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Abstract — Unmanned Aerial Vehicles (UAV) provide many ad-
vantages in Search and Rescue (SaR) scenarios, such as the capacity
for remote inspection over areas that are difficult to reach by ground
vehicles. Moreover, it can carry small payloads, such as first aid
equipment, over large distances. However, the teleoperation of UAV's
often demands extensive training, since even well trained pilots are
prone to mistakes, resulting frequently in collisions of the vehicle
with obstacles. This paper presents a method to assist the tele-
operation of a quadrotor using an obstacle avoidance approach. The
target scenario is SaR operation in unknown, unstructured, GPS-
denied environments, such as warehouses or other buildings. A short-
term rough map of the nearby environment is constructed using sonar
sensors. This map is constructed using FastSLAM to allow tracking
of the vehicle position with respect to the map. The map is then used
to (1) override operator commands that may lead to a collision, and
(2) perform evasive maneuvers whenever collision is imminent. A
simple active perception routine is used to orient one of the sensors
to an unknown area, in case the UAV is ordered to move towards an
unmapped area. Experimental results using the USARsim simulator
are presented. Further testing was conducted in a real quadcopter,
allowing a preliminary validation of the proposed methods.
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I. INTRODUCTION

Situation assessment is a key component on any Search
and Rescue (SaR) operation. As human lives might be at
risk, an efficient and effective assessment of the situation is
paramount. However, in many such situations, the target areas
are often difficult to reach by human teams, either because
they present a risk to human presence (e.g., a building close
to collapse), or because they are physically unreachable in
due time. Therefore, the usage of robots present an interesting
potential to perform inspection operations without risk to
humans.

Among the variety of existing robots, Unmanned Aerial
Vehicles (UAV) have several characteristics that make them
well fit for SaR operations. In particular, since they do not rely
on a terrain to move, it is possible to cover large areas airborne.
Remote inspection of large areas can be carried out by using
cameras onboard the UAV. However, the teleoperation of UAV,
particularly in confined environments, is far from trivial. It
usually demands extensive training and expertise to be able to
safely teleoperate such vehicles.

In this paper we address the problem of Assisting Teleopera-
tion to safely pilot a UAV. We define assisted teleoperation of a
UAV as the process of overriding the operator input, either by

modulation, inhibition, or replacement with a different input.
Our goal is to use sensor data to determine an appropriate
assisted teleoperation in order to guarantee, to the best of
sensor capabilities, a safe flight.

The UAV targeted here are quadcopters: aircraft propelled
by four rotors. This type of vehicle fits in the Vertical Take
Off and Landing (VTOL) category as they can successfully
perform vertical take offs, landings and hovering despite being
heavier than air. The advantages of VTOLs to other flying
mechanisms are notorious, as shown in [1]. Its high agility,
small size and VTOL capacity make quadcopters a powerful
tool not only for situations where hovering is crucial but also
for indoor usage.

We focus on unknwon, unstructured, GPS-denied, and in-
door environments. We assume that the main threat to the UAV
safety is collision with obstacles. Thus, distance sensors are
used to detect and map these obstacles. The approach is based
on the FastSLAM [2] algorithm, together with 3D occupancy
grid mapping [3]. Since the purpose of this work is neither a
detailed map of the environment nor a precise measurement of
obstacles positions, the problem can be efficiently addressed
by knowing the relative position of the quadrotor in relation
to the object. After knowing the vehicle’s position and map,
a decision making based on danger assessment, performed
by a classifier, is applied. This classifier overrides the user’s
inputs if they compromise the quadcopter’s physical integrity
in the near future. Overriding may extend from simple velocity
reduction to, in extreme cases, an evasive maneuver. As our
aim is to ensure the vehicle’s safety at all times, an active
perception methodology is applied to address map uncertainty
whenever it is necessary. The main difference between our
approach and a simple reactive algorithm is memory. Unlike
a purely reactive methodology, if the map is kept in memory
it is possible to avoid crashes in sonar’s blind spots. The full
architecture is presented in Figure 1.

3D Simultaneous Localization and Mapping (SLAM) in
Unmanned Aerial Vehicles (UAV) using lasers has been stud-
ied but typically including techniques, such as loop closure
algorithms [1] or laser scan matching [2]. 6D SLAM resorting
to vision is yet a different approach widely used by the com-
munity [3]. Different SLAM approaches resorting to particle
filters with an EKF for mapping [4] can be found in the litera-
ture, but applied in wheeled robots. As for obstacle avoidance
methodologies for UAVs, literature mostly addresses for path
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Fig. 1. Full architecture of the proposed approach

replanning topics [5] or to vision based solutions [6] [7],
while [8] addresses the problem of collision avoidance for
multiple robot systems. This paper differs from the above in
that building an accurate map is not our objective. Instead, we
aim at a rough and low complexity map, and thus more time
efficient.

We consider as a simulation test bed a quadrotor equipped
with an Inertial Measuring Unit (IMU), an altimeter, and six
sonars: one above each of the propellers pointing sideways,
one above and one below the main body of the quadcopter.
Simulations were performed using USARSim simulator.

II. METHODOLOGY
A. FastSLAM

Correct attitude is assumed to be given at all times by
the onboord IMU since accurate attitude estimations can be
provided by a commercial solution, thus the 6D problem
(position and attitude) is reduced to a 3D problem (position
only). The objective of SLAM is to estimate the position
and the map of a robot simultaneously hereby solved by the
FastSLAM approach proposed by Montermerlo et al. [4]. For
each iteration of the particle filter a predict and an update
step are performed. The predict step models the effects of the
control inputs on each particle by sampling from the motion
model distribution. The referenced motion model is identical
to the dynamic model applied by the USARSim.

The particle weights are computed in the second step. In this
phase, a measurement model is used to evaluate the weight
of each particle based on sensors information. This weight is
updated by the likelihood of the sensor measurements z; given
the prediction Z; and the map m.

p(2e|m, Ty) (1)
The weight of each particle results from the joint likelihood
of all measurements, given the map and the path. These mea-

surements are given by (1) sonars and (2) the altimeter. The
sonar measurements are modeled with a Gaussian distribution:
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where z! stands for measurement of sonar 4, m for the map
and JE"] is the Euclidean distance between position hypothesis

f,@ and the first occupied cell in the map of the n-th particle.
Note that equation (2) is applied for each sonar.
The altimeter measurements are modeled with another
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where h; is the altimeter measurement. By using the altimeter
readings efficiently it is possible to significantly reduce the
uncertainty along the vertical axis. The final weight wgn] of
each particle is equal to the multiplication of all involved like-
lihoods, assuming conditional independence given the robot
position and map
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In order to determine a single position estimation we choose
the particle with the highest weight from the set
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B. Decision Block

The inputs for the Decision Block are the position estima-
tion #; and a map m. Each cell ¢ is classified in one of 3
states, ¢! € {F,U, O}, corresponding to Free, Unknown, Oc-
cupied. The classifier is based on thresholding the occupancy
probablities, according to:

Fif P(miacumed) < 0.5
Ci = U if P(mlc:)ccupied) =05 (6)
O if P(mgcwmed) > 0.5

All cells are initialized with P(mfmupied) = 0.5 thus
classified as Unknown. After being mapped, they become
classified as either Free or Occupied, apart from the extremely
unlikely event of being numerically equal to 0.5.

The global flow chart of the Decision Block is presented
in Figure 2. When the user inputs a desired velocity to the
quadcopter, the Active Perception block validates if the com-
mands will be applied to the vehicle without any constraint.
To do so, these inputs are firstly used to compute the desired
direction for the vehicle and the distance to the first non-Free
cell. If the closest cell is Occupied, the inputs are subject
to a confirmation that they do not compromise the vehicle’s
safety in a near future and then applied to the vehicle. If the
closest cell is Unknown and if the distance to it is higher than
a certain threshold (TH) the algorithm checks whether there
is any sonar aligned with the desired direction. Otherwise,
the algorithm will autonomously rotate the vehicle and then
apply the same speed the user demanded. By doing so, the
algorithm is able to avoid flying into unknown areas as the
sonar is, after this active perception routine, pointing towards
the velocity direction while still performing the movement the
user requested. The flowchart of the Active Perception Block
is presented in Figure 3. With the application of the Active



Perception it is possible to guarantee that the vehicle is not
allowed to fly towards unknown areas and, therefore, the cells
in the future path of the robot are classified only as Occupied
or Free.
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Fig. 2. Flow chart of the Decision Block.
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Fig. 3. Flow chart of the Active Perception block.

To successfully avoid collisions, the position of obstacles
has to be known as well as the direction to which the robot
is currently flying. The volume check corresponds to the
extrusion of a square centered on the quadcopter’s position,
along the velocity vector (obtained from the predict step of
the particle filter), as illustrated in Figure 4. The size of this
square, b, encompasses the quadrotor volume while a is a
visibility bound. Defining this volume enables the algorithm
to know which grid cells are in the near-future path of the
vehicle, find which is the position of the closest occupied cell,
and compute the distance between that cell and the vehicle.
It is then possible to predict how long it takes — if we
maintain the current speed — to collide with it. This concept
is known as Time To Collision (TTC) and is a crucial step in
the classification of the danger levels.

The classifier block acts as a multiplexer by choosing
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b[” 7V

a
Fig. 4. Graphical definition of the volume check

an input, and forwarding it to the vehicle, given a certain
TTC. The threat levels, together with the contingency actions
considered, are presented in Figure 5 and explained below.

o No Action: For the given TTC the algorithm considers
that no threat exists and no action is performed on the
inputs, meaning that the vehicle is fully controlled by
the user. Within this level there are two relevant cases;
the first one takes place if there are no objects inside the
volume checked; the second occurs when the TTC is high
enough for the algorithm to consider that the robot is not
in danger.

o Slow: If the TTC falls into the given interval the quad-
copter is considered to be in medium danger and the
user inputs will be limited. The vehicle’s current velocity
is multiplied by a factor k(TTC), where k € [0,1],
maklﬂg Vcommand = k(TTC) : ‘/current where Vcommand
stands for the next velocity to be ordered to the vehicle.
Since k£ < 1 it will slow down the vehicle until the
TTC becomes greater than a safe value, thus causing the
decision block to leave the Slow threat level.

o Stop: At this level, threat is considered to be high
and vehicle is put in a hover position thus making it
decelerate. Like in the previous level, this action will
increase the TTC.

« Evasive Maneuver: At this level the threat is considered
to be extremely high. If TTC falls within this interval, it
means that if the vehicle is ordered to hover the distance
traveled before stopping is superior to the distance to the
object and crashing is inevitable. The solution to avoid the
collision in this extreme situation is to give a velocity in
the opposite direction of the current movement for a very
brief period. By doing so, the distance while decelerating
is much lower than in the STOP stage. This stage is
applied for a short duration, just to guarantee that the
vehicle does not hit the object.

]
< c
S3la = S
[%] 4+
o c ,9 9 2
o8| w» %) o
[e]
= =

THEM THSTDP THsLaW TTC (S)
Fig. 5. Threat levels

III. SIMULATION RESULTS

The full architecture was implemented and tested in the
USARSim environment. A total number of particles of 10,
together with og;5t = 2, 0qir = 2, FoV = 30°, maximum



sonar range equal to 5 meters and a square cell with length
equal to 1 meter was considered. The examples inputs are
the user’s commands, attitude and sonars readings. Neither
the map nor the position is provided by the simulator. Note
that the FastSLAM and the decision block are running online
during real time simulation on USARSim.

In the first example the robot was ordered a full speed
movement towards a wall out of its sensor range. As shown
in Figure 6, the distance to the “obstacle” is oscillating until
about 7 seconds simulation time. This is due to the fact that
Unknown cells trigger the active perception routine to orient
the closest sonar towards the movement direction. When doing
so, unmapped areas become Free, and the distance to obstacle
increases. This proceeds until the real obstacle is found, which
makes triggers the Slow order until eventually stopping it.
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Fig. 6. Distance between the best particle and the first obstacle

In Figure 7, the estimated velocity of the vehicle along time
is shown. Note that the velocity is also oscillating. The user
is ordering a full speed movement (5m/s) but the classifier
applies a Slow override. When the obstacle is sensed to be
further away from the robot, the inputs are once again given
to the user. When the algorithm perceives that the vehicle
is moving towards an obstacle, once again after 7 seconds,
an override is imposed and the velocity fully limited by the
classifier and lower till zero. By fusing the information from
both figures it is possible to see that the vehicle stopped its
movement at, approximately, 1.3 meters from the wall despite
being constantly ordered by the user to move in that direction.
If, at this point, the robot were ordered to fly in the opposite
direction the vehicle would fly at full speed since those cells
are known to be free according to the map.

In the second example the trajectory performed has three
distinct phases: the robot was initialized far from a wall
and a velocity imposed towards it; a movement along the
wall; a separation and re-approximation to the wall. With
this experiment the main benefit of our approach facing a
purely reactive method is shown. That distinction is proven
useful in the final part of the movement where the vehicle is
expected to keep a memory of the obstacle previously seen. All
movements were performed at full speed. Results are presented
in Figures 8 and 9.

During this experiment, the algorithm faces two near colli-
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Fig. 8. XY cut of the 3D map of the best particle at the end of the movement.
The arrow indicates the limit of the groundthruth wall location

sion situations. In both cases, the program managed to fulfill
its objective and avoid crashing despite the orders from the
user to continue its trajectory towards the wall. Although
both collisions were avoided a major difference arises between
them. The second time the algorithm was moving towards the
wall it managed to avoid the collision at a higher distance
from the wall. After sensing the obstacle once, it is able to
keep a localization in relation to it and it is also able to prevent
crashes more effectively.

Note that, despite having drift away from the real position,
the algorithm managed to build a map, Figure 8, according to
the belief of its position and localize itself on it. Since our
goal is to localize the robot relatively to our map, we argue
that the algorithm’s performance is not directly compromised
by the error between the real and the estimated position.

IV. REAL WORLD RESULTS

In this section, preliminary results obtained in several real
world experiments are presented. The available quadrotor is
equipped with an IMU capable of providing filtered values
of yaw, pitch and roll. The communication between the
quadrotor and the computer — for all telemetry parameters
— is supported by a Xbee module. Unlike in simulation, only
4 sonars were used and placed above each of the propellers.
The lobe was modeled by a 30° FoV cone and maximum range
considered was three meters. An Arduino was used to perform
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arrows represents the limits of the groundthruth wall and the obtained map.

the readings and all necessary transformations to meters. All
readings were recorded with the quadrotor’s motors off, for
safety issues, and all experiments were performed in offline
mode. The quadrotor was manually placed in the different
poses throughout the tests.

A. FastSLAM

In this experiment the FastSLAM, combining localization
and mapping, was applied. The particles are all initialized
in the same point since it does not compromise the results.
No initial map is provided nor any information concerning
the localization. The total number of particles used was 10.
No knowledge about the motion model is yet experimentally
acquired and, therefore, the predict set of the particle filter
becomes (7) where w and @Q; are defined in (8) with o, =
oy =03 and o, = 0.

#2M =z 4w (7)
o2 0 0

w = N(0,Q), Q=10 UZ 0 3
0 0 o2

The z axis is limited as no information is given about the
height of the vehicle — no sonars pointing top or bottom nor
altimeter readings — and, as a consequence, the weights of
the particles in the observation model become only dependent
on sonar readings (9).

w =TT Pz |m™, 20 ©)

For better comparison, in Figure 10 is presented the map
obtained with ground truth positions. The sonars’ values used
were the same for both situations but, in the FastSLAM
case, no localization was provided. The points where sonar
values were recorded are presented in red. The trajectory was
performed from the right side of the image to the left. In
Figure 11 is presented the best particle’s map at the end of
the movement.

The algorithm is being able to successfully map the envi-
ronment while localizing itself. Although the obtained map
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Fig. 11.  xy cut of the best particle’s map at the end of the test.

diverges from the ground truth, it is possible to check that the
dimensions of the room were roughly preserved and a coarse
object identification was performed. In Figure 12 is plotted the
Euclidean error between the best particle and the real position
along the positions.
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Fig. 12.  Error obtained at the end of the 10" iteration in each position.

Each iteration corresponds to one run of the full FastSLAM algorithm.



Although the error experience in localization is substantially
high — considering that the vehicle is operating indoor —
no motion model is being used for now. The inclusion of one
would significantly improve the particle filter performance and
hence the map obtained. However, the existence of error to the
real position is admissible as a localization in relation to the
obstacles is intended in opposition to a global localization.

B. Decision Block

In this section, real world tests to an architecture combining
the FastSLAM and the decision block are presented. The
presented example considers 5 different stages illustrated in
Figure 13. It is considered that the user is ordering a constant
movement towards the wall through the entire test. With this
set-up, we aim at a possible and common movement where a
purely reactive methodology would not manage to detect the
obstacle and consequently would loose its purpose. Due to the
distance between positions, around 1 meter, a motion model
was introduced. The difference between the real positions is,
therefore, being fed to the predict model of the particle filter.
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Fig. 13. Position and attitude in each of the five phases.

By analysis of Figure 13 it is possible to see that in
position 1 the vehicle has pitch = 0° and is able to map
the area where it is going to be in position 2. The vehicle
then moves to the previously mapped and now known to
be free area. Since the distance to the nearest obstacle —
in this case an unknown position — is still high enough
(Table I) the algorithm allows the user to maintain control
of the quadcopter. When the vehicle reaches position 3, the
distance between its position estimation and the first obstacle
in its own map will lower and the TTC decreases. As a
consequence, the user inputs will be overriden by the Decision
Block and the vehicle ordered to slow its movement. When
the velocity is lowered — position 4 — the vehicle regains
sight of its moving direction and re-updates the map. When
the distance to the obstacle is updated, the algorithm allows
the user to input commands once again. This situation can
occur multiple times until the vehicle reaches a real obstacle.

In Table I the comparison between the distance from the
center of mass of the vehicle to the closest obstacle in each
position of Figure 13 is presented. The first line shows the
distance reported by the reactive method while the second one
shows the distance between the position estimation and the
first obstacle — unknown or occupied area inside the volume
defined in Figure 3 — in its own map. While the reactive
method is unable to infer the distance between the vehicle and

the obstacle in the direction of the movement, the proposed is
solution keeps a constant track of this distance allowing the
classifier to choose the best action in each situation. In the last
two rows it is possible to see the classification C' given to the
closest non-free cell < and the consequent action performed on
the command inputs.

TABLE I
COMPARISON BETWEEN THE DISTANCE TO THE FIRST OBSTACLE IN BOTH
METHODS AND CONSEQUENT CLASSIFIER DECISION.

1 2 3 4 5
d'reactive 3 - - 2 -
dmapping 325 | 2.34 1.38 2.28 1.11

Ct U U U 0 o
Classifier decision | User | User | Override | User | Override

V. CONCLUSION

This paper presented an assisted teleoperation method for
UAVs, based on short-term, rough mapping of the nearby
environment. In particular, we targeted quadcopter vehicles
operating in unstructured, GPS-denied, and dynamic environ-
ments, such as the ones often encountered in SaR scenarios.
By mapping the environment, the method is capable of over-
riding user’s inputs in order to guarantee a safe flight of the
UAYV. Whenever confronted with an unknown area, the active
perception routine forces the vehicle to point a sensor towards
that area. The main objective was successfully achieved in
simulation using a FastSLAM approach for simultaneous lo-
calization and mapping combined with a danger classification
methodology, in order to classify and act correspondingly in
any situations. As for future work, we are currently working
in a full real world implementation of the proposed method.
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