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t. In living organisms, the morphology of sensory organs and thebehavior of a sensor's host are strongly tied together. For visual organs, thisinterrelationship is heavily in�uen
ed by the spatial topology of the sensorand how it is moved with respe
t to an organism's environment. Here wepresent a 
omputational approa
h to the organization of spatial layouts ofvisual sensors a

ording to given sensor-environment intera
tion patterns.We propose that predi
tion and spatiotemporal 
orrelation are key prin
i-ples for the development of visual sensors well-adapted to an agent's inter-a
tion with its environment. This proposition is �rst motivated by studyingthe interdependen
y of morphology and behavior of a number of visualsystems in nature. Subsequently, we en
ode the 
hara
teristi
s observed inliving organisms by formulating an optimization problem whi
h maximizesthe average spatiotemporal 
orrelation between a
tual and predi
ted stim-uli. We demonstrate that the proposed formulation leads to spatial self-or-ganization of visual re
eptive �elds, and leads to di�erent sensor topologiesa

ording to di�erent sensor displa
ement patterns. The obtained resultsdemonstrate the explanatory power of our approa
h with respe
t to i) thedevelopment of spatially 
oherent light re
eptive �elds on a visual sensorsurfa
e, and ii) the parti
ular topologi
al organization of re
eptive �eldsdepending on sensorimotor a
tivity.Keywords: visual sensor topology, self-organization, sensorimotor 
oupling1 Introdu
tionBy simply observing the a
tive behavior and visual organs of di�erent animalspe
ies, important hints 
an be obtained on how an organism 
onstru
ts visualper
epts. Primates use a sophisti
ated o
ulomotor system to sequentially moveand stabilize their eyes with relation to di�erent target lo
ations [1℄. Most air-borne inse
ts on the other hand, have their eyes rigidly atta
hed to their bodyor head; instead of fo
using on parti
ular target lo
ations, these animals ana-lyze how the proje
tion of the environment translates on their sensors during�ight [2℄. In general, three interrelated aspe
ts 
ontribute to how biologi
al vi-sion systems re
ord raw visual stimuli: i) the 
hara
teristi
s of the environmentin whi
h an animal is living, ii) the way a sensor is moved with respe
t to theenvironment, and iii) the physi
al and morphologi
al design of a visual organ.



In this work, we 
onsider i) to be a general environment and we investigate apossible prin
iple how ii) in�uen
es iii).A 
loser look at the morphology of biologi
al visual sensors reveals profounddi�eren
es between di�erent organisms. While all visual organs found in na-ture re
ord visual stimuli through a number of light sensitive re
eptors � andhen
e always re
ord a spatially dis
retized stimulus � the spatial density distri-bution of visual re
eptors varies greatly between spe
ies. Studies measuring thedistribution of retinal ganglion 
ells in 
amera-type eyes, or the ommatidia dis-tribution in 
ompound eyes, suggest that re
eptor distributions are dire
tly tiedto an animal's behavior and environment. Most prominently, primates and othermammalians with bino
ular vision feature a fovea � a small, high-resolution areain the 
enter of their retina � and a radially 
lose to logarithmi
ally de
reasingre
eptor density. In [3℄, it is pointed out that su
h a log-polar-like re
eptor dis-tribution 
orresponds to a mapping fun
tion whi
h transforms image rotationsand dilations (zoom) into simple 
oordinate shifts in the log-polar 
oordinatesystem. Thus, if an eye featuring su
h a re
eptor distribution is fo
using on anobje
t and that obje
t is rotated or s
aled, the proje
ted image is merely shiftedalong the log-polar 
oordinate axes. It was argued that this property results inan advantage for the human visual 
ortex, as it 
ould a
hieve image invarian
efor these transformations at a low 
omputational 
ost by simply shifting theimage. Similar to ganglion 
ell distributions found in 
amera-type eyes, the den-sity of ommatidia in arthropods varies signi�
antly over the spatial extensionof their 
ompound eye. Many �ying inse
ts for example have about a two timeshigher spatial resolution in the frontal visual eye �eld than 
ompared to thelateral part [4℄. A possible advantage of su
h a distribution is dis
ussed in [5℄.There, it is demonstrated that high density of light re
ording re
eptors in frontaland 
audal regions, and de
reasing density in lateral regions, leads to a uniformtranslation of proje
ted stimuli on the eye during straight lo
omotion and 
anfa
ilitate visual distan
e estimation.Motivated by observations related to the relationship of behavior and mor-phology in natural visual systems, we explore in this paper the hypothesis thatvisual organs develop su
h as to simplify neural 
ir
uitry for predi
ting on av-erage experien
ed stimulus �ow patterns. We �rst propose a 
riterion basedon spatiotemporal 
ross-
orrelation to evaluate su
h a re
eptor-to-re
eptor �owproperty, and we subsequently use the introdu
ed 
riterion as a 
ost fun
tion tosynthesize visual sensor topologies on a given sensor surfa
e using a given setof stimulus transformations. The obtained results suggest that the introdu
ed
riterion is able to 
apture important properties of the relationship between thespatial layout of a visual sensor and the way the sensor is moved with respe
tto the environment.1.1 Related WorkIn an inventive work [6℄, Clippingdale and Wilson present a numeri
al experi-ment motivated by the spatial organization of visual sensors in nature. Using anabstra
t setup where visual re
eptors are represented as a set of points on a disk,



an appealing prin
iple is motivated on how to 
apture the relationship betweenform and behavior. In line with our observations for natural visual systems, thebasi
 idea is a rule 
apable of generating sensor layouts whi
h simplify stimulustransformation patterns under a given behavior: assuming the given points aretransformed by a set of sensor displa
ement a
tions, the relative position of ea
hpoint is updated su
h as to redu
e the overall motion-predi
tion error betweenpoints. Interestingly, this update rule leads to foveal point distributions when
onsidering stimulus transformations plausible e.g. for the mammalian visualsystem. Furthermore, using di�erent a
tion probability distributions for hori-zontal and verti
al translations, ellipti
 (visual streak-like) point layouts 
an beobtained. For an illustration see Figure 10 in [6℄. Formally, Clippingdale andWilson proved the following: a set of points randomly distributed on a disk
onverges to a stable 
on�guration given: i) points are 
onjointly transformedby rotations, dilations and translations whi
h are applied a

ording to a givenprobability distribution; and ii) after a transformation a
tion is applied, ea
hpoint is moved towards transformed points whi
h are lying 
losest to the pointunder 
onsideration. It was shown, the �nal point distribution is the 
on�gura-tion where ea
h point has on average the smallest possible distan
e to the next
losest transformed point under the given a
tion probability distribution. Thisapproa
h is based on two important assumptions: visual re
eptors have no spa-tial extension (i.e. are points), and the error between original and transformedre
eptors 
an be measured as an Eu
lidean distan
e between spatial lo
ations ofre
eptors. The �rst assumption is 
learly an abstra
tion of a real visual sensor.The se
ond assumption 
an be further divided into two requirements: the spatiallayout of the visual sensor is known to the algorithm, and the predi
tion errorof visual stimuli is dire
tly related to spatial distan
e. While it is arguable ifan agent 
an have 
omplete knowledge of the spatial layout of its sensor, theassumption that the predi
tion error is equivalent to spatial distan
e is unlikelyto hold for spatially extended visual re
eptors of di�erent sizes.Related to the question of how the distan
e measure underlying the opti-mization proposed by Clippingdale and Wilson 
ould be translated to real visualsensors, the authors of this paper investigated in previous work how the interrela-tionship between form and behavior 
ould be quanti�ed for sensors with spatiallyextended re
eptors and unknown topologies [7℄. Based on the 
omplexity of themodel required to predi
t stimulus 
hanges, a measure was introdu
ed whi
hevaluates the 
oupling between sensor displa
ements and sensor topologies. Ithas been shown that a given sensor topology impli
itly de�nes a
tions for whi
hfuture sensory stimuli 
an be predi
ted with less parameters. In this work weuse a similar strategy to optimize the 
oupling between a sensor's topology andexe
uted motor a
tions.1.2 ContributionWe develop a 
omputational method for synthesizing visual sensor topologiesa

ording to on average experien
ed stimulus transformations. To establish a



relation between a sensor's spatial layout and experien
ed stimulus transforma-tions, we adopt the basi
 prin
iple proposed in [6℄. Though, instead of 
onsider-ing point-like sensor elements, we simulate a realisti
 visual sensor whi
h re
ordsstimuli through re
eptors where ea
h re
eptor integrates luminan
e a

ording toa re
eptive �eld. Di�erent from [6℄, we impose that the algorithm has no a
-
ess to information about the topologi
al layout of the sensor being organized.This means, the organization of the sensor layout has to be a
hieved solely byobserving the a
tivation of an orderless array of visual re
eptors. Hen
e, theimplementation of a rule similar to the one proposed in [6℄ be
omes 
onsider-ably more 
hallenging. In parti
ular, the Eu
lidean distan
e measure betweentransformed and original points has to be repla
ed with a measure related tohow a
tivation is transported between visual re
eptors when the re
orded stim-ulus 
hanges. We will address this issue by introdu
ing a 
riterion based onspatiotemporal 
ross-
orrelation of re
eptor a
tivation. This 
riterion allows usthen to implement an optimization whi
h organizes the layout of visual re
ep-tors depending on sensorimotor a
tivity. At the same time, we also required thealgorithm to �nd a suitable shape for the re
eptive �elds (RFs) of the spatiallyextended re
eptors. We show that spatially 
oherent RFs 
an evolve driven onlyby the low spatial frequen
y of natural images. By rewarding spatial 
orrela-tion within RFs, smoothly overlapping 
lusters organize on the sensor surfa
ewithout any further 
onstraint on the spatial shape of a re
eptor's integrationarea. In pra
ti
e, re
eptors 
an be initialized with a randomly 
hosen luminan
eintegration fun
tion and eventually develop into 
ompa
t re
eptive �elds.The following steps summarize the approa
h followed in this paper:1. A system with a given sensor surfa
e, a given motor spa
e and a prede�nednumber of visual re
eptive �elds is 
onsidered.2. Ea
h visual re
eptive �eld is des
ribed as a dis
retized, randomly initializedfun
tion a

ording to whi
h visual input is integrated from the sensor surfa
e.3. By maximizing spatial 
orrelation of visual stimuli re
orded through re
ep-tive �elds, the development of spatially 
oherent visual re
eptors is a
hieved.4. By extending spatial 
orrelation to spatiotemporal 
orrelation between visualstimuli of transformed and original re
eptors, sensor topologies dependenton the agent's motor a
tivity are developed.2 Approa
hAn arti�
ial agent with a given sensor surfa
e I ⊂ R
2 and a given number ofmotion degrees of freedom is 
onsidered. The sensor surfa
e re
ords a proje
-tion of the environment given as a fun
tion is : I → R de�ning a luminan
evalue for ea
h point on the surfa
e when the agent is in state s. For numeri
alpurposes, i is sampled at N spatial lo
ations xn as a dis
rete grays
ale image

i = [i(x1) i(x2) . . . i(xN )]⊤. The topology of the visual sensor is 
omposed of Mvisual re
eptors, where M is a parameter of the proposed method and is mu
hsmaller than N . Ea
h visual re
eptor m integrates a visual stimulus througha re
eptive �eld (RF). The RF is des
ribed as a ve
tor of weights rm de�ning



how mu
h ea
h entry in i 
ontributes to re
eptor m. Note that rm is allowedto en
ode any re
eptive �eld fun
tion and no spatial 
oheren
e is assumed. Byassembling weight ve
tors rm for all M visual re
eptors as the rows of a matrix
R, a stimulus re
orded by the agent in state s 
an be written as Ris.After observing state s, the agent 
an 
hoose to take an a
tion a from a dis-
rete set of a
tions A representative of the agent's behavior. This a
tion indu
esa 
hange in the observed grays
ale image from i

−
s to i

+
s ; here we assume thatthis 
hange is predi
table.1 As the agent explores its environment, we 
olle
tbefore and after images for ea
h parti
ular a
tion a in the matri
es (I−a , I

+
a ),where samples are arranged in 
olumns. For the whole set of a
tions A, thesematri
es are 
olle
ted in a dataset D = {(I−a , I+a ) , a ∈ A}.With the introdu
ed terminology, we now pro
eed to develop an optimizationproblem whi
h evolves the sensor topology R su
h that the previously des
ribedproperties are indu
ed: i) spatially 
oherent re
eptive �elds are formed, and ii)the topologi
al layout of the sensor re�e
ts stimulus translations indu
ed by thebehavior of the host. We propose to �nd an optimal R as the solution to anoptimization problem:

R
∗ = argmax

R∈R

[F (D,R)−G (R)], (1)where F denotes a fun
tion evaluating the spatiotemporal 
ross-
orrelation of aset of samples (I−a , I+a ), and G represents a 
ost for growing re
eptive �elds. The
onstraint set R is 
hosen as R = {R : R ≥ 0, R⊤
1 = 1}, su
h as to guaranteethat the visual re
eptive �elds o

upy the whole sensor surfa
e and luminan
e
annot be subtra
ted. In the remainder of this se
tion, we unroll the 
ompletede�nition of this optimization problem by developing F and G.Consider �rst an immobile agent with a single null a
tion leading to a redu
eddata set D̄ = {I−} of stimuli re
orded in di�erent states s. In this 
ase, we
onsider a reasonable sensor topologyR to be one whi
h leads to high 
orrelationwithin a bat
h of re
orded stimuli Ris. The rational behind this is that biggerdi�eren
es between simultaneous re
eptive �eld a
tivations indi
ate that theagent is able to pi
k-up more information from the images is, in an informationtheoreti
 sense. Furthermore, 
orrelation must be normalized with respe
t to thesize of a re
eptive �eld su
h that di�erent sized re
eptive �elds are 
omparable.Implementing these two requests, we propose a �rst version of F for an immobileagent to be a size normalized 
orrelation between stimuli is like:

F̄
(

D̄,R
)

=
S
∑

s=1

(

R̂i
−
s

)⊤ (

R̂i
−
s

)

, R̂ =
R√
R11⊤

, (2)where in R̂ the division and square root operators are applied element wise.In a se
ond step, an a
tive agent and a full data set D = {(I−a , I+a )} is
onsidered. To establish a temporal relationship between re
eptive �elds, we1 See also [8℄, Appendix A for the 
onstraints posed on su
h a
tions and how thissituation relates to a physi
al agent a
ting in a 3-dimensional world.



now adapt F̄ to 
ompute 
orrelation between pre- and post-a
tion stimuli. Weremind the reader that it is a priori unknown how to temporally relate re
eptive�elds and how stimuli 
hange under an a
tion a. This is naturally solved by
onsidering a predi
tion operator whi
h des
ribes a mapping of re
eptors for agiven a
tion, allowing for 
omparison of stimuli at di�erent points in time. In [9℄Crapse and Sommer provide an ex
ellent review of the ubiquity of stimuluspredi
tion in living organisms and [8℄ gives an argument for the use of linearpredi
tion. Thus, assuming that for an a
tion a we 
an predi
t a visual stimulusas Ri
+
a = P

a
(R)Ri

−
a we revise F̄ like

F (D,R) =
∑

a∈A

S
∑

s=1

(

R̂i
+
s,a

)⊤ (

P
a
(R)R̂i

−
s,a

)

, R̂ =
R√
R11⊤

, (3)where a predi
tion operator Pa
(R) is learnt from a bat
h of samples (I−a , I+a ). Werequest Pa

(R) ≥ 0 and propose Pa
(R) to be the solution to a positive least squaresproblem. As demonstrated in [7℄ this yields a predi
tor re�e
ting the 
omplexityof stimulus �ow patterns under a
tions.Finally G (R) is 
hosen in su
h a way as to impose a 
ost on the growth ofre
eptive �elds. Choosing G(R) = ω‖R‖22 provides 
ontrol over the smoothnessof the re
eptive �eld boundaries. For ω = 0 solutions with hard re
eptive �eldboundaries are obtained.3 MethodWe 
onsider the sensor surfa
e to be a disk, dis
retized at N = 2877 lo
ations ina grid-like layout, and being organized into M = 48 re
eptive �elds. The envi-ronment is given as a plane textured by a very high resolution image depi
tinga real world s
ene. A state s 
onsists of a position of the sensor surfa
e withrespe
t to this plane. In this paper we assume the sensor surfa
e to be paral-lel to the plane and ea
h lo
ation re
ords luminan
e over the 
overed area intodis
rete grays
ale images i. This sensor intera
ts with the environment throughfour types of a
tions, translations in x- and y-dire
tions, rotations and 
hangesin distan
e to the plane (zoom). An a
tion set A is obtained by sampling a par-ti
ular a
tion probability distribution representative of the agent's behavior. Forthe results presented in this paper ea
h behavior is represented with 60 samplesas shown in Fig. 2. For ea
h a
tion a a pair of samples is obtained by positioningthe agent in a random state on the environment and taking the 
hosen a
tion

a. This pro
ess is repeated 68 (> M) times for ea
h a, a
quiring the dataset
D = {(I−a , I+a )}.To �nd R

∗ we iteratively improve the optimization problem given in Eq. (1)using a proje
ted gradient des
ent method [10℄. At ea
h iteration we learn predi
-torsPa
(R) that best satisfyRi

+
a = P

a
(R)Ri

−
a in a positive least squares sense usingthe optimization method known from [11℄. Note that, even though P

a
(R) 
annotbe obtained as a 
losed form solution, the gradient needed to iterate Eq. (1)
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(b) Topology of R∗ on the Sensor Surfa
eFig. 1. Emergent 
lustering of re
eptive �elds (RFs). Left: A 
onverged but topologi-
ally orderless matrix R as seen by the algorithm; ea
h entry spe
i�es the 
ontributionof a lo
ation on the sensor surfa
e to a re
eptive �eld (RF); the sensor surfa
e is dis-
retized into 2877 pixels (x-axis), and the matrixR 
odes for 48 RFs. Right: The sensorsurfa
e and the 
overage of 7 sele
ted RFs at spatial lo
ations where their 
ontributionis predominant; this view reveals the impli
itly present topologi
al 
lustering in R.
an still be found in 
losed form by applying the impli
it fun
tion theorem tothe Karush-Kuhn-Tu
ker optimality 
onditions of the positive least squares op-timization problem [12℄. While it is no problem to �nd a solution for R with anonline method, 
onvergen
e is mu
h slower, we therefore 
hoose here the bat
happroa
h for pra
ti
al reasons. However, we note that under di�erent 
ir
um-stan
es an online implementation might be preferable, e.g. for a purely biologi-
ally inspired implementation in a robot with stronger memory 
onstraints anda longer exploration phase.The experiments presented in Se
t. 4 were initialized as follows: the topologyof the sensor R was randomly initialized a

ording to a uniform distributionbetween zero and one, and then proje
ted to obey the 
onstraints R. The 
ostfor growing re
eptive �elds was kept at a 
onstant level ω = 0.3. It is importantto note that with a randomized initialization, nothing prevents the adaptationpro
ess from 
onverging to a lo
ally optimal solution. From a biologi
al point ofview, we a

ept these solutions as possible bran
hes of evolutionary development.4 ResultsTo demonstrate the 
orrelation prin
iple introdu
ed in Eq.(2) we start by show-ing the results for an immobile agent. This example, although dis
arding anymeaningful behavior, shows a 
ru
ial 
apability of the proposed method namelythe requested property i) the development of spatially 
oherent light re
eptive�elds on a visual sensor surfa
e. Figure 1 highlights the dis
overy of topologi
alorder from the orderless sampling of the underlying image.
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(b) Rotation and ZoomFig. 2. Two di�erent behaviors represented as a
tion distributions. Left: uniform 2-dimensional translations in a given range 
overing 10 times the distan
e between dis-
rete sampling lo
ations on the sensor surfa
e in ea
h dire
tion. Shift units are normal-ized with respe
t to the environment. Right: independent zoom and rotation a
tionsdistributed uniformly on ea
h axis. Rotations are given in radians and dilations aregiven as a s
ale fa
tor. Both operate with respe
t to the 
enter of the sensor surfa
e.Zoom a
tions range from 0.6 to 1.66 and rotations 
over −π to π.As external observers we have the privilege of knowing the spatial lo
ationswhere the sensor surfa
e was sampled and as su
h we are able to plot the topo-logi
al ordering of re
eptive �elds on the sensor surfa
e as shown in Fig. 1(b). Inthe two dimensional visualization we 
hoose to show at ea
h dis
rete sensor sur-fa
e lo
ation the predominant re
eptor. The 
lustering property of the re
eptive�eld elements is 
learly demonstrated. Sin
e in this 
ase no a
tion is taken, this
lustering is a sole 
onsequen
e of the intera
tion between the 
orrelation based
ost fun
tion and the low frequen
y 
hara
teristi
 of the observed environment.Note that the agent does not have a

ess to the sampling lo
ations of the sensorsurfa
e and is thus unaware of the �nal topologi
al ordering. The proposed al-gorithm operates solely on matrix R whi
h is absent of any topologi
al meaningeven in the �nal 
onverged state, as shown in Fig. 1(a).For a
tive agents we will now 
onsider two di�erent behaviors as shown inFig. 2(a) and Fig. 2(b). The �rst 
onsists of a uniform a
tion probability dis-tribution of 2-dimensional translations over the sensor surfa
e in a given range.This s
enario relates to translational unbiased o
ulomotor 
ontrol 
ausing ran-dom stimulus displa
ements. The se
ond behavior is 
omposed of independentzoom and rotation a
tions distributed uniformly on ea
h axis. This mimi
s thebehavior of an obje
t manipulating agent where the o
ulomotor system stabilizesthe sensor on target, me
hani
ally 
ompensating for image translations but notimage rotations or s
aling. These setups demonstrate that the agent's behaviorindu
es di�erent topologies of re
eptive �elds on the sensor surfa
e.In Fig. 2 the 
onverged layouts for the two 
onsidered a
tion distributionsare shown. The nature of the two 
onverged topologies exhibits ma
ros
opi




(a) Shift (b) Rotation and ZoomFig. 3. Sensor topologies obtained under behaviors visualized in Fig. 2(a) and Fig. 2(b).di�eren
es: in the translation only 
ase we 
an identify a tenden
y for hexagonaltiling stru
tures over the entire sensor surfa
e (apart from boundary e�e
ts),whereas in the rotation and zoom 
ase the re
eptors organize radially in 
lear
ir
ular rings. Unlike in Fig. 1, the 3-dimensional perspe
tive shows the smoothoverlapping between re
eptive �eld elements.To better 
omprehend the resulting sensor layouts, we refer ba
k to the workof Clippingdale and Wilson [6℄, where the �tness of a layout relates dire
tly tothe distan
e between predi
ted and original point lo
ations. In our 
ase, justas in [6℄ a perfe
t sensor layout is one where re
eptors exa
tly map one ontoanother for every 
onsidered a
tion resulting in P
a
(R) matri
es where ea
h row
ontains exa
tly one non-zero entry. Any deviation from this 
ase leads to anin
rease in predi
tion error and lowers 
orrelation. This fa
t allows us to repla
ethe Eu
lidean distan
e as used by Clippingdale and Wilson by one based solelyon 
orrelation between sensory readings disregarding any knowledge about thesensor topology.5 Con
lusion and OutlookThis paper explored how the behavior of an arti�
ial agent 
an shape the topol-ogy of a visual sensor. We proposed that a well suited sensor is one whi
h sim-pli�es stimulus �ow patterns � and hen
e stimulus predi
tion � under a givenset of a
tions. We showed that this quality is 
aptured by spatiotemporal 
ross-
orrelation and 
an be used to self-organize visual sensor topologies on a givensurfa
e. The method proposed in this work simultaneously develops spatially
oherent re
eptive �elds and organizes their layout a

ording to an exe
utedbehavior.Re
ognizing the mutual 
oupling of morphology and a
tive behavior in or-ganisms evolved in nature, we believe that in arti�
ial agents physi
al stru
tureand a
tuation should eventually emerge through a 
o-developmental pro
ess.



Working in this dire
tion, we will investigate in future 
ontributions the re
ip-ro
al in�uen
e of physi
al form on behavior in order to dedu
e suitable a
tionsfrom a given sensor topology.A
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