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Abstract. In living organisms, the morphology of sensory organs and the
behavior of a sensor’s host are strongly tied together. For visual organs, this
interrelationship is heavily influenced by the spatial topology of the sensor
and how it is moved with respect to an organism’s environment. Here we
present a computational approach to the organization of spatial layouts of
visual sensors according to given sensor-environment interaction patterns.
We propose that prediction and spatiotemporal correlation are key princi-
ples for the development of visual sensors well-adapted to an agent’s inter-
action with its environment. This proposition is first motivated by studying
the interdependency of morphology and behavior of a number of visual
systems in nature. Subsequently, we encode the characteristics observed in
living organisms by formulating an optimization problem which maximizes
the average spatiotemporal correlation between actual and predicted stim-
uli. We demonstrate that the proposed formulation leads to spatial self-or-
ganization of visual receptive fields, and leads to different sensor topologies
according to different sensor displacement patterns. The obtained results
demonstrate the explanatory power of our approach with respect to i) the
development of spatially coherent light receptive fields on a visual sensor
surface, and ii) the particular topological organization of receptive fields
depending on sensorimotor activity.
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1 Introduction

By simply observing the active behavior and visual organs of different animal
species, important hints can be obtained on how an organism constructs visual
percepts. Primates use a sophisticated oculomotor system to sequentially move
and stabilize their eyes with relation to different target locations [1]. Most air-
borne insects on the other hand, have their eyes rigidly attached to their body
or head; instead of focusing on particular target locations, these animals ana-
lyze how the projection of the environment translates on their sensors during
flight [2]. In general, three interrelated aspects contribute to how biological vi-
sion systems record raw visual stimuli: i) the characteristics of the environment
in which an animal is living, ii) the way a sensor is moved with respect to the
environment, and iii) the physical and morphological design of a visual organ.



In this work, we consider i) to be a general environment and we investigate a
possible principle how ii) influences iii).

A closer look at the morphology of biological visual sensors reveals profound
differences between different organisms. While all visual organs found in na-
ture record visual stimuli through a number of light sensitive receptors — and
hence always record a spatially discretized stimulus — the spatial density distri-
bution of visual receptors varies greatly between species. Studies measuring the
distribution of retinal ganglion cells in camera-type eyes, or the ommatidia dis-
tribution in compound eyes, suggest that receptor distributions are directly tied
to an animal’s behavior and environment. Most prominently, primates and other
mammalians with binocular vision feature a fovea — a small, high-resolution area
in the center of their retina — and a radially close to logarithmically decreasing
receptor density. In [3], it is pointed out that such a log-polar-like receptor dis-
tribution corresponds to a mapping function which transforms image rotations
and dilations (zoom) into simple coordinate shifts in the log-polar coordinate
system. Thus, if an eye featuring such a receptor distribution is focusing on an
object and that object is rotated or scaled, the projected image is merely shifted
along the log-polar coordinate axes. It was argued that this property results in
an advantage for the human visual cortex, as it could achieve image invariance
for these transformations at a low computational cost by simply shifting the
image. Similar to ganglion cell distributions found in camera-type eyes, the den-
sity of ommatidia in arthropods varies significantly over the spatial extension
of their compound eye. Many flying insects for example have about a two times
higher spatial resolution in the frontal visual eye field than compared to the
lateral part [4]. A possible advantage of such a distribution is discussed in [5].
There, it is demonstrated that high density of light recording receptors in frontal
and caudal regions, and decreasing density in lateral regions, leads to a uniform
translation of projected stimuli on the eye during straight locomotion and can
facilitate visual distance estimation.

Motivated by observations related to the relationship of behavior and mor-
phology in natural visual systems, we explore in this paper the hypothesis that
visual organs develop such as to simplify neural circuitry for predicting on av-
erage experienced stimulus flow patterns. We first propose a criterion based
on spatiotemporal cross-correlation to evaluate such a receptor-to-receptor flow
property, and we subsequently use the introduced criterion as a cost function to
synthesize visual sensor topologies on a given sensor surface using a given set
of stimulus transformations. The obtained results suggest that the introduced
criterion is able to capture important properties of the relationship between the
spatial layout of a visual sensor and the way the sensor is moved with respect
to the environment.

1.1 Related Work

In an inventive work [6], Clippingdale and Wilson present a numerical experi-
ment motivated by the spatial organization of visual sensors in nature. Using an
abstract setup where visual receptors are represented as a set of points on a disk,



an appealing principle is motivated on how to capture the relationship between
form and behavior. In line with our observations for natural visual systems, the
basic idea is a rule capable of generating sensor layouts which simplify stimulus
transformation patterns under a given behavior: assuming the given points are
transformed by a set of sensor displacement actions, the relative position of each
point is updated such as to reduce the overall motion-prediction error between
points. Interestingly, this update rule leads to foveal point distributions when
considering stimulus transformations plausible e.g. for the mammalian visual
system. Furthermore, using different action probability distributions for hori-
zontal and vertical translations, elliptic (visual streak-like) point layouts can be
obtained. For an illustration see Figure 10 in [6]. Formally, Clippingdale and
Wilson proved the following: a set of points randomly distributed on a disk
converges to a stable configuration given: i) points are conjointly transformed
by rotations, dilations and translations which are applied according to a given
probability distribution; and ii) after a transformation action is applied, each
point is moved towards transformed points which are lying closest to the point
under consideration. It was shown, the final point distribution is the configura-
tion where each point has on average the smallest possible distance to the next
closest transformed point under the given action probability distribution. This
approach is based on two important assumptions: visual receptors have no spa-
tial extension (i.e. are points), and the error between original and transformed
receptors can be measured as an Euclidean distance between spatial locations of
receptors. The first assumption is clearly an abstraction of a real visual sensor.
The second assumption can be further divided into two requirements: the spatial
layout of the visual sensor is known to the algorithm, and the prediction error
of visual stimuli is directly related to spatial distance. While it is arguable if
an agent can have complete knowledge of the spatial layout of its sensor, the
assumption that the prediction error is equivalent to spatial distance is unlikely
to hold for spatially extended visual receptors of different sizes.

Related to the question of how the distance measure underlying the opti-
mization proposed by Clippingdale and Wilson could be translated to real visual
sensors, the authors of this paper investigated in previous work how the interrela-
tionship between form and behavior could be quantified for sensors with spatially
extended receptors and unknown topologies [7]. Based on the complexity of the
model required to predict stimulus changes, a measure was introduced which
evaluates the coupling between sensor displacements and sensor topologies. It
has been shown that a given sensor topology implicitly defines actions for which
future sensory stimuli can be predicted with less parameters. In this work we
use a similar strategy to optimize the coupling between a sensor’s topology and
executed motor actions.

1.2 Contribution

We develop a computational method for synthesizing visual sensor topologies
according to on average experienced stimulus transformations. To establish a



relation between a sensor’s spatial layout and experienced stimulus transforma-
tions, we adopt the basic principle proposed in [6]. Though, instead of consider-
ing point-like sensor elements, we simulate a realistic visual sensor which records
stimuli through receptors where each receptor integrates luminance according to
a receptive field. Different from [6], we impose that the algorithm has no ac-
cess to information about the topological layout of the sensor being organized.
This means, the organization of the sensor layout has to be achieved solely by
observing the activation of an orderless array of visual receptors. Hence, the
implementation of a rule similar to the one proposed in [6] becomes consider-
ably more challenging. In particular, the Euclidean distance measure between
transformed and original points has to be replaced with a measure related to
how activation is transported between visual receptors when the recorded stim-
ulus changes. We will address this issue by introducing a criterion based on
spatiotemporal cross-correlation of receptor activation. This criterion allows us
then to implement an optimization which organizes the layout of visual recep-
tors depending on sensorimotor activity. At the same time, we also required the
algorithm to find a suitable shape for the receptive fields (RFs) of the spatially
extended receptors. We show that spatially coherent RFs can evolve driven only
by the low spatial frequency of natural images. By rewarding spatial correla-
tion within RFs, smoothly overlapping clusters organize on the sensor surface
without any further constraint on the spatial shape of a receptor’s integration
area. In practice, receptors can be initialized with a randomly chosen luminance
integration function and eventually develop into compact receptive fields.
The following steps summarize the approach followed in this paper:

1. A system with a given sensor surface, a given motor space and a predefined
number of visual receptive fields is considered.

2. Each visual receptive field is described as a discretized, randomly initialized
function according to which visual input is integrated from the sensor surface.

3. By maximizing spatial correlation of visual stimuli recorded through recep-
tive fields, the development of spatially coherent visual receptors is achieved.

4. By extending spatial correlation to spatiotemporal correlation between visual
stimuli of transformed and original receptors, sensor topologies dependent
on the agent’s motor activity are developed.

2 Approach

An artificial agent with a given sensor surface Z C R? and a given number of
motion degrees of freedom is considered. The sensor surface records a projec-
tion of the environment given as a function is : Z — R defining a luminance
value for each point on the surface when the agent is in state s. For numerical
purposes, ¢ is sampled at N spatial locations x,, as a discrete grayscale image
i=[i(x1)i(x2) ... z'(xN)]T. The topology of the visual sensor is composed of M
visual receptors, where M is a parameter of the proposed method and is much
smaller than N. Each visual receptor m integrates a visual stimulus through
a receptive field (RF). The RF is described as a vector of weights r,,, defining



how much each entry in i contributes to receptor m. Note that r,, is allowed
to encode any receptive field function and no spatial coherence is assumed. By
assembling weight vectors r,,, for all M visual receptors as the rows of a matrix
R, a stimulus recorded by the agent in state s can be written as Ris.

After observing state s, the agent can choose to take an action a from a dis-
crete set of actions A representative of the agent’s behavior. This action induces
a change in the observed grayscale image from iy to if; here we assume that
this change is predictable.! As the agent explores its environment, we collect
before and after images for each particular action a in the matrices (I, ,I}),
where samples are arranged in columns. For the whole set of actions A, these
matrices are collected in a dataset D = {(I,,I}),a € A}.

With the introduced terminology, we now proceed to develop an optimization
problem which evolves the sensor topology R such that the previously described
properties are induced: i) spatially coherent receptive fields are formed, and ii)
the topological layout of the sensor reflects stimulus translations induced by the
behavior of the host. We propose to find an optimal R as the solution to an

optimization problem:

R* = argmax[F (D,R) — G (R)], (1)
RER

where F' denotes a function evaluating the spatiotemporal cross-correlation of a
set of samples (I, ,I1), and G represents a cost for growing receptive fields. The
constraint set R is chosen as R = {R: R > 0, R"1 = 1}, such as to guarantee
that the visual receptive fields occupy the whole sensor surface and luminance
cannot be subtracted. In the remainder of this section, we unroll the complete
definition of this optimization problem by developing I’ and G.

Consider first an immobile agent with a single null action leading to a reduced
data set D = {I"} of stimuli recorded in different states s. In this case, we
consider a reasonable sensor topology R to be one which leads to high correlation
within a batch of recorded stimuli Ris. The rational behind this is that bigger
differences between simultaneous receptive field activations indicate that the
agent is able to pick-up more information from the images is, in an information
theoretic sense. Furthermore, correlation must be normalized with respect to the
size of a receptive field such that different sized receptive fields are comparable.
Implementing these two requests, we propose a first version of F' for an immobile
agent to be a size normalized correlation between stimuli iy like:

_ S NT /. . R
F(D,R):Z(Ri;) (Ri;), R= 2)

S=
where in R the division and square root operators are applied element wise.
In a second step, an active agent and a full data set D = {(I;,I})} is

a’va

considered. To establish a temporal relationship between receptive fields, we

! See also [8], Appendix A for the constraints posed on such actions and how this
situation relates to a physical agent acting in a 3-dimensional world.



now adapt F' to compute correlation between pre- and post-action stimuli. We
remind the reader that it is a priori unknown how to temporally relate receptive
fields and how stimuli change under an action a. This is naturally solved by
considering a prediction operator which describes a mapping of receptors for a
given action, allowing for comparison of stimuli at different points in time. In [9]
Crapse and Sommer provide an excellent review of the ubiquity of stimulus
prediction in living organisms and [8] gives an argument for the use of linear
prediction. Thus, assuming that for an action a we can predict a visual stimulus
as Rij = Py Ri; we revise F like

s T X A R
F(D,R) = (Rif,) (PlwRin.), R=—==, (3
(;‘; ") VRILT
where a prediction operator P{g, is learnt from a batch of samples (I, I7). We
request P?R) > 0 and propose P?R) to be the solution to a positive least squares
problem. As demonstrated in [7] this yields a predictor reflecting the complexity
of stimulus flow patterns under actions.

Finally G (R) is chosen in such a way as to impose a cost on the growth of
receptive fields. Choosing G(R) = w||R/||3 provides control over the smoothness
of the receptive field boundaries. For w = 0 solutions with hard receptive field
boundaries are obtained.

3 Method

We consider the sensor surface to be a disk, discretized at N = 2877 locations in
a grid-like layout, and being organized into M = 48 receptive fields. The envi-
ronment is given as a plane textured by a very high resolution image depicting
a real world scene. A state s consists of a position of the sensor surface with
respect to this plane. In this paper we assume the sensor surface to be paral-
lel to the plane and each location records luminance over the covered area into
discrete grayscale images i. This sensor interacts with the environment through
four types of actions, translations in x- and y-directions, rotations and changes
in distance to the plane (zoom). An action set A is obtained by sampling a par-
ticular action probability distribution representative of the agent’s behavior. For
the results presented in this paper each behavior is represented with 60 samples
as shown in Fig. 2. For each action a a pair of samples is obtained by positioning
the agent in a random state on the environment and taking the chosen action
a. This process is repeated 68 (> M) times for each a, acquiring the dataset
D= {(I;,1})}

To find R* we iteratively improve the optimization problem given in Eq. (1)
using a projected gradient descent method [10]. At each iteration we learn predic-
tors Py, that best satisfy Rij = Plg, Ri, in a positive least squares sense using
the optimization method known from [11]. Note that, even though P, cannot

be obtained as a closed form solution, the gradient needed to iterate Eq. (1)
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Fig. 1. Emergent clustering of receptive fields (RFs). Left: A converged but topologi-
cally orderless matrix R as seen by the algorithm; each entry specifies the contribution
of a location on the sensor surface to a receptive field (RF); the sensor surface is dis-
cretized into 2877 pixels (x-axis), and the matrix R codes for 48 RFs. Right: The sensor
surface and the coverage of 7 selected RFs at spatial locations where their contribution
is predominant; this view reveals the implicitly present topological clustering in R.

can still be found in closed form by applying the implicit function theorem to
the Karush-Kuhn-Tucker optimality conditions of the positive least squares op-
timization problem [12]. While it is no problem to find a solution for R with an
online method, convergence is much slower, we therefore choose here the batch
approach for practical reasons. However, we note that under different circum-
stances an online implementation might be preferable, e.g. for a purely biologi-
cally inspired implementation in a robot with stronger memory constraints and
a longer exploration phase.

The experiments presented in Sect. 4 were initialized as follows: the topology
of the sensor R was randomly initialized according to a uniform distribution
between zero and one, and then projected to obey the constraints R. The cost
for growing receptive fields was kept at a constant level w = 0.3. It is important
to note that with a randomized initialization, nothing prevents the adaptation
process from converging to a locally optimal solution. From a biological point of
view, we accept these solutions as possible branches of evolutionary development.

4 Results

To demonstrate the correlation principle introduced in Eq.(2) we start by show-
ing the results for an immobile agent. This example, although discarding any
meaningful behavior, shows a crucial capability of the proposed method namely
the requested property i) the development of spatially coherent light receptive
fields on a visual sensor surface. Figure 1 highlights the discovery of topological
order from the orderless sampling of the underlying image.
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Fig. 2. Two different behaviors represented as action distributions. Left: uniform 2-
dimensional translations in a given range covering 10 times the distance between dis-
crete sampling locations on the sensor surface in each direction. Shift units are normal-
ized with respect to the environment. Right: independent zoom and rotation actions
distributed uniformly on each axis. Rotations are given in radians and dilations are
given as a scale factor. Both operate with respect to the center of the sensor surface.
Zoom actions range from 0.6 to 1.66 and rotations cover —7 to 7.

As external observers we have the privilege of knowing the spatial locations
where the sensor surface was sampled and as such we are able to plot the topo-
logical ordering of receptive fields on the sensor surface as shown in Fig. 1(b). In
the two dimensional visualization we choose to show at each discrete sensor sur-
face location the predominant receptor. The clustering property of the receptive
field elements is clearly demonstrated. Since in this case no action is taken, this
clustering is a sole consequence of the interaction between the correlation based
cost function and the low frequency characteristic of the observed environment.
Note that the agent does not have access to the sampling locations of the sensor
surface and is thus unaware of the final topological ordering. The proposed al-
gorithm operates solely on matrix R which is absent of any topological meaning
even in the final converged state, as shown in Fig. 1(a).

For active agents we will now consider two different behaviors as shown in
Fig. 2(a) and Fig. 2(b). The first consists of a uniform action probability dis-
tribution of 2-dimensional translations over the sensor surface in a given range.
This scenario relates to translational unbiased oculomotor control causing ran-
dom stimulus displacements. The second behavior is composed of independent
zoom and rotation actions distributed uniformly on each axis. This mimics the
behavior of an object manipulating agent where the oculomotor system stabilizes
the sensor on target, mechanically compensating for image translations but not
image rotations or scaling. These setups demonstrate that the agent’s behavior
induces different topologies of receptive fields on the sensor surface.

In Fig. 2 the converged layouts for the two considered action distributions
are shown. The nature of the two converged topologies exhibits macroscopic
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Fig. 3. Sensor topologies obtained under behaviors visualized in Fig. 2(a) and Fig. 2(b).

differences: in the translation only case we can identify a tendency for hexagonal
tiling structures over the entire sensor surface (apart from boundary effects),
whereas in the rotation and zoom case the receptors organize radially in clear
circular rings. Unlike in Fig. 1, the 3-dimensional perspective shows the smooth
overlapping between receptive field elements.

To better comprehend the resulting sensor layouts, we refer back to the work
of Clippingdale and Wilson [6], where the fitness of a layout relates directly to
the distance between predicted and original point locations. In our case, just
as in [6] a perfect sensor layout is one where receptors exactly map one onto
another for every considered action resulting in P?R) matrices where each row
contains exactly one non-zero entry. Any deviation from this case leads to an
increase in prediction error and lowers correlation. This fact allows us to replace
the Euclidean distance as used by Clippingdale and Wilson by one based solely
on correlation between sensory readings disregarding any knowledge about the
sensor topology.

5 Conclusion and Outlook

This paper explored how the behavior of an artificial agent can shape the topol-
ogy of a visual sensor. We proposed that a well suited sensor is one which sim-
plifies stimulus flow patterns — and hence stimulus prediction — under a given
set of actions. We showed that this quality is captured by spatiotemporal cross-
correlation and can be used to self-organize visual sensor topologies on a given
surface. The method proposed in this work simultaneously develops spatially
coherent receptive fields and organizes their layout according to an executed
behavior.

Recognizing the mutual coupling of morphology and active behavior in or-
ganisms evolved in nature, we believe that in artificial agents physical structure
and actuation should eventually emerge through a co-developmental process.



Working in this direction, we will investigate in future contributions the recip-
rocal influence of physical form on behavior in order to deduce suitable actions
from a given sensor topology.
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