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Abstract —The task of 3D mapping indoor environments in
Search and Rescue missions can be very useful on providing detailed
spacial informarion to human teams. This can be accomplished using
field robots, equipped with sensors capable of obtaining depth and
color data, such as the one provided by the Kinect sensor. Several
methods have been proposed in the literature to address the problem
of automatic 3D reconstruction from depth data. Most methods rely
on the minimization of the matching error among individual depth
frames. However, ambiguity in sensor data often leads to erroneous
matching (due to local minima), hard to cope with in a purely
automatic approach. This paper is targeted to 3D reconstruction
from RGB-D data, and proposes a semi-automatic approach, denoted
Interactive Mapping, involving a human operator in the process of
detecting and correcting erroneous matches. Instead of allowing the
operator complete freedom in correcting the matching in a frame
by frame basis, the proposed method constrains human intervention
along the degrees of freedom with most uncertainty. The user is
able to translate and rotate individual RGB-D point clouds, with the
help of a force field-like reaction to the movement of each point
cloud. A dataset was obtained and used using a kinect equipped on
the tracked wheel robot RAPOSA-NG, developed for Search and
Rescue missions. Some preliminary results are presented, illustrating
the advantages of the method.

Keywords: 3D Mapping, Interactive Alignment, Interactive
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I. INTRODUCTION

In past few years, Search and Rescue (SaR) robots have
been developed and used in missions on areas dangerous for
human presence, such as inside buildings close to collapse
or environments with radioactive contamination. Missions can
vary from searching for victims within risky areas, to analysing
certain areas for better mission planning. However, the avail-
ability of a map of these areas can improve dramatically the
efficiency and effectiveness of these operations. This paper
focus on the problem of constructing 3D maps of indoor
areas, using a remotely operated robot. In particular, we target
maps that include both depth and color data. In order to
make maps for posterior analysis and mission planning, robots
must be equipped with capable sensors. Methods to address
the problem of scan-matching have been proposed and used
in many applications, in particular for 3D mapping of an
environment (see [1] for a review). These methods vary both in
terms of sensors used (e.g., sonars [2], LIDAR [4], vision [5],
and more recently the Kinect [6]), and in methodologies
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Fig. 1. Top view of 2 corridors. The scan D is adjusted such that the reaction
force Fy, computed from the cost function gradient, balances the force Fi,
imposed by the mouse drag.

(e.g., probabilistic [3], scan matching [4]). However, most
of these methods are prone to local minima, originated, for
instance, from ambiguity or from locally periodic patterns in
the environment.

In this paper we propose an alternative approach where we
consider the human-in-the-loop of the scan matching process.
In particular, the user is invited to interact with the matching
process, by adjusting the match of individual 3D pairs of
scans. This adjustment is however constrained by favoring
adjustments along the directions of greater ambiguity. Take
for instance a case of pairs of identical scans taken from
an homogeneous corridor (schematized in Fig. 1, a pair of
2D scans are used here for simplicity sake). The system
should favor the adjustment of the scans along the corridor,
while disfavoring movements orthogonal to the corridor. The
proposed method is based on a Graphical User Interface (GUI),
where the user interacts with the system using a common
computer interface (mouse and keyboard). Consider a pair of
range scans denoted M (for model) and D (for data). Fig. 1
illustrates the situation for the corridor example. When the user
drags one of the range scans, say scan D, using the mouse,
a corresponding virtual force F,, is produced (proportional to
the drag vector). Opposing it, a reaction force F;. is computed
based in the match between scans M and D. Considering
the scan matching cost function as a potential function, the
symmetric of its gradient with respect to the shift of scan
D can be seen as a reaction force F,.. This reaction force
“attracts” scan D towards M, along the direction of less
ambiguity. Scan D is then moved such that both forces become
balanced, F;,, + F. = 0. In the corridor example of Fig. 1, the
reaction force is (mostly) orthogonal to the corridor axis.



The Interactive Closest Points (ICP) algorithm (see [7]) is
used to obtain the initial rigid transformation between M and
D automatically. Then the proposed method is used to correct
any ambiguity in the alignment. Note that there are other
automatic scan-matching algorithms! and other variants of
ICP [8] that have better performance than the original ICP. We
use the original ICP together with efficient correspondences
computation, for the sake of simplicity.

This paper is organized as follows. In Section II the method
for 3D interactive mapping is proposed, followed by Sec-
tion III showing the preliminary results based on the user
experience with the alignment. Finally, Section IV draws some
conclusions and discuss future work directions.

II. 3D INTERACTIVE ALIGNMENT

Consider two point clouds in 3D space, M = {my} and
D = {dy}, for my,, dy, € R3, and an initial rigid transformation
(R,t) which align D with M, where R is a rotation matrix and
t is a translation vector. This transformation can be initialized
to a default value (e.g. R = I3x3 and t = (0,0,0)") or
computed with an alignment algorithm, like ICP algorithm. By
applying this transformation to D, a transformed point cloud,
D’ is obtained. The two point clouds (M and D’) are then
presented in a viewer (GUI) for alignment analysis. Then, the
user interacts with the viewer using common computer mouse
and keyboard, and apply either translations or rotations to D’.
These actions are carried out separately using a designated key
to choose which mode to use.

Point clouds are aligned by balancing a virtual force caused
by a mouse drag (mouse force) with a reaction force produced
by a potential field. In 3D, we only have access to the
coordinates of the pixel of the mouse current position in the
image plane, therefore the mouse force is defined on a 3D
plane parallel to the image plane. The drag is defined by
two 3D points, p, and py, corresponding to the initial and
final drag points. When the user clicks on pointcould D’, the
initial point p, is set to the point on D’ which projection
on the image plane is closest to the mouse point clicked by
the user. As the user drags the mouse, p; is defined by the
projection of the new mouse point onto the plane parallel to
the image plane that crosses p, (Fig. 2). As point cloud D’
moves during interaction, the point cloud point corresponding
to p, also moves. Consider that point cloud D’ movement is
defined by a rigid transformation, defined by a rotation matrix
R, a rotation center ¢, and a translation ¢. Then, point p, is
transformed into p), = R(p, — ¢) + ¢ + t. Now, we define a
potential function .J,,, that grows with the distance between
points p/, and py:

1
Im = 55 = P17, (1)

By taking the gradient of this potential, with respect to either
translation ¢ and rotation R, one obtains a virtual forces and
torques induced by the mouse drag.

Isee RGBDSLAM in http://www.ros.org/wiki/rgbdslam

Plane parallel to the Image plane

Fig. 2. 3D representation of the mouse force, defined by p, and p. Force
is applied to point cloud D.

The potential function that minimizes the distances between
corresponding points of the two point clouds, being responsi-
ble for creating the reaction force to the mouse drag, is given
by:

J, =

N =

N
> " |lmk — [R(dy — c) + ¢ + 1], )
k=1

where {my} and {d;} are pairs of closest points from M
and D’ respectively, and N is the number of these pairs. This
function is identical to the cost function used in ICP. The
closest points are computed in the same fashion as in ICP,
and only the pairs sufficiently close are considered.

Note that the correspondences are computed every time the
forces are computed. These correspondences may not match
the true ones. However, they are essential to produce attraction
forces among point clouds.

The interaction between the user and the point cloud,
through a computer mouse, is restricted to a plane parallel
to the image plane, due the fact it only has two degrees of
freedom, therefore translations are performed in this plane
(see II-A). Performing rotations in 3D with a computer mouse
is not a trivial task, so, in our interactive alignment, the user
is allowed to choose among tree types of rotations, based on
previous studies concerning human-computer interaction with
3D objects:

1) Rotation without restrictions: in this mode the three de-
grees of freedom are taken into account when computing
the rotations matrix (see II-B);

2) Rotation restrict to a plane: in this mode rotations
are performed around an axis orthogonal to the plane
parallel to the image plane (see II-C);

3) Rotation using a virtual sphere: in this mode the point
clicked is projected onto the image plane and used
alongside the mouse current position in the image plane
to compute the rotation axis and the angle each time the
mouse moves (see 1I-D).

We expect to conduct in the future user studies to evaluate the
performance of each one of these modes.



A. Translations

In this mode, the alignment consists in a translation by
t. Thus R is the identity, and the potential function (1) is
simplified. The mouse force F},, is computed from the gradient
of the cost function (1) with respect to the translation ¢:

Fo = —knV Jm|R:[:km (pf_po_t)7 3)

where k,, is the proportionality constant.
Opposing this force, a reaction force F;. is computed from
the gradient of the function (2) with respect to the translation

t:
N

Fr=—kViJilpy =k Y (mp—di—t), &
k=1
where k, is the proportionality constant,

To find the adjustment that balances the mouse and the
reaction forces, translations are iteratively performed, since
each time the point cloud D’ moves, the correspondences
among points may change. So, for each iteration, a translation
t is computed by solving the equation

Fn+F,. =0, ®)

with respect to ¢. This equation has the following algebraic
closed form solution:
N
- km(pf - po) + ky Zk:1(mk - dk)

= o + Nk, - ©

The interactive scan adjustment proceeds according to the
following algorithm:

1) Compute translation ¢ according to (6);

2) Compute the new correspondences {my} and {d} from
scans M and D’;

3) Unless the correspondences are the same, go to step 1).

The obtained ¢ = [t, t, t,]7 corresponds to the homogeneous

transformation: s
| Isx3 |t
T, = [ . } : )

where I35 is a 3 x 3 identity matrix.

B. Rotations

Rotation mode inflict a rotation of point cloud D’, with
respect to the center of mass c. The center of mass of a
point cloud is set to its centroid. When the user clicks on the
point cloud D’ and attempts to drag it, a force F), is created
using (1), for t = 0 and R = R(a, [, ). However, unlike
translations, the balance is formulated here in terms of virtual
torques.

The mouse torque 7, is the gradient of the cost function (1)
computed around rotation R. We consider infinitesimal rota-
tions «, 8 and +y, along axis z, y, and z.

Tm = _km va,ﬁ,’y Jm|t:0,(x:ﬂ:'y:0 . (8)

The opposing torque 7, is the gradient of the cost func-
tion (2) with respect to «, 3 and ~:

Tr = _kr va,ﬁ,'y JT‘t:O,a:B:'y:O . (9)

Both gradients can be computed using the chain rule:
[tr [(dm)T dRH . (10)
[tr [@)" dr]], an

Vagy Imli—oampey=0 =

VO@BK‘/ JT|t:O,o¢:B:7:O =

where

g O O, dp = OB (. 5,7)
" T OR(a,B,7) " OR(aB) T oz

with z € {a, 8,7}

Derivatives (10) and (11) are performed with respect to each
one of the rotation axes, around a nominal rotation R. This
can be formulated in Lie algebraic terms, as the tangent space
of Lie group SO(3) at point R. This tangent space is spawned
by matrices A,, Ag, and A, defined by

(12)

00 0 001 0-10
A :[00—1} A :{000} A:[100}
@ 010 1’ p ~100]’ v 00 0]’

while the derivative of the rotation matrix is

OR (a, 3,7)

:A£ ;
ox R

13)

for z € {a, 8,7}
The partial derivatives d,, and d, are trivially obtained

by computing the derivative of (1) and (2) respectively, with
respect to R:

d = —plr}, (14)
N

de = =Y mi(d)", (15)
k=1

where r; = (p, — ¢), Py = (py — ¢), d}, = (d), — ¢) and mj, =
(my — ¢).

As in the case of translations, the point cloud D’ is
iteratively rotated until convergence of the correspondences is
reached. In each iteration, due the non-linearity of the system,

a suitable solver is used to balance the two torques:
(16)

Using the results from (13), (14) and (15), the balance of
torques consists in solving the following system of equations
with respect to R:

Tm + 7 = 0.

N

tr l(kmn- (p’f)T + krz dj, (m;C)T> ALR| =0, (17)
k=1

RTR=1, z=a,8,. (18)

The scan adjustment follows a similar algorithm as in the
case of translations:

1) Compute rotation R by numerically solving? equations
(17) and (18) simultaneously.

2) Compute the new correspondences {my, } and {d}} from
scans M and D’;

3) Unless the correspondences are the same, go to step 1).

2A variation of the Levenberg Marquardt algorithm was used, as imple-
mented in Eigen library (http://eigen.tuxfamily.org).
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Fig. 3. 3D representation of the axis of rotation, u, orthogonal to a plane
parallel to the image plane.

Note that step 2 and 3 are exactly the same as in translations.
A rotation transformation is then created using the solution
matrix R,

Tn= o] (19
b,

b= |b,| =[] —R]ec 20)
b.

Note that translation b accounts for the fact that the rotation is
performed with respect to center ¢, rather than to the origin.

C. Restricted rotation mode

An alternative mode for rotating point clouds is to make the
rotations around an axis perpendicular to the plane parallel to
the image plane, and centered in the center of mass projected
on this plane (Fig. 3). The Degrees of Freedom (DoFs) are
reduce from 3 to 1. The Rotation matrix is given by the
Rodrigues’ rotation formula according to which, given a unit
vector u = (ug, ty, u.), where u2 + u2 + u? = 1, the matrix
for a rotation by an angle 6 about an axis in the direction of
u is:

R=1Tcosf+sinfU; + (1 —cosf)Us, 21
where
0 —Uz Uy ’Ui UzUy UgUz
Ui = | u, 0 —ug | and Uz = |ugzuy uf/ Uy Uz
—Uy  Ug 0 UpUz Uyl uz

When the user clicks on the point cloud D’ and attempts to
drag it, a force F,, is created using (1), for t =0, R = R(#)
and ¢ = ¢/, where ¢’ is the centroid project onto the plane. The
axis orthogonal to the plane, u, can be obtained by computing

the cross product of two vectors belonging to the plane:
U= v X Vg, (22)

where v; is the vector defined by the user clicked point, p,,
and the centroid project onto the plane, ¢’ and vy is a vector

orthogonal to v; and defined by a point belonging to the plane
and ¢’. After being computed, vector u, needs to be normalized
to meet the constrain u? + u +u2 = 1:
o

[[ul

The mouse torque 7, is the gradient of the cost function (1)
with respect to 6:

U (23)

T = —km Vo Jml—o - 24)

The opposing torque 7,. is the gradient of the cost function (2)
with respect to 6:

T =~k Vo Jo|,g - (25)
Both gradients can be computed using the chain rule:
Vo Jmlg = tr [(dm)T dR} , (26)
Vo Jul_y = tr [(dr)T dR] . 27)
where in this case:
dm:%, r:%‘]&),@:agig). (28)

The partial derivative dr can be computed by making the
derivative of (21) with respect to 6:
dr — OR (0)
=00
The partial derivatives d,,, and d, have the same result as (14)
and (15) respectively, the only difference is that r; = (p, — ¢’),
Py = (py — ), dj, = (dx — ¢) and mj, = (my, — ¢’).
The balance of torques (16) has a closed form solution that
can be obtained using the results from (14), (15) and (29)

N
kazTUTp/f + kY (d)TUTmy,
N
k] Usply + Ky 30—y (d3)T Uy

=Uj cos () — (I —Uz) sin(0). (29)

tan(f) =

;o (30

where U, = (I —U,)". However, this only allows us to
compute 6 up to a  congruence. To disambiguate among both
solutions, which is caused by the existence of two solutions 7
radians apart, one has to determine which one corresponds to
a stable solution. This can be easily determined from the sign
of the derivative of the total torque 7™ = 7,,, + 7,

or .
20 = —Hjcosf — Hysin 0, (31
where

N
Hy = knr{Usply + ke > (d) Upmiy,,  (32)

k=1

N
Hy = kpr]UTDs+ke Y (d)"UTmp.  (33)

k=1
A solution is stable if and only if the sign of this derivative is
negative. A positive derivative implies that a small perturbation
in 6 will swing the point cloud 7 radians towards the other
solution. Note that (31) has opposite signs for angles 6 and
0 + 7, and therefore there is always a single negative solution.
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Fig. 4. 3D represention of the axis rotation computed with the point p,
projected onto the image plane and the current mouse position in the image
plane.

The scan adjustment follows a similar algorithm as in the
case of translations:

1) Compute ¢’ by projecting the point cloud centroid onto
the plane parallel to the image plane;
2) Compute the rotation axis, u, using (22) and (23);
3) Compute rotation € according to (30), choosing the
solution 6 or 6 + m with negative derivative (31);
4) Compute the new correspondences {my} and {d} from
scans M and D’;
5) Unless the correspondences are the same, go to step 3).
A rotation transformation is then created using the value
f, in the Rodrigues equation (21) and used to create the
homogeneous transformation, Ty:

T, = { RO } , (34)
bs

b= |b,| =[I-R(8)] ¢ (35)
b,

D. Rotation using a virtual sphere

In this rotation mode, rotations are also performed around
a rotation axis. The rotation matrix is also computed using
the Rodrigues equation (21), however the axis of rotation, wu,
is computed using different vectors. When the user clicks on
a point of the point cloud, this point is projected onto the
image plane. Each time the mouse moves the rotation axis is
computed by doing the cross product between vectors v; and
v (Fig.4):

U =1v; X Vg, (36)

with v1 = p — ¢ and vy = py — ¢, where p is the point
Do projected onto the image plane, py is the mouse current
position in the image plane and c is the point cloud center
of mass. The rotation axis is then normalized using (23). The
point cloud movement will have a similar behavior to a virtual
sphere (see [9] for more information).

Fig. 5. 2D representation of the map.

The mouse torque T7,,, the opposing torque 7,, and the
balance of the torques 7, + 7 = 0, are computed in the
same way as in II-C, the only difference is that, in this
case, r; = p — ¢ and the rotation axis (36) are used in the
calculations.

The scan adjustment follows a similar algorithm as in II-C.

1) Project point p, onto the image plane;

2) Move mouse cursor in the image plane to obtain point

py;
3) Compute the rotation axis, u, using (36) and (23);
4) Compute rotation € according to (30), choosing the
solution 6 or 6 + 7 with negative derivative (31);

5) Compute the new correspondences {my, } and {dj} from
scans M and D’;

6) Unless the correspondences are the same, go to step 4).

A rotation transformation is then created using the value
0, in the Rodrigues equation (21) and used to create the
homogeneous transformation with (34) and (35).

III. PRELIMINARY RESULTS

A dataset was obtained using RAPOSA-NG? equipped with
a Microsoft Kinect sensor, which was used to get a sequence of
RGB-D point clouds. Figure 5 shows the 2D layout of the floor
where the dataset was collected. Figure 6 illustrates the results:
(1) shows this collection after an initial pass through ICP. The
resulting alignment is visibly erroneous, due to local minima.
A user, with average level of computer knowledge, was then
asked to employ the proposed method to interactively align the
point clouds: Figure 7-(1) and (2) show an arbitrary pair of
(consecutive) point clouds, before and after the alignment. This
alignment demanded for a translation and a rotation: Figure 6-
(2) shows the final result after the user aligned, in a pair by
pair basis, all pairs of frames. The obtained result has the
same shape as the 2D map in Figure 5, although, kinect has
enormous error associated to the depth data, making the map
blurred.

In qualitative terms, the user has found the proposed interac-
tive method useful. Although the user had no prior knowledge

3http://raposa.isr.ist.utl.pt
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Fig. 6. From top to bottom: (1) initial 3D map after applying ICP to the
raw RGB-D data; and (2) final map after interactive alignment

of the correct alignment, he was able to correct the alignment
of the scans by identifying certain patterns in each pair of scans
that match together. He showed preference in making rotations
restricted to a plane and using a virtual sphere, because these
are easier to control and more intuitive. However, when using
forces, the other rotation mode performs better when the two
point clouds are nearly aligned, due the fact of having three
DoFs.

IV. CONCLUSION

In this paper we have proposed a method using virtual
forces with the purpose of aiding users to manually adjust
the alignment of RGB-D point clouds. The 3D interactive
alignment with the use of forces proved to be a valuable
aid in the correction of the alignment. Rotations without

2

Fig. 7. From top to bottom: (1) a pair of point clouds from the initial map;
and (2) the same pair after interactive alignment.

restrictions behaved better then the other rotation modes when
points clouds were near to each other, but it was the most
difficult mode to control. Rotation restricted to a plane was the
easiest mode to control with the mouse, due the two degrees
of freedom, but takes more time to perform the alignment.
Rotations using a virtual sphere were found intuitive for the
users and easy to control, but using the interactive alignment
they behaved better when making smalls adjustments. As
future work we propose making a more extensive user study of
the proposed method, namely to evaluate the rotation methods.
We also intend to use a localization method for the robot to
get better initial estimates of the point cloud poses.
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