Assisted Teleoperation of a Quadrotor using Active Perception !

Jodo Mendes
jmendes@isr.ist.utl.pt
Rodrigo Ventura
rodrigo.ventura@isr.ist.utl.pt

Institute for Systems and Robotics
Instituto Superior Técnico

Av. Rovisco Pais, 1

Lisbon, Portugal

Abstract

The teleoperation of UAVs often demands extensive training, since even
well trained pilots are prone to mistakes, resulting frequently in collisions
of the vehicle with obstacles. This paper presents a method to assist the
teleoperation of a quadrotor using an obstacle avoidance approach. The
target scenario is unknown, unstructured, and GPS-denied. A short-term
rough map of the nearby environment is constructed using sonar sensors.
This map is constructed using FastSLAM to allow tracking of the vehicle
position with respect to the map. A danger classification method is then
applied to choose the appropriate action for each particular, and poten-
tially dangerous, situation. A simple active perception routine is used to
orient one of the sensors to an unknown area, in case the UAV is ordered
to move towards an unmapped area. Real world results are presented al-
lowing a preliminary validation of the proposed methods.

1 Introduction

Quadcopters have several characteristics that make them well fit for sit-
uations where hovering is crucial, such as indoor usage. In particular,
its high agility, small size and hover capacity make this type of vehicles
useful for, as example, remote inspection of areas where ground vehicles
are unable to reach. However, its teleoperation, particularly in confined
environments, is far from trivial.

In this paper we address the problem of Assisting Teleoperation of a
quadcopter. We define assisted teleoperation as the process of overriding
the operator input, either by modulation, inhibition, or replacement with a
different input. Our goal is to use sensor data to determine an appropriate
assisted teleoperation in order to guarantee a safe flight.

The presented solution is based on a FastSLAM [5] approach using
an occupancy grid map [1]. Since the purpose of this work is not a de-
tailed map of the environment, the problem can be efficiently addressed
by knowing the relative position of the quadrotor in relation to nearby ob-
stacles. After knowing the vehicle’s position and map, a decision making
based on danger assessment is applied. This classifier overrides the user’s
inputs if they compromise the quadcopter’s physical integrity in the near
future. Overriding may range from simple velocity reduction to, in ex-
treme cases, an evasive maneuver. As our aim is to ensure the vehicle’s
safety at all times, an active perception methodology is applied to ad-
dress map uncertainty whenever it is necessary. Unlike a purely reactive
methodology, if the map is kept in memory it is possible to avoid crashes
in sonar’s blind spots. The full architecture is presented in Figure 1.

|

Quadcopter SLAM
= e -
- -

T Position
Velocity

Decision
Block

Viser

Sensors

Veommand

Map

Figure 1: Full architecture of the proposed approach

3D Simultaneous Localization and Mapping (SLAM) in Unmanned
Aerial Vehicles (UAV) using lasers has been studied but typically includ-
ing techniques, such as loop closure algorithms [4]. As for obstacle avoid-
ance methodologies for UAVs, literature mostly addresses path re-planing

'This work was supported by the FCT projects [PEst-OE/EEI/LA0009/2011] and
[PTDC/EIA-CCO/113257/2009].

topics [2]. This paper differs from the above in that we aim at a rough and
low complexity map, and thus more time efficient.

2 Methodology

2.1 FastSLAM

Correct attitude is assumed to be maintained at all times by an onboard
IMU. Since accurate attitude estimations can be provided by a commer-
cial solution, the 6D problem (position and attitude) is reduced to a 3D
problem (position only). The objective of SLAM is to estimate the robot’s
position and the 3D map of the environment simultaneously and hereby
solved by the FastSLAM approach proposed by Montermerlo et al. [3].
The conditional independence propriety of the SLAM problem allows for
a factorization of the posterior and decompose SLAM into a path estima-
tion problem and a mapping problem. This is solved by a combination of
a Particle Filter with an occupancy grid mapping algorithm.

2.2 Decision Block

The inputs for the Decision Block are the position estimation and a map .
Each map cell i is classified in one of 3 states, ¢ € {F,U, O}, correspond-
ing to Free, Unknown, Occupied. The classifier is based on thresholding
the occupancy probablities, according to:

F o if Py ieq) < 0.5

=0 U AP ,) =05 ¢))
O if P eypica) > 0.5
All cells are initialized with P(m, ., .,q) = 0.5 thus classified as Un-

known. After being mapped, they become classified as either Free or
Occupied.

The global flow chart of the Decision Block is presented in Figure 2.
When the user inputs a desired velocity to the quadcopter, the Active Per-
ception block, Figure 3, validates if the commands will be applied to the
vehicle without any constraint. To do so, the inputs are firstly used to com-
pute the desired movement direction and the distance to the first non-Free
cell. If the closest cell is Occupied, the inputs are subject to a confir-
mation that they do not compromise the vehicle’s safety in a near future
and then applied to the vehicle. If the closest cell is Unknown and if the
distance to it is larger than a certain threshold (TH) the algorithm checks
whether there is any sonar aligned with the desired direction. If not, the
algorithm will autonomously rotate the vehicle and then apply the same
norm of velocity the user demanded. The algorithm is, therefore, able to
avoid flying in unknown areas as the sonar is pointing towards the move-
ment direction and still perform the order the user requested. By applying
active perception it is possible to guarantee that the vehicle is not allowed
to fly towards unknown areas.

Decision Block

Map
Position
Velocity

V,

command

Viser

Figure 2: Flow chart of the Decision Block.

V user

——————
Compute No
direction
Compute
distance to Aligned?
first occupied
cell
No
Yes
Yes
No
Yes

Validate

Find closest
sonar

Rotate vehicle
to desired
direction

Apply velocity
with the same
module

Apply user's
input

Figure 3: Flow chart of the Active Perception block.

An obstacle’s position is computed by a method designated here by
volume check. The algorithm applies an extrusion of a square centered
on the quadcopter’s position, along the velocity vector (, as illustrated in
Figure 4. The size of this square, b, encompasses the quadrotor volume
while a is the length of the volume in which obstacles are searched. This
volume enables the algorithm to know which grid cells are in the near-
future path of the vehicle, to determine the position of the closest occupied
cell, and to compute the distance between that cell and the vehicle. It is
then possible to predict how long it takes — if we maintain the current
speed — to collide with it. This concept is known as Time To Collision
(TTC) and is a crucial step in the classification of the danger levels.

Vehicle

S R S

Figure 4: Graphical definition of the volume check. V represents the
velocity vector.

The classifier block acts as a multiplexer by choosing an input, and
forwarding it to the vehicle, given a certain TTC. The threat levels differ in
the action performed. This action may be allowing the user to fully control
the vehicle or to impose an override to the user’s inputs. This override
ranges from ordering the vehicle to lower its velocity if the danger is low
to, in extreme cases, an evasive maneuver.

3 Real world results

In this section, a preliminary evaluation to the architecture, combining
the FastSLAM and the decision block in a real world experiment, is pre-
sented. The available quadrotor is equipped with an IMU capable of pro-
viding filtered values of yaw, pitch and roll. Four sonars were used and
placed above each of the propellers. The sonars maximum range is three
meters. All readings were recorded with the quadrotor’s motors off and
the vehicle manually placed in the different poses throughout the tests.

The presented example considers 5 different stages illustrated in Fig-
ure 5. It is considered that the user is ordering a constant movement to-
wards the wall through the entire test. With this set-up, we aim at a possi-
ble and common movement where a purely reactive methodology would
not manage to avoid the collision.

It is observable that in position 1 the vehicle has pirch = 0° and is
able to map the area where it is going to be in position 2. The vehicle then
moves to the previously mapped and now known to be free area. Since
the distance to the nearest obstacle — in this case an unknown position
— is still high enough (Table 1) the algorithm allows the user to main-
tain control of the quadcopter. When the vehicle reaches position 3, the
distance between its position estimation and the first obstacle in its own
map will lower and the TTC decreases. As a consequence, the user inputs

z
1 2 3 4 5 =
R
0 ‘1 212.25 315 45 ym

Figure 5: Position and attitude in each of the 5 phases.

will be overriden by the Decision Block and the vehicle ordered to slow
its movement. When the velocity is lowered — position 4 — the vehicle
regains sight of its moving direction and re-updates the map. When the
distance to the obstacle is updated, the algorithm allows the user to input
commands once again. This situation can occur multiple times until the
vehicle reaches a real obstacle.

In Table 1, the first line shows the distance directly reported by sonars
in each situation while the second one shows the distance between the
position estimation and the first obstacle in its own map. The proposed
solution keeps a constant track of the distance to the obstacle allowing the
classifier to choose the best action in each situation. It is also noticeable
that the algorithm, due to the acquired attitude, only updates the distance
to the obstacle when the sonar is pointed to the direction of movement —
position 1 and 4. In the last two rows it is possible to see the classification
C given to the closest non-free cell i and the consequent action performed
on the command inputs.

Table 1: Comparison between the distance both methods and consequent
classifier decision.

1 2 3 4 5
dreactive 3 - — 2 _
Amapping 325 | 2.34 1.38 2.28 1.11
C U 8] U 0 0
Classifier decision | User | User | Override | User | Override

4 Conclusion

This paper presented an assisted teleoperation method for UAVs, based on
short-term, rough mapping of the nearby environment. In particular, we
targeted quadcopter vehicles operating in unstructured, unknown, GPS-
denied environments. By knowing the environment, the algorithm is ca-
pable of overriding user inputs whenever the vehicle faces a potentially
dangerous situation. Whenever confronted with an unknown area, the ac-
tive perception routine forces the vehicle to point a sensor towards that
area. The main objective was successfully achieved in simulation and
partially evaluated in a real world scenario. As for future work, we are
currently working in a full real world evaluation of the proposed method.

References

[1] A.Elfes. Occupancy grids: A probabilistic framework for robot per-
ception and navigation. PhD thesis, Carnegie Mellon University,
1989.

Zhihai He, Ram Venkataraman Iyer, and Phillip R Chandler. Vision-
based uav flight control and obstacle avoidance. 2006 American Con-
trol Conference, pages 2166-2170, 2006.

Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben
Wegbreit. Fastslam: A factored solution to the simultaneous localiza-
tion and mapping problem. In In Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 593-598. AAAI 2002.

Cyrill Stachniss, Dirk Hifjhnel, Wolfram Burgard, and Giorgio
Grisetti. On actively closing loops in grid-based fastslam. AD-
VANCED ROBOTICS, 19:2005, 2005.

Anthony Stentz, Dieter Fox, Michael Montemerlo, and Michael Mon-
temerlo. Fastslam: A factored solution to the simultaneous localiza-
tion and mapping problem with unknown data association. In In Pro-
ceedings of the AAAI National Conference on Artificial Intelligence,
pages 593-598. AAAI 2003.

(2]

(3]

(4]

(3]

