, is smaller. Regarding AP also we can verify that when the noise perception is
disabled, at t = 27 s, the difference between this value and the ideal AP = 0.197 is
smaller when the EKF is used.

Also, it can be verified that AT is smaller than 1. Therefore, the inclusion of
the EKF besides reducing the error in the target perception did not compromise the
timing properties.
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The amount of energy required by the robot to move is estimated as £ =
Vv? + ®?%. These results clearly show that the average energy required for the robot
to successfully complete the missions is lower when the EKF is used.

6 Experimental Results

Here we describe some experiments realized in a simulated hospital environment
using a Pioneer 3-AT robot. The robot has no previous knowledge about the position
of any obstacle in the world, or other disturbance that possibly may occur. If the
robot stops detecting the ball by any reason, the EKF keeps providing at each instant
of time the direction to the ball, as well as the current distance between the ball and
the robot.

At each sensorial cycle, information is acquired, dynamic equations are calcu-
lated and integrated using an Euler method with a time step of 200 ms. The robot is
able to reach a maximum velocity of approximately 0.75 m/s.

In all the presented experiments the robot always looses visual contact with the
ball when the distance between both is small (= 0.4 m), because the ball’s size is
larger than the camera’s field of view and the visual system of the robot is automat-
ically disabled.

6.1 Experiment 1

This first experiment aims to demonstrate the EKF performance when the robot is
compensating the disturbance caused by two obstacles that force an obstacle cir-
cumnavigation and to cover more distance (fig. 3). Thus, the robot has to increase
its velocity in order to compensate for this delay. Additionally, when the robot is
overcoming the obstacles it looses visual contact with the ball.

Fig. 4 shows the D, (top) and Dy (middle) measured (green continuous line)
and estimated (black dashed line). The bottom panel depicts the estimated @y,
the measured robot’s heading direction ¢, and the angle {,,, provided by eq 4.
Shadow areas represent intervals of time when the robot does not detect the target,
8 s <t < 31 s due to the obstacle circumnavigation and after ¢ > 45 s due to the tar-
get proximity. The EKF keeps providing good estimates even after the long period
without observations, showing a fast convergence to the real value, despite the time
spent without new sensorial information. This is a specially important behavior if
the robot has to navigate in cluttered environments.
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Fig. 3 Snapshots of robot motion when it is moving towards to the ball and has to compensate for
the disturbance created by obstacles.
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Fig. 4 Top panel (Middle): Measured D, (D,) by the robot’s visual system (green continuous line),
and estimated D, (lA)y) by the EKF (black dashed line). Bottom: Estimated robot’s heading direction

n (dashed red line), the one calculated by the dead-reckoning @y, (continuous green line), and the
angle Y,y (continuous-dashed black line) that the robot has to update its heading direction in order
to reach the target.

6.2 Experiment 2

In this experiment we want to verify the EKF behavior when the target introduces
non-modeled dynamics. Initially the distance between the robot and the ball is ap-
proximately 4 m, and the robot starts moving towards to it. However, as the robot is
moving the position of the ball is disturbed.
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Fig. 5 Similar to fig. 4 but for the experiment 2.

The velocity profile is presented in the first panel of fig. 5. Blue continuous line
identifies the measured robot’s velocity through odometry, red dashed line depicts
the generated velocity by the oscillator and the continuous-dashed black lines de-
scribes the amplitude of the respective oscillator. The second, third and bottom pan-
els depict the same variables identified in fig. 4. At¢ = 3 s, when the target moves the
amplitude of the oscillator is decreased according and consequently decreased the
robot’s velocity. Att = 8 s and at r = 25 s, a new displacement of the target happens
and a new adjustment of the robot’s velocity is required. With these adjustments the
robot can reach the target within the specified movement time.

6.3 Experiment 3

In the final experiment we aim to verify if the noise resultant from non-modeled
dynamics can be removed by the EKF. The ball presents a Brownian movement.

In fig. 6 we can verify that the EKF is able to cope with the unmodeled Brownian
motion dynamics of the target within the required 30 s. These experiments were
performed for a noise standard deviation of 0.01. Above this value, the target moves
too fast for the robot to follow.
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Fig. 6 Similar to fig. 4 but for the experiment 3.

7 Conclusions

The paper addresses the problem of generating timed trajectories for an autonomous
robot that has to reach a location, within a specified time. While the robot is per-
forming the task of reaching the target, it has to simultaneously compensate any
delay or rush as a result of any obstacle circumnavigation or target displacements.
The target (ball) is robustly detect by the robot’s visual system through its color.
Moreover, an EKF was developed and applied to estimate the location of the ball in
cases where the visual system does not provide visual information.

We have successfully demonstrated the integration of a standard EKF and a non-
linear dynamical system to robotics in the same approach, without degrading the
temporal properties of the proposed architecture. The inclusion of the EKF allowed
the reduction of the error between the final position of the robot and that of the
target.

Future work includes addressing more complex and cluttered environments, as
well as to address sequentially tasks.
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