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Abstract—The paper reviews a known robot control archi-
tecture using nonlinear analysis and control theory viewpoints.
The architecture is based on a mesh of dynamic systems and
feedthrough maps and is able to drive the robot under temporal
constraints.

The analysis points to an intuitive, though innovative, con-
clusion that control architectures can be constructed from a
methodological perspective by mixing (i) dynamical systems with
fixed points carefully selected to match mission requirements, and
(ii) feedthrough maps that perform memoryless transformations
on input data.

Experiments using the Webots environment are presented to
illustrate the ideas developed.

I. INTRODUCTION

In general, robotic systems can be represented by a mesh
of blocks either partially or fully interconnected. Typical
examples of such blocks are the localization systems, and
sensor acquisition and processing. The information exchange
among the blocks is often of heterogeneous types and each of
them will evolve in time according to some dynamics.

This paper reviews an example of such architecture, com-
posed by three dynamical systems in charge of generating the
controls for a unicycle robot and a number of feedthrough
maps that process the sensory information and shape the
behavior of the dynamical systems. The novelty in the paper
relies on the use of concepts from nonlinear analysis and
control to validate the methodology.

A system of the type considered in this paper can be
illustrated by the block diagram in figure 1, where block fopot
stands for a robot with configuration g, block fsupervisor Stands
for a system that commands the robot and observing o from
the environment, and block K just maps the outputs of fiopot
into the inputs of fsupervisor- From a practical perspective, K
can be thought of as the environment. In general, K is an
arbitrary map with properties that make the analysis of the
global system difficult so a neutrality argument is used ahead
in the paper.

Dynamical systems have been widely used in robotics, [3],
[14], [12], [9], [11], [4]. They are designed to be in or close to
an attractor or to a limit cycle solution, and rapidly return to
the attractor solution after transient perturbations of the state
variables. The small number of configuration parameters tends
to reduce the dimensionality of the control problem.

The paper briefly describes a dynamical systems based
architecture and presents the analysis using concepts from

Cristina Santos, Jorge Silva
Universidade do Minho, Portugal,
Email: {cristina, jbruno}@dei.uminho.pt

fsupervisor

x

frobot <

Figure 1. A graphical representation of the global system

nonlinear systems, namely on the existence of fixed points
and on the use of the Lo gain to measure stability. Simulation
results using the Webots high fidelity simulation environment
are presented at the end of the paper.

II. A DYNAMICAL SYSTEMS BASED ARCHITECTURE

The block diagram in figure 1 can be instantiated as in
figure 2.
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Figure 2.

System overall schematic

The command system, fsupervisors 1S composed by four
subsystems (see [15]). The symbols f;,7 = 1,...,10, are used
to identify each the equations with blocks in the architecture,
simplifying the explanation ahead in the paper.

A Behavior Switching module, described by,

. 2
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where ¢ = 1,2,3 are just labels standing for three motor
behaviors, stop, execution, and rescue. These different motor



behaviors will occur in response to specific stimulus and
current states of the task at hand, expressed through logical
conditions by a sigmoid function, controlling the competitive
advantage parameters ;. Parameter v is chosen in order to
destabilize any attractor in which more than one output u; is
“on .

The output of the dynamics associated to each motor

behavior are combined as,
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where O, =0, O, = A, and O, = 0.1.

Expressions (2,3) constitute the Parameter Modulation
module which provides changes in values of the dynamical
parameters of a modified Landau-Stuart oscillator of the Ve-
locity module,

Om = |u1|Os + |u2|Oe + |U3|Or (2)
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where w specifies the oscillations frequency (rads~') and O,,
is used to control the m solution offset. p controls the type of
stable solution that is achieved (fixed point (m,n) = (Op,,0)
when p < 0 and stable oscillation when g > 0). Additionally,
for 4 > 0, p also encodes the amplitude of the rhythmic
activity. The robot linear velocity is chosen as vyohot = M.

Considering the task of reaching a target, the required
velocity profile is further subdivided into three time intervals,
each one with different durations, such their sum equals the
movement time MT = T + 15+ T5. For t < t1, the oscillator
covers the first quarter of the limit cycle (77), half of the limit
cycle is covered for t; < t < ¢ty (1%), and the last quarter is
covered from to < t < t3 (13).

For each of the three time intervals the angular frequency
w in (4) is such that in the overall they are performed within
the correct timing, as w; = 2T , Wy = T , Wy = ”

An updating rule for the Hopf radius cycle A, con51der1ng
the current distance to the target, D(¢) and the remaining time
to cover it, is given by,
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The velocity profile is modulated in amplitude and fre-
quency in the Timing Adaptation module, by modifying both A
and w parameters, respectively. These parameters are changed
according to the oscillator current state as,
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where A1, As and Ajs are as defined in equations (6),(7),(8),
respectively and b = 500. The value of A’ alternates between
these three different values, Ay, As and As, depending on the
current values of m and n variables.

The same procedure is used for the w parameter as follows,
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The presence of obstacles is indicated by a potential
function, U(¢y) (see expression (14) ahead). The distance
to obstacles, d;, is measured by seven sonar sensors (i =
1,...,ng,ns = 7) mounted on a ring centered on the robot’s
axis. If U(¢y) < 0, the repulsion from obstacles contribution
is weak for the current heading direction value; if U(¢y) > 0,
the current heading direction ¢, is on a repulsion zone of
sufficient strength and the robot must change its heading
direction in order to avoid the obstacle. In this situation the
velocity should decrease by reducing A. This is achieved by
setting the A amplitude as follows,

1 — min(d;)/R )

1+ e b(U(Sn)—1/b)

fioE A=A (1— (11)
where R is the maximum distance that the sonar sensors may
detect (0.6 m). '

The angular velocity of the robot, wyobot = @4, is generated
in the Heading Direction Control module by,
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where A@ is the sensor angular resolution, R,,po; iS the
radius of the robot, d; is the distance to obstacle detected
by sensor ¢ and ng is the number of sensors. The orientation
towards the target is represented by an attractive force erected
at the direction @rarget- Repulsive forces created by each
sonar are indicated by 1; and — (¢, — ;) corresponds to the
sonar angular resolution, Af. Aar (Aobs,i) define the strength
attraction (repulsion) that the target (repellor) exerts on the
robot. Agpsi is also dependent on d; by (31 exp % , where
(1 and [2 are positive constants.

The potential function indicating the presence of obstacles
is obtained by integrating the obstacle force-lets and results in
(see [2], [14]),



ng N2
fo2 U =3 (-neten |20 otve)
= ' (14)

III. A NONLINEAR SYSTEMS VIEWPOINT

A mission can be defined as successfully completed under
a number of alternatives, namely, (i) by reaching a point in the
state space and staying there, (ii) by reaching a neighborhood
of a point in the state space and staying there, and (iii) by
reaching a point or a neighborhood and returning there, in
finite time, infinitely many times. In this paper the analysis is
restricted to the cases (i) and (ii), which require the existence
of fixed points. Case (iii) includes the situations where the
overall system reaches a limit cycle.

Proposition 1 (Mission success): A mission is completed
successfully if the maps in figure 1 converge to a fixed point of
the open 100P maPSI frobot O.fsupervisor and fsupervisor © frobo‘m
and the fixed point is in the null space of the environment map
K.

0

For the whole procedure to converge it is sufficient that
frobotofsupervisor and fsupervisorofrobot both have fixed POintS,
that is if the composed maps are contracting. A weaker version
requires that they are only non-expanding (see [5]).

Let Yy = fsupervisor(x) and z = frobot(y)' If fsupervisor o
frobot 18 contracting the corresponding matrix of partial deriva-
tives verifies || D(fsupervisor © frobot)|| < 1. If the domain is
convex then this condition means that the fixed point is unique
(see Theorem 2.2.16 in [7]). Otherwise, the result holds only
in a neighborhood of the fixed point.

Assuming the boundedness of each of the operators, apply-
ing the rule for differentiating a composed map yields,

”D(fsupervisor o f’r‘obot)” <
S c ||Dfsuper'uisor|| . HDfrobotH (15)

for some constant c. This means that for a generic robot, for
which there is no information on the structure of fionot, ONE
must instead ensure that || D foupervisor| << 1 which will be
sufficient for the existence of a fixed point, independently of
the model of the robot?.

However, if instead of having a composed map that is
contracting a weaker non-expanding property is obtained then
theorem 2.4.4 in [5] ensures that a fixed point exists provided
that the domain of the map is convex.

A similar reasoning can be made for the second composed
map. Note that the requirement for this second map to have
also a fixed point results directly from an argument similar to

(15).

'We denote by o the composition operation.
2A common matrix norm is defined as ||A| = max,o HI?IS\CI)” =
max||,|=1 [[A(z)]|, with z € R™ and [|z|| the vector norm induced by the

inner product.

The requirement that the fixed point is in the null space of
the map K does not imply any lack of generality. In practical
terms it simply means that the environment is neutral and the
perception of the state of the robot is not changed. In case the
neutrality does not hold the environment can be modeled as
a composition of a ”neutral map” with a “non-neutral” map,
which must then be included in the composition of fsupervisor
and f robot-

In general the uniqueness of the domain can not be
guaranteed and hence the proposition above holds only in a
neighborhood of the mission target. In a sense, this approach
is equivalent to the small-gain theorem common in control
theory (see theorem 5.6. in [10]).

The mesh of maps can be better visualized as the block
diagram in figure 3a. A two step simplification of the full block
diagram is shown in figures 3b and 3c. Rectangular shapes
indicate dynamical systems whereas triangle shapes represent
direct feedthrough maps.

It is easy to verify that each of the f; maps is C' which
somewhat simplifies the analysis. Also, it is worth to remark
that the block meshes include both direct feedthrough and
differential maps. The general idea that supports the analysis
of the whole mesh is to analyze differential maps following the
contraction mapping theorem and using the direct feedthrough
maps as scaling transformations.

A. Temporally unconstrained singleton goal missions

Even though a generic robotic system is usually better
modeled by a hybrid system, with the state evolution regulated
both by continuous/discrete time and by events, in a wide
variety of robotic systems imposing a smoothness constraint
does not imply a significant loss of generality.

In the aforementioned first scenario a mission is successful
when the whole system reaches a fixed point. Conditions for
the existence of fixed points in C' dynamic systems are well
known (see for instance [7]).

The (fs, f5) block represents the core dynamic system
responsible by the generation of timed trajectories accord-
ing to established temporal constraints, whereas the block
(fs, fo, f10), is a direct feedthrough map (as it contains no
internal feedback loops). The two form a closed loop dynamic
system (see figure 3b). Blocks (f1, f2) and (fs, f7, fs) are also
feedthrough maps that provide serial inputs to this loop. The
whole f; blocks form the robot supervisor. From figure 3c,
this supervisor is a serial composition of ( fa, f1, f5, f3, fo, f10)
with f1 and (fs, f7, fs). The condition for the robot to com-
plete successfully its mission is that the loop formed with
(frovot, i) has a fixed point at the target. Following the
argument in section II, we assume that K is neutral and has
no influence on the output of f,.p0¢, that is K is the identity
map.

Though it is easy to verify that, by construction, (1)-(14) has
indeed a fixed point at the target, it remains to demonstrate that
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Figure 3.

the contracting map conditions hold to ensure that the whole
system is stable.

The conditions for the stability of (f4, f5) can be easily
verified. A sufficient condition is that | D(f4, f5)|| < 1,
where D(fy, f5) is the matrix of partial derivatives, in a
neighbourhood of the fixed point (see for instance Theorem
2.2.16 in [7)).

Using the 2-norm for a matrix A defined as ||Alls =
max||,||,—1 || Az[|2 = p(A’A), with p(A’A) the spectral radius
of A’A corresponds to a worst case scenario (since for any
matrix norm || A’Al| > p(A’A) (see theorem 5.6.9. in [8]) and
hence [|A]| > \/JAA] > /p(ATA)).

For the loop itself to verify the condition it is suffi-
cient (but not necessary) that the block (fs, fo, fi9) have
1D (f3 fo, fr0)ll < 1.

An upper bound for |D(fs, fo, fi0)|| can be obtained
directly (as the blocks have no interconnections among them-
selves) by bounding the norms || D(f3, f10)|| and || D fol|. The
former can be bounded as || D(fs, f10)|| < [|Dfs||| f10|, where
in general || Dfs3|| will be arbitrary (there is no parameter to
control this term) and || D f1o|| can be made arbitrarily small by
careful selection of the T;. Using the w; and (10), if the time
allowed for the mission, determined by the 77, is arbitrarily
large then || D(fs, f9, fi0)|| < 1. The later can also be easily
bounded by adequate choice of the parameters 7; and b.

Once the block  (fs, fa, f5, fo, f10) is  found
to have a fixed point one can analyze the
loop formed by (fa, f3, fa, f5, fo, fi0).  This  loop
is also stable as HD(fQ, f3, f4, f5, fg, fl()) H <

1D (f3, fa, f5, fo, fro) [P f2l[| D fioll can be upper bounded
below 1 (using parameters b, 7'j) even though || D f2| can be

arbitrary.
Block (f1, f2, f3s fa, f5, fo, f10) is a  series
composition and hence | D(f1, f2, f3, fa, f5, fo, fr0)ll <

ID f1llllD(f2 f3, f1, f55 fo, fr0)|l- By adequate choice of
parameters «,,3; (fi has no external inputs and hence

it acts on the remaining blocks as generating parameters
u;; see also the discussion in [6]) it is possible to make
ID(f1, f2, f3, fa, f5, fo, f10)|| < 1 and hence the whole block

(b) After simplification stage 1

(c) After simplification stage 2

Block mesh representing the complete system

is stable.

Block (fs, f7) is a series composition that clearly has a fixed
point for adequate choice of parameters Aops, Atarget (Which
can make || Dfr| arbitrarily small). However, note that this
may correspond to relaxing the time for the robot to complete
the mission and its compliance with obstacle collision.

The final composition involves the series composition of
the blocks (fs, f7, fs) with (fa, f3, f1, f5, fo, f10). Using the
previous arguments and given that D(fs, f¢) can be made
arbitrarily small by adequate choice of the \; parameters one
concludes that || foupervisor| can be made arbitrarily small,
eventually requiring the relaxation of the performance of the
mission.

Extending the result to the whole system, including
frobot requires that ||Dfla f2> f37 f4a f57 an flOa frobot” and
|Dfs, f7, frobot|| be smaller than 1. For the typical uni-
cycle robot ||Dfropot|| < max{1,v?}, which means that
1D f1, f2, f3s fas [5, fo, 105 frobot]] < 1 is a sufficient condi-
tion for || D fg, f7, frobot|| < 1 also. From the above arguments,
one concludes that the unconstrained architecture can always
be stabilized.

B. Temporally constrained singleton goal missions

In a sense, if a control architecture is able to reach a fixed
point that corresponds to the mission target, then bounding
the time it takes to reach the target (or an arbitrary small
neighborhood around it) amounts to require that the system is
fast enough. The purpose of this section is thus to use a global
property such as the Lo system gain to assess the capability
of the system to fulfill a temporal constraint.

For the purpose of this paper, a temporal constraint is just an
upper bound on the amount of time a system can take to reach
a certain region in the state space. Without loosing generality,
this region can be assumed to be a neighborhood of some target
point.

Definition 1 (Temporal constraint): A dynamical system
¢ = f(g,t,u) with initial condition ¢y verifies a temporal
constraint if

Ve >0, Vtr,qr,qo, Ju(t) : q(t) € Blgy,e€), t >t



where ¢ is the time, u are the command inputs of the system,
gy stands for the desired final configuration, and ¢y for the
max allowed time for the mission.
O

Definition 1 reads as after ¢y the state ¢(¢) is close enough
to gy, that is, at maximal distance e, or the distance between
q(ty) and ¢y is at most e.

Consider the index

J(t) = /t d(q(t), Blas, ) dt (16)

where d(,) is a distance operator, for instance a norm of the
projection of ¢(t) onto B.

Taking the distance measure as the norm induced by the
usual inner product in R,

d(q(t),B(gqr.€)) = llar —all — €
= llgsll? + llg@)1* — € — 2(q(t), qr)

where (, ) stands for the inner product. The term (g(¢), ¢;) can
always be made positive by adequate choice of the reference
frame and hence

d(q(t), Blas, €) < llasll* + la@®)[|* — e 17

is a conservative upper bound for the distance.

The Lo gain models the system from an input-output view-
point. The global system that corresponds to the composition of
fsupervisor and frobot has inPUtS div 1/’1', ¢ta7‘get7 Dv and OUtPUtS
the trajectory of the robot.

The Ly gain of a system is the smallest v constant such that
a constant b exists and the following inequality holds, [13],

t t
/ Hq(t)\|2dt§'y2/ l|u(t)||?dt +b, for all t > 0 (18)
0 0

Using (17) and (18) in (16) yields

t t
J(t) < / (llasl? = €) dt ++2 / lu(M)[2dr +5  (19)
t() tO

Assuming that the robot reaches the target, then J(¢)
approaches a majorant J,,,, and by Lemma 8.2 in [10],
d(t) — 0. Therefore, the righthand side of (19), denoted .J, can
also be hard limited without loosing generality (for example
forcing |ju(t)|| = 0 as soon as the robot reaches the target).
The bound .J can be used to obtain conclusions on the Ly gain,
namely by identifying V() = Jyax — J(t) with a Lyapunov
function. —.J (t) is negative definite and using the generalized
Lyapunov condition (see for instance [10], chapter 8, or [1],
chapter 6, for more general systems)

V(t) < -W(t) (20)
with W () a decreasing positive definite function.

Substituting V(¢) by the bound on the righthand side of
(19) yields

= (lasll® = e + 22 lu(®)]?) < =W(2) @2n

This does not imply any loss of generality. In fact, it corre-
sponds to tightening the stability bound (20). To estimate the
v required for a timing constraint to be verified requires that
assumptions on the decrease rates for ||u||? and W be made.
Assuming linear bounds,

[u(t)|* < mut+ by, 22)

W () < mw t + by (22b)

for adequate m.,, b,,, mw , by . These bounds represent the max
control effort and the stability bound. Substituting in (21),

V2> mw t+bw — |lq||* + €
Myt + by
Again, note that there is no loss of generality here. By using
(22) one is being optimistic on the control effort required.
Instead, using a lower bound in (22) would amount to a
conservative estimate for the control effort.

Expression (23) yields a lower bound for the Lo gain of
the overall system under the assumptions that control is used
accounting for (22) and that the stability bound W (t) is not
violated.

The righthand side of (23) can be put in a more suitable
form by being conservative and using a majorant, that is,

, for all ¢ (23)

b 2_ .
bwtlas|”—e if [jul2 < W
u
7> ,
mwts+bw llgsll=—€ :
Tty Thy + =5 otherwise

The above considerations suggest that the Lo gain is a
consistent measure of the system capability to fulfill the
temporal constraint.

It is worth to point that the analysis in this section is
compatible with a broader hybrid systems perspective. In fact,
if some of the blocks in the architecture are of hybrid type,
e.g., changing its structure according to some events, the
generalized Lyapunov condition (20), with the lefthand side
replaced by adequate generalized derivative such as Dini’s
upper contingent derivative, still applies. The role of the Lo
gain on the stability of switched systems (a less general class
of hybrid systems) has been discussed, for example, in [16].

I'V. EXPERIMENTS

This section presents a set of experiments that illustrate
the ideas of the previous sections. As mentioned in the initial
section, a synthetic Webots environment is used as it simplifies
the replication of experiments in controlled conditions. The
Webots environment is widely used in robotics for its fidelity
emulating kinematics and dynamics of a wide range of com-
mercial robots such as the Pioneer AT used in this work.

The first experiment (figure 4a) illustrates how the con-
ditions for the existence of a fixed point hold during a
mission in which there are no obstacles. A unicycle Pioneer



(a) Exp 1 - No obstacles

(b) Exp 2 - Easy obstacles

(c) Exp 3 - Static and dynamic obstacles

Figure 4. Experiments

AT robot must travel a 5m long path in 30s. The robot
completes the mission successfully. The max singular value of
D fipervisor D fsupervisor matrix, corresponding to the 2-norm
of matrix || D fsupervisor|| Dever exceeds 0.016, in agreement
with Proposition 1.

The second experiment (fig 4b includes two obstacles
and the robot has to cover around 7.5m in 50s. As before
| D fsupervisor]] < 1 during the whole mission (the max
singular value is always below 2.2 x 107%).

In the third experiment (figure 4c) the robot has to cover
around 14m in 30s while avoiding static obstacles and a dy-
namic obstacle moving at 0.2m/s. As before || D fsupervisor| <
1 during the whole mission (the max singular value always
below 2.3 x 1077).

Table I shows the L, bounds for the global system. The Lo
gain lower bound from (23) is denoted ~. Note that negative
values for v2 simply reflect the fact that the linear bound TV (¢)
approach the horizontal line and hence (23) is verified for all
t.

Exp. ¥y lz myy bw My by,
1 3320 -0.043 | -0.0071  -0.225 -24.738 776.764
2 3320 0.827 0.0023  -0.117 -201.411 6324.324
3 3320 0.828 0 0 -201.412  6324.324
Table I

Lo LOWER BOUND

For all experiments, the Lo estimate is bigger than the lower
bound identified in (23), in accordance with the results in
section III-B.

V. CONCLUSIONS

The paper presents a nonlinear systems viewpoint for a well
known robot control architecture. Mission targets are identified
with the fixed points of the overall dynamic system and the
Lo gain was shown to describe a system property suitable
to represent the ability of the system to account for timing
constraints. This is an interesting aspect that can be extended
to other architectures, i.e., the Lo gain of a robot control
architecture is a measure of its ability to cope with temporal
constraints.

Webots based experiments were presented to illustrate the

analysis. Future work includes the development and experi-
ments when target is a goal region instead of a single point.
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