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Abstract

Building occupancy grid maps with sonar sensors is a challenging task
due to angular uncertainty, specular reflections and crosstalk. This paper
presents a qualitative comparison of two probabilistic approaches to the
robotic mapping — inverse and forward sensor models — and proposes a
different formulation to the latter. The inverse one assumes independence
of the cells while the forward is formulated as a maximum likelihood
problem over a binary grid.

1 Introduction

One of the most used map representation in robotics is the occupancy
grid map (OccGrid map), which aims to geometrically represent the en-
vironment through a grid discretization of the space. To build this maps,
one commonly used sensor is the sonar. Sonars are cheap and allow the
construction of maps even with a low number of sensors. Despite these
advantages, sonars suffer from angular uncertainty, specular reflections
and crosstalk between each other, causing erroneous and conflicting mea-
surements [5].

The typically used method to build OccGrid maps is the one pro-
posed by Elfes, making use of inverse sensor models [2]. In this ap-
proach, the occupancy of each cell is computed disregarding the rest of
the map. A different approach was proposed by Thrun, using forward
sensor models [4]. This method approaches the mapping problem in the
high-dimensional space of all maps, trying to solve erroneous and con-
flicting sonar measurements which affect Elfe’s method results.This pa-
per aims to briefly compare this two approaches and propose a slightly
different formulation to the latter.

2 OccGrid Maps with Inverse Sensor Models

In this approach, the mapping problem is treated inversely to how sonar
data is generated, being formulated as
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where M represents the complete map, z;.7 represents the complete set of
measurements and x|.7 are the corresponding poses. This is the denomi-
nated inverse sensor model.

To simplify the mapping problem, it is assumed that the occupancy
of a given cell is not important to the computation of the occupancy of its
neighbour cells, i.e., cells are conditionally independent given measure-
ments and the robot trajectory, transforming the mapping problem into a
binary estimation problem,

p(M|z1.7,x1.7)
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where m; is an individual cell of the complete map. A second assumption
made is the static world assumption, considering a measurement ¢ con-
ditionally independent from the previous measurements given the map
knowledge. This is a common assumption in mapping but given the de-
composition into a binary problem this becomes a much stronger and also
incorrect assumption, since it considers conditional independence given
only a map cell and not the complete map. Additionally, the pose in the
instant ¢ is independent from the poses in previous instant times. So, for
time ¢:
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Given these assumptions and applying the Bayes rule to (2), we have:
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As is common practice, we will compute the log odds of this probability
instead of the probability itself:
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when ¢t = 1. The probability p(m;) is the prior of occupancy of the cell i
of the map. A typical and simple approach is to model the posterior not
as a fixed functional form but by a finite number of values which roughly
approximate the posterior [5]. For the cells at distances between 0 and the
neighbourhood of the measurement the occupancy probability has a low
value, in the neighbourhood it has a high value and 0.5 beyond.

Making use of (5) the log-odds occupancy representation can be eas-
ily computed for each cell that falls into the coverage cone of the sonar
measurements. So, finally, the desired occupancy probability of the cells
can be recovered through:
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In the implementation, and in order to make it more robust to specular

reflections, it was given less weight to larger measurements. So in (5), the

p(milz )
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and 1, that is inversely proportional to the sonar measurement z;. The final
map is obtain after submitting each cell to a threshold. If the probability of
occupancy is inferior to the threshold, the cell is considered unoccupied,
being considered occupied otherwise.

comes multiplied by a variable, restricted between 0

3  OccGrid Maps with Forward Sensor Models and 1D
Clustering

Static world assumption is also made in this approach but, in order to
address the listed sonar problems, it does not make a map decomposition,
dealing with mapping problem in its complete state space. Additionally it
uses forward sensor models, being able to make use more complex sensor
models. The forward mapping approach is modelled as a likelihood

p(zir|M,x1.1). @)

This is a generative model, being formulated as the phenomenon happens;
given the world (represented by the map M) and a given set of poses, a
particular set of sonar reading is generated. The goal is to maximize (7),
iteratively adjusting M till no better model is found. This problem can
then be formulated as a maximum likelihood estimation problem.

Rather then assuming that all measurements are caused by an ob-
stacle, three possible cases of beam reflection are considered, maximum
reading, random and non-random. A non-random measurement is caused
by an obstacle in the sonar beam. A maximum value reading happens
with the failure in detecting all the obstacles, when present, and returning
the maximum range value, z;,,x. The random case models the remaining
causes. Since in practice the true cause of the sonar reading is not known,
a classifier has to be used to identify it.

For the measurement with index ¢, consider K; to be the number of
obstacles present in the sonar cone, d; ; the distance from the k’th obstacle
in the cone and D; the set of obstacle distances in ascending order. The
model (7) is defined as the combination of the models of each possible
cause. Consider the binary variables c; x, ¢; , ¢; 0, restricted to:

K

Crxt+ Z cr=1.
k=0
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These variables are equal to 1 when the measurement is random, caused
by obstacle k or equal to the maximum range, respectively. The random
case is modeled as a uniform distribution in the entire sonar range, since
the reading could have been caused in any part of the sonar cone. When
the beam is reflected by an obstacle, it is considered that it is affected by
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Figure 1: Experimental Results: (a) ground truth map obtained with GMapping and a Sick laser rangefinder; (b) measurements taken; (c) OccGrid
map using inverse sensor model; (d) OccGrid map using forward sensor model.

additive white gaussian noise. In the case where z; = Zmnqy, since it is a
discrete event, a Dirac delta function is considered.
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0 otherwise.
p(zIM,xi,c0=1) = 8 (2t — Zmax) (11)

In a single expression it can be written as
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Since there is no prior knowledge of the measurement’s cause we define
the posterior probability

K _
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where p,.,q 1s the prior probability of a measurement being random, pjyqx
is the prior probability of a measurement being maximum and px)’ is the
prior of the obstacle i to reflect the sonar beam. The py;, probability is
function of the obstacle’s width coverage in the sonar cone, varying lin-
early between a minimum and a maximum value and being equal to the
maximum value when the obstacle covers 100% of the cone width. There-
fore, an obstacle might be formed by one or more occupied cells, forming
a cluster. Cells are clustered having as criterium its distance to the sonar
cone origin. A cluster is initially formed by a single cell in which further
cells are added if the difference between its distance, d; x, and the cluster
center of mass is smaller then a given threshold. When a cell does not
meet this criterium, a new cluster is created with it.

Summarizing, we have p(z;|M,x;,¢;) and p(c;|M,x;) but we want
p(z|M,x;). However, we can write

Pz e|M,xi) = p(z|M,xi,c0) p(ci|M,x:), (15)

which regarding all sensor data and using the logarithm becomes

T
log p (z1.7c1:r|M x1.7) = Y log p (21,0 |M %) . (16)
t
Given the unobservability of ¢;, we now compute the expected value of
(16) in order of ¢;, arriving to the expected log-likelihood to maximize:
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In the computation of this likelihood (12) and (13) are used. Being ¢; a
Bernoulli random variable, its expected value equals its probability, (14).

Not considering the maximum reading event as a particular case of
the non-random case and defining p(z;|M,x:,c;p = 1) as a Delta dirac
function makes those readings have no influence in the likelihood and
in the process of maximization, contrary to what happens in the original

formulation. Making py,;, function of the coverage and the introduction of
clustering allows the representation of the angular uncertainty, which is a
process not clear in [4].

To maximize (17), a variation of Dempster’s Expectation-Maximization
algorithm is used, where c¢; is a vector of hidden variables [1]. No terms
are discarded in (17), since any change in M might produce significant
value variations in those terms. To find the map M that maximizes the
likelihood, the occupancy of the cells that fall into the measurements cone
is flipped and maintained if its new value increases the likelihood value.
Given the discretization made, this results in a very greedy algorithm, in
which the final result highly depends on the cell flipping order. Since it
gave empirically good results, in this implementation we chose to first flip
the cells closest to the measurement and progressively moving away. The
Dirac delta function in (11) is implemented as a gaussian distribution with
a very low variance.

4 Results

The robot used was the Pioneer P3-AT, equipped with SensComp 600
Series sonar sensors and a Sick LMS200 laser rangefinder. A ground truth
map was built using the laser and the GMapping algorithm [3], Figure
1(a). Since it is assumed that the robot’s pose is known, the GMapping’s
pose estimative was assumed as the true pose.

To build the maps two sonars were used, placed orthogonally to the
robot’s movement and one on each side. The measurements were taken
with the robot moving approximately at 0.6m/s and measurements being
taken with a 4Hz frequency on a single lap to the corridor.

Both approaches present an overall good representation of the envi-
ronment. The forward method presents less artifact obstacles while fails
to represent some obstacles in the corridor atrium, moreover it is prone to
local maxima and is very computationally intensive.

5 Conclusion

This paper presented a comparison between OccGrid mapping using in-
verse and forward sensor models. The preliminary results showed that
the latter solves some problems that affect the inverse but having as draw-
back the computational effort. Future work consists in presenting a more
quantitative and systematic comparison and in studying better approaches
using forward sensor models, to improve computational efficiency and to
deal with outliers.
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