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Abstract

This paper describes the use of vision for navigation of mobile robots floating in 3D space. The problem addressed is that
of automatic station keeping relative to some naturally textured environmental region. Due to the motion disturbances in the
environment (currents), these tasks are important to keep the vehicle stabilized relative to an external reference frame. Assuming
short range regions in the environment, vision can be used for local navigation, so that no global positioning methods are
required. A planar environmental region is selected as a visual landmark and tracked throughout a monocular video sequence.
For a camera moving in 3D space, the observed deformations of the tracked image region are according to planar projective
transformations and reveal information about the robot relative position and orientation w.r.t. the landmark. This information
is then used in a visual feedback loop so as to realize station keeping. Both the tracking system and the control design are
discussed. Two robotic platforms are used for experimental validation, namely an indoor aerial blimp and a remote operated
underwater vehicle. Results obtained from these experiments are described. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Visual control loops have been introduced in order
to increase the flexibility and the accuracy of mobile
robots. Most cases however deal with the navigation
of wheeled mobile platforms that are restricted to
the ground plane. More complex systems deal with
what we call floating robots that move in 3D space.
As an example, we recall the research on the utiliza-
tion of unmanned aerial vehicles, which has grown
with an increasing interest on robotic airships, also
known as blimps or lighter-than-air vehicles [1–3].
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The motivation behind it is that airships outperform
airplanes and helicopters in low-speed, low-altitude
applications, having an enormous potential for tasks
like environmental and traffic monitoring, climate
research, transportation, etc. Yet another example is
underwater exploration, where an increase of interest
is noted on the utilization of autonomous underwater
vehicles (AUVs) and remote operated underwater ve-
hicles (ROVs) [6–8]. These can be inserted into a wide
variety of applications related to underwater manage-
ment, monitoring, inspection and manipulation tasks.

The work presented is integrated in the NARVAL1

project, for which one of the main goals is the design
and implementation of reliable navigation systems for
an underwater ROV in unstructured environments. An

1 ESPRIT-LTR Project 30185, NARVAL—Navigation of Auto-
nomous Robots via Active Environmental Perception.www.isr.ist.
utl.pt/vislab/NARVAL/index.htm.
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indoor blimp was acquired as a testbed for laboratory
experiments, simulating the ROV’s motion and control
degrees of freedom. The problem addressed is that of
automatic station keeping based on visual input. The
station keeping task is defined locally in the neigh-
borhood of some visually observable landmark and
consists in stabilizing the vehicle relative to this land-
mark while rejecting external disturbances. For float-
ing robots, staying fixed at some given position is not
inherent since it is susceptible to significant drift.

A selected image region is used as a visual land-
mark, whose temporal changes, induced by the
vehicle’s motion, are tracked. Most environmental
scenarios can be reasonably approximated as piece-
wise planar surfaces. We therefore assume that the
camera images a planar surface so that inter-image
deformations are completely described by planar
projective transformations. The tracker system deter-
mines camera motion from the registration between
the current live image and an initial reference image.
In a prediction phase, optic flow information is used,
providing the tracker with an initial estimate of the
current image motion parameters. This estimate is
then refined using a template matching procedure.
This information then provides an input to the station
keeping controller. The control objective is to drive
the robot back to the desired view under external
disturbances, thus assuring some particular alignment
of the robot relative to an environmental region. The
main difficulties are related to the vehicle’s motion
constraints, having a limited number of controllable
degrees of freedom.

The paper is organized as follows. Section 2 gives
some background on multiple view geometry for a
pin-hole camera. In Section 3, the tracker system is
described and in Section 4 the experimental robotic
platforms are presented and modeled. We then turn
to the control problem in Section 5 and introduce the
visual station keeping controller. In Section 6, the ex-
perimental results are described and finally in Section
7 conclusions are drawn and future work is indicated.

2. Background: multiple view geometry

In this section we assume the reader to be familiar
with the basic concepts and properties of projective
geometry [15,16].

2.1. Camera model

The camera model used in this paper is the stan-
dard pin-hole model, which performs a linear projec-
tive mapping of the 3D world into the image plane.
We also assume that the camera calibration has been
performed on beforehand, and that the 3×3 matrixK
containing the intrinsic parameters has been estimated.
With the pin-hole model, planar image motions can-
not be adequately modeled by simple transforms, like
affine or translational. A projective planar transforma-
tion is the exact motion model when a camera rotates
about its eyepoint or if the imaged surface is planar.

2.2. Planar projective transformations

The 2D projective transformation is given by the
3 × 3 homography,H . This transformation is on
image points, and relates points in different views
according tox′ = Hx, wherex′ andx are the homo-
geneous coordinates of the image points(x′, y′) and
(x, y), respectively. This transformation is defined up
to a scale factor and therefore has eight degrees of
freedom, given by the entries ofH . The computation
of a planar transformation requires at least four pairs
of corresponding points. In the case of more than
four correspondences, a straightforward least-squares
linear estimation can be accomplished.

2.3. Image registration

Given a reference image ortemplateT and a target
imageI , the image registration problem is defined as
computing a transformation that relates points(x′, y′)
in the template image to points(x, y) in the current
target image. Usually, these transformations, are pa-
rameterized as a function of a vectorq, such that
(x′, y′) = Hq(x, y). This transformation is on image
coordinates and therefore defines an image warping
that maps pixel intensity values from the template im-
ageT to the current target imageI : W(q, T ) �→ I .
Here,W(q, T ) specifies the image warping according
to the transformation parametersq.

To register the current image with the template,
the best possible match can be obtained through the
minimization of an error function, using an appro-
priate norm, such as the sum-of-squared-differences
(L2-error criterion). Writing images as column
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vectors, the estimate of the current transformation
parameters at each time step is then found as:

q̂ = arg min
q

(
1
2‖I −W(q, T )‖2

)
. (1)

When iteratively tracking an image region through a
video sequence, at each time instant, an initial guess
of the current transformation parameters is given by
the parameters of the previous step. This provides a
first step towards the solution so that only small ad-
justments remain to be made. In such a scheme, an
approximate error criterion is given by:

�q̂ = arg min
�q

(
1
2‖Iq0

−W(�q, T )‖2
)
, (2)

whereIq0
= W−1(q0, I ) is the image obtained from

the inverse warp that maps the current imageI approx-
imately onto the templateT , according to the initial
guessq0. Upon minimizing this criterion, we look for
the best residual warp,W(�q, T ) that accounts for the
observed difference between the imageW−1(q0, I )

and the templateT . The current transformation pa-
rameters are then updated according to:

q̂ = �q̂ ⊗ q0,

where ⊗ stands for the update operator, which is
equivalent to homography multiplications.

2.4. Scaled Euclidean reconstruction

Given an inter-image homography, it is possible
to reconstruct the relative displacement of the cam-
era in 3D space, up to a scale factor. This is also
known asscaled Euclidean reconstructionand allows
to reconstruct the relative camera trajectory from im-
age registering through a monocular video sequence.
This decomposition is described in [15], relating
the homography matrixH with the camera rotation,
translation and the world plane which induces the
homography. The decomposition is the following:

H21 = K

(
R21 + n1

tT

d1

)
K−1, (3)

whereR21 and t are, respectively, the 3× 3 rotation
matrix and the 3×1 translation vector relating the two
3D camera frames. The world plane is accounted for
through the unitary vectorn1, containing the outward
plane normal expressed in the camera 1 coordinates,

and the distanced1 of the plane to the first camera
center, measured along the optical axis.

3. Tracking system

The tracking system for the station keeping con-
troller aims at tracking a naturally textured landmark
in the image plane, whose temporal deformations are
then used to recover image and/or camera motion.
Upon initialization, an image region is selected as a
natural landmark and tracked throughout the video se-
quence. For each new frame, a prediction of the current
incremental transform parameters is obtained from op-
tic flow information. This estimate is then refined by
matching the image with atemplateor referenceim-
age, using a set of pre-defined motion models. The
estimated image motion is then iteratively included in
the set of motion models so as to sample for future im-
age deformations, likely to occur at the next iteration.

3.1. Prediction phase: optic flow

We include optic flow information in a prediction
phase by adjusting an affine model to the observed im-
age motion. The affine motion estimate is computed
from the temporal and spatial derivatives in the current
and previous live images [12,13]. The advantages are
two-fold: (i) by adding information to the initial guess,
the residual transformation parameters are kept small;
(ii) optic flow provides a means to keep track of the
transformation parameters when the visual landmark
gets out of the image. Upon integrating the inter-image
transform estimates over time, errors are likely to be
accumulated. Therefore, keeping track of transforma-
tion parameters using optic flow information can be
thought of as a means of visualdead-reckoningor
odometry. Accumulated errors are then reset by match-
ing the current image with the template image.

3.2. Update phase: template matching

To register the current image with the template
image, we minimize the error function in (2), using
a set ofm motion models{�qi: i ∈ (1, . . . , m)} that
sample the parameter space for expected image
deformations. Each motion model,�qi , transforms
the template imageT into an imageW(�qi , T ) that
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contains image deformations expected to be observed
over time. In our implementation, the algorithm sam-
ples into the directions of the individual parameters of
the transform parameterization, over varying ranges.

The residual transformation parameters that are
looked for,�q, can be expressed as a linear combina-
tion of the various motion models,�q = ∑m

i=1 ki�qi .
The image warping operator can now be consid-
ered to be specified by the parameter vectork =
[k1, . . . , km]T. The new parameterization is given by:

W(k, T ) =W
(
m∑
i=1

ki�qi , T

)
, (4)

whereW(k, T ) is the image obtained from warping
the templateT according to the linear combination
of motion models�qi . Substituting (4) into the error
function (2), the matching problem can be formulated
as finding the linear combination of motion models
that best accounts for the observed difference between
the approximately registered current image and the
template:

k = arg min
k

(
1
2‖Iq0

−W(k, T )‖2
)
. (5)

The imageW(k, T ) is in general a complex and highly
nonlinear function of the transformation parameters
and the texture map defined in the template image. In
order to minimize this error function, we approximate
W(k, T ) with a first order Taylor expansion, for small
deviations aboutk = 0:

W(k, T )|k=0 ≈ T +
m∑
i=1

ki
∂W(k, T )

∂ki

∣∣∣∣∣
k=0

,

where discrete approximations of each partial deriva-
tive can be expressed as:

∂W(k, T )

∂ki

∣∣∣∣
k=0

=W(qi , T )− T = Bi.

In [4], the set of vectorsBi are denoteddifference
templatesand are also used for image registration, but
they are justified in a different form. Computing each
difference image,Bi , according to the motion model
qi , and stacking them into a partial derivatives matrix:
B = [B1, . . . , Bm], the imageW(k, T ) can then be
approximated by:

W(k, T )|k=0 ≈ T + Bk.

Substituting this approximation into the error function
in (5), a least-square solution can be computed fork:

kLS = (BTB)−1BTD, (6)

whereD = (W−1(q0, I ) − T ) is the observed dif-
ference between the approximately registered current
image and the template image. After determiningk,
the solution for�q can be calculated.

Most computational requirements go out with the
computation of the pseudo-inverse,(BTB)−1BT,
which can be calculated off-line since it is constructed
from the set of motion models and the template im-
age. The only on-line computation is the calculation
of the difference image,D, implying an image warp
W−1(q0, I ). This makes the method very well-suited
for real time tracking applications.

3.3. Adaptive motion models

The choice of the motion models greatly determines
the performance of the tracking algorithm. Ideally,
this choice should be adapted to the camera motion.
This idea has been explored in our implementation
of the tracker system, where we adapt the set of mo-
tion models according to the history of past detected,
inter-image transformation updates. These updates
point out into thedirection and range of expected
deformations in near future.

An additional small subset is added to the already
existing set of motion models and is iteratively adapted
to the observed image motion. Within this memory,
some heuristic need to be defined to decide which mo-
tion model is to be substituted after each iteration. In
our case, we replace the least-weighted model, as re-
sulting from the optimization procedure in (6). After
initialization, the memory identifies the principal com-
ponents of image motion. Maintaining the original set
intact prevents the algorithm from loosing its ability
to sample for deformations in all directions. It follows
[9] that upon iteratively substituting motion models,
the algorithm is able to track increasing inter-image
deformations over a much wider range, thus adding
robustness to the system.

When adapting the set of motion models, new dif-
ference templates need to be included into the partial
derivatives matrix,B, implying on-line calculation of
its pseudo-inverse(BTB)−1BT, thus highly increas-
ing the computational demands. To avoid this, we take
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advantage of the information already stored in the
pre-calculated pseudo-inverse and update it according
to the substituted difference image. It is found [9] that
this update can be computed at negligible extra com-
putational effort.

3.4. Tracking performance

With this algorithm, we were able to successfully
track a visual landmark undergoing planar projec-
tive transformations. A 15 Hz tracking frequency is
reached for images with a 128× 192 pixel size, us-
ing an off-the-shelf 450 MHz processor. Fig. 1 shows
results of tracking an image region in submarine im-
ages. The initially selected image region is used as a
template, whose temporal deformations are tracked
over time.

3.5. Optimal landmark selection

When selecting an image region as a template for
tracking, its texture map should contain sufficient in-
formation so that expected image deformations over
time can be observed from it. To automatically select
a template from an image, some optimality criterion
needs to be evaluated, that takes the observability with
respect to the motion models into account. To do so,

Fig. 1. Tracking an image region in a submarine video sequence,
under planar projective image deformations.

we follow the approach in [5], and model the observed
difference,D = W−1(q0, I )− T , as a linear combi-
nation of the pre-calculated difference images, in the
presence of additive noise:

D = Bk + u, (7)

whereu is additive noise,k represents the real trans-
formation parameter vector that is looked for andB is
the partial derivatives matrix containing all difference
images. The least-square estimate fork is given in (6)
and can be rewritten using (7) as:

kLS = k + ((BTB)−1BT)u. (8)

In order to havekLS as a reliable estimate ofk, we
would like to choose aB, such that the uncertainty
introduced by((BTB)−1BT)u is minimized. The par-
tial derivative matrixB is a function of the selected
template texture and the set of motion models. For the
same set of motion models, different templates result
in different values of uncertainty.

To measure this uncertainty, we take theL2-norm
on the error in the reconstructed signal:

‖k − kLS‖2 = ‖((BTB)−1BT)u‖2. (9)

Assuming zero-mean, unit variance white noise foru,
we can take the expected value of (9), which can be
computed as:

E{‖((BTB)−1BT)u‖2} = trace((BTB)−1BT). (10)

The optimal template is then found by minimizing the
expected value of (10), given the set of motion models.

Fig. 2 shows the most and less informative template
found in an underwater image, for a fixed size land-
mark. The selection of informative landmarks has a
noticeable impact on the tracking accuracy. Some test

Fig. 2. Automatic landmark selection: (left) most informative image
region; (right) less informative image region.
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were performed to evaluate the tracking errors, result-
ing in sub-pixel accuracy when tracking informative
image regions.

4. Robot description and modeling

Before turning to the control design, we first de-
scribe the experimental robotic platforms used, namely
an underwater ROV and an indoor blimp.

4.1. Floating robots: ROV and blimp

A commercially available Phantom 500SP ROV is
used, which is adapted for computer control. The ROV
is illustrated in Fig. 3 and is equipped, among other
sensors, with an on-board pan and tilt camera. The
camera is mounted rigidly to the ROV, such that its
optical axis is aligned with the vertical axis of the
ROV reference frame. The pan and tilt angles can be
controlled separately, resulting in two extra degrees
of freedom for the camera. The ROV is wired to a
remote processing unit by a 150 m umbilical. Video

Fig. 3. Computer controlled Phantom ROV with an on-board pan
and tilt camera.

Fig. 4. Radio controlled indoor blimp (left) with on-board camera and video link (right).

signals are sent up to the ground surface. Here, control
signals are derived and sent down to the ROV via the
umbilical, through a serial communication link.

The small-size indoor blimp is illustrated in Fig. 4.
It is composed of a balloon, a gondola and a remote
controller. For the blimp to float in air, its envelope
needs to be filled with a gas that is lighter then air, typ-
ically helium, providing it with sufficient payload to
carry the gondola, batteries and camera. The gondola
is a rigid structure attached to the bottom of the bal-
loon. It contains the motor controllers, a radio receiver
and the three thrusters for propulsion in the horizontal
and vertical planes. Additionally, a mini camera with
a video link was mounted on the gondola. The CCD
camera sends video signals to a remote computer via
a video link in open air. The images received by the
computer are processed and analyzed so as to derive
proper control signals, sent to the blimp via a radio
link.

In both cases, the controllable degrees of free-
dom are defined by the geometric arrangement of
the thrusters. The vehicles where originally designed
for joystick-type piloting, where a forward/backward
force and a differential torque are commanded by
two horizontally placed thrusters and an upward/
downward force is commanded through a vertically
placed thruster. With this arrangement, non-holonomic
motion constraints are specified, requiring complex
maneuvers for posture stabilization.

4.2. Dynamics and kinematics

The dynamic model can be obtained by writing
down the six degrees of freedomNewton–Eulerequa-
tions of motion resolved into a body-fixed reference
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frame [2,14]:

M v̇ + c(v)+D(v)v + g(R) = τ .

Here,v is the instantaneous velocity vector contain-
ing the linear and angular components of the vehicle
velocity,M the mass matrix containing all the masses
and inertias of the rigid body,c(v) groups the corio-
lis and centrifugal terms,D(v) contains the damping
and friction forces,g(R) is the restoring forces vector
containing gravitational and buoyancy terms (depend-
ing upon the vehicle orientation w.r.t. some inertial
world frame) andτ is the vector of propulsion forces
and torques.

The generated forces and torques inτ are related
to the control commands sent to the thrusters by the
affine thruster model [14]:

τ = Bu,

whereu is the control input vector andB captures
the relationship between control commands (typi-
cally given as pwm-signals) and generated forces and
torques from the thrusters.

Upon integration of the resolved acceleration, the
robot instantaneous velocity is obtained, which can be
related to the world referenced velocity, leading to the
kinematic equations [14]:

ṅ = Jv.

Here n contains the position and orientation of the
robot in some fixed world frame andJ is a Jacobian
relating the robot instantaneous velocity to world ref-
erenced velocity. The kinematic model is useful for
simulation and navigation purposes.

5. Visual station keeping

For station keeping, we assume that the robot is
hovering parallel to a piecewise planar ground-plane
in the environment, having the camera looking ap-
proximately perpendicular to the plane. Motivated by
the limited controllable degrees of freedom, adecou-
pled control designis adopted, which station keeps the
robot in the horizontal plane w.r.t. the landmark, while
maintained at a fixed altitude in the vertical plane. The
controller design is addressed to within the framework
of visual servoing strategies. A tutorial on this topic
can be found in [11]. For navigation purposes, these

strategies can be roughly classified into two architec-
tures: (i) position based (or 3D) visual servoing; (ii)
image based servoing. In the case of 3D servoing, im-
ages are used to reconstruct the scene and estimate
3D positions/orientations from visual information. In
the image based approach, features are measured di-
rectly from the image plane and used to synthesize the
control laws without an intermediate reconstruction
phase. Both architectures are discussed and an image
based station keeping controller will be proposed and
experimentally validated.

5.1. 3D-servoing

When tracking a planar landmark in the image
plane, the estimated inter-image homographies can
be decomposed into relative camera displacements,
as described in Section 2.4. This provides a means
of reconstructing the relative camera trajectory in
3D-space over time and self-localize the camera
w.r.t. the initial view. To realize station keeping, a
kinematic error function can be defined between the
current estimated and initial camera pose. The station
keeping controller then aims at regulating this error
to zero using feedback. Since these errors are defined
in Cartesian space, it is relatively easy to obtain a
controller design based upon geometric insight.

The main advantage of the 3D approach is that it
directly controls the camera trajectory in Cartesian
space. However, since the control design is based on
error functions in Cartesian space, the tracked land-
mark used for the reconstruction phase may leave the
image and lead to servoing failure. Another drawback
is the sensitivity of the homography decomposition
w.r.t. tracking errors. Fig. 5 shows results on camera
trajectory reconstruction from estimated homogra-
phies face to ground-truth. It follows that although
tracking errors are kept small in the image plane (less
than 1 pixel) and intrinsic parameters are assumed
to be known, significant errors in the camera trajec-
tory reconstruction occur. Major errors arise in the
reconstruction of relative displacement in thex- and
y-direction. This is due to the fact that, under weak
perspective distortion, translation in the image plane
can be accounted for by either a camera translation
or a rotation around thepan and tilt angles in 3D
space, leading to an ambiguity when reconstructing
3D motion from 2D motion.
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Fig. 5. Results on camera trajectory reconstruction from homography decomposition. Reconstructed signals are+-marked, whereas
ground-thruth values are plotted as continuous lines.

5.2. Image based servoing: station keeping
in the horizontal plane

The image based station keeping task is defined
as the regulation to zero of an image error function
e(s) = s − sd, wheres is the image feature parame-
ter vector andsd the desired value. The centroid of a
tracked image region is used as a feature, whose de-
sired position is at the image center. The image error
function is then given bye = [xc, yc]T −[xd, yd ]T and
the controller aims at driving the centroid towards the
image center.

Changes in the image features can be related to
changes in the relative camera pose. This kinematic
relationship is often referred to as theimage Jacobian
or the interaction matrix[10,11]:

ṡ = Lvcam, (11)

whereL is the image Jacobian andvcam is the 6× 1
camera velocity screw. The Jacobian for image points
is given by the motion field [11], depending both on
the point coordinates and their depth,Z. An expo-
nential decrease of the error function is obtained by
imposing ė = −λe, with λ some positive constant.

Using (11), we can then solve for the camera motion
that guarantees this convergence:

v∗
cam = −λL(s, Z)+(s − sd), (12)

where v∗
cam is the resolved camera velocity that

drives the centroid to the image center andL+ is the
pseudo-inverse of the image Jacobian.

The robot control inputs are in general defined in the
vehicle reference frame, commanding components of
the vehicle velocity vector. We therefore need to relate
the controllable components of the vehicle velocities
to camera velocities. This relationship is given by the
control input Jacobian:

vcam = Jrobotv̄robot, (13)

where v̄robot contains the controllable velocity com-
ponents of the vehicle velocity screw andJrobot is
the control input Jacobian. This Jacobian depends
on the camera position and orientation in the vehicle
reference frame and can be easily computed from
transforming linear and angular velocity components
between the frames. For station keeping, we consider
the linear and angular velocity of the vehicle in the
horizontal plane,v̄robot = [v, ω]T, which are both
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controllable from the two back thrusters. Substituting
(13) into (11), an expression is obtained that relates
image point velocities to the vehicle velocity:

ṡ = L Jrobotv̄robot. (14)

With this expression, we can solve for the desired
robot velocity in the horizontal plane, necessary to
guarantee the convergence of the image error function:

v̄∗
robot = −λ(L(s, Z)Jrobot)

+e. (15)

This expression takes the vehicle motion constraints
into account, resulting into trajectories that are phys-
ically executable.

5.3. Image based servoing: auto-altitude
controller

The image based controller for the vertical plane
aims at maintaining the robot at a fixed depth dur-
ing station keeping maneuvers. The controller design
is such that it maintains the appearance of the land-
mark in the image plane at the same scale. Having
the robot hovering parallel to a planar region, the
scale in the image plane of some selected landmark
has a direct physical interpretation in terms of relative
depth.

To recover the scale in the image plane, we con-
sider the inter-image homography as a hierarchical

Fig. 6. Station keeping test with the blimp: (left) trajectory of the centroid of the tracked window (image errors in normalized pixel
coordinates); (right) difference between the area of the reference window and the tracked window.

chain of transformations on the image plane, as de-
scribed in [16]. It follows that the scale factor can then
be recovered from the determinant of the upper-left
non-singular 2×2 block of the estimated homography,
for simplicity indicated asA:

s =
√

|A|. (16)

Taking this scale as the control error function, the de-
sired vertical control is given by:

v̄∗
robot = Kps +Kdṡ +Ki

∫
s dt, (17)

where in this casēvrobot contains the resolved desired
vertical speed and a PID design was adopted for dy-
namic compensation.

6. Experimental results

To validate the proposed control strategies, a set of
real experiments were done initially using the blimp
in a laboratory environment. Fig. 6 shows the tempo-
ral evolution of the error signals during a docking and
station keeping experiment. At the left side, the image
trajectory of the target point (centroid of the tracked
window) is illustrated under closed-loop control. The
control strategy aims at driving this point to the image
center (docking) and keep it as close as possible to
this center (station keeping). The right image shows
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Fig. 7. Station keeping experiment with the ROV at the Mediterranean: (left) tracking a selected image region in the presence of drift,
with the ROV uncontrolled; (right) controlling the centroid back to the image center by servoing the vehicle.

the error between the areas of the reference window
and the tracked window and indicates that the blimp
is approximately maintained at a constant height.

In a later stage, several successful station keeping
trials were performed with the ROV at open sea. The
system was tested under various environmental con-
ditions at different locations, namely in the North Sea
near Orkney, Scotland, as well as in the Mediterranean
sea in Villefranche, France. The results of a station
keeping test in the Mediterranean sea are shown in
Fig. 7. In a first stage, the vehicle floats uncontrolled
when a landmark is selected around the image center

Fig. 8. Evolution of the error signals during the station keeping test with the ROV at open sea: (a)x-coordinate of the centroid; (b)
y-coordinate of the centroid; (c) relative scale; (d) centroid trajectory in the image plane.

and tracked in the presence of drift. Note that even with
poor texture, the tracker was able to accurately track
the selected image region. Then the visual feedback
loop is closed and the landmark is driven back towards
the image center, where it remains oscillating around
the desired position under external disturbances. The
evolution of the error signals are shown in Fig. 8 and
illustrate the convergence of the errors for the station
keeping controller and the auto-depth controller.

For both the blimp and the ROV, no efforts are made
so as to control the landmarks orientation towards a
desired value. The main difficulties arise for lateral
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offsets of the centroid in the image plane. In this case,
since the robots have no lateral controllable degrees
of freedom, the only solution is to compensate these
errors by rotating, resulting into complex curved tra-
jectories of the centroid and the landmark corners in
the image plane.

7. Conclusions

In this paper we presented the tracking and con-
trol aspects for automatic visual station keeping with
floating robots. Tracking of image regions was re-
alized by integrating optic flow information with a
template matching method, resulting in subpixels
tracking accuracy. Planar projective motion models
were considered that cover the whole range of image
deformations that occur when a camera moves in 3D.
For template matching, a set of motion models was
used, sampling for expected image deformations. The
main advantage is that these can be pre-calculated
when applied to the template image, resulting in high
tracking frequencies. To enhance robustness, the set
of models was iteratively adapted to the history of
detected camera motion. Also a method for automatic
landmark selection was described, selecting the most
informative image region for tracking.

Using the tracker information, visual control loops
were designed to perform station keeping. We encoun-
tered serious difficulties in the reconstruction phase of
3D servoing architectures when compared to the more
robust image based servoing schemes. The station
keeping task was therefore formulated in the image
plane and a decoupled control strategy was adopted.
For station keeping, we considered the regulation of
the landmark centroid towards the image center, while
not controlling its orientation towards a final value at
all. The main motivation was that, given the vehicle
motion constraints, lateral offset in the image plane
can only be compensated by rotating the robots.

Although a dynamic model for the robots was
derived, the proposed control laws are based on
kinematic error functions only. However, deriving
the dynamic model gave us a better insight into the
system’s behavior and the coupling effects between
kinematic variables could be identified. For future
work, we consider to include the vehicle dynamics
into the tracking system and the controller design.
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