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1 Laboratory of Intelligent Systems (LIS), École Polytechnique Fédérale de Lausanne (EPFL), Station 11, CH-1015
Lausanne, Switzerland
2 Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal
3 Institute for Systems and Robotics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
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Abstract

In social insects, workers perform a multitude of tasks such as foraging, nest construction and brood rearing without
central control of how work is allocated among individuals. It has been suggested that workers choose a task by responding
to stimuli gathered from the environment. Response threshold models assume that individuals in a colony vary in the
stimulus intensity (response threshold) at which they begin to perform the corresponding task. Here we highlight the
limitations of these models with respect to colony performance in task allocation. First, we show with analysis and
quantitative simulations that the deterministic response threshold model constrains the workers’ behavioral flexibility under
some stimulus conditions. Next, we show that the probabilistic response threshold model fails to explain a precise colony
response to varying stimuli. Both of these limitations are detrimental to colony performance when dynamic and precise
task allocation is needed. To address these problems we propose extensions of the response threshold models by adding
variables that weigh stimuli. We test the extended response threshold model in a foraging scenario and show in simulations
that it results in an efficient task allocation. Finally, we show that response threshold models can be formulated as ar-
tificial neural networks, which consequently provide a comprehensive framework for modeling task allocation in social insects.

Keywords task allocation, social insects, division of labor, response thresholds, neural networks.

Introduction

High levels of cooperation are often cited as the primary rea-
sons for the ecological success of social insects (Oster and
Wilson 1978; Hölldobler and Wilson 1990; Robinson 1992).
In social insects, workers perform a multitude of tasks such as
foraging, nest construction and brood rearing without central
control of how work is allocated among individuals (Wilson
and Hölldobler 1988; Seeley 1989; Gordon 1996; Pratt 2005).
Experimental evidence indicates that individuals in a colony
vary in their propensity to perform different tasks (Oldroyd
et al 1993; Julian and Cahan 1999; Kryger et al 2000; Jones
et al 2004; Robinson et al 2009). It has been suggested that
workers choose a task by responding to stimuli gathered from
the environment (e.g., presence or absence of food) or from
interactions with other workers (Bonabeau et al 1996).

Empirical studies have identified a variety of factors affect-
ing the stimulus intensity (response threshold) at which work-
ers initiate to perform a given task (Duarte et al in press).
First, in many species there is a strong division of labor based
on the age of workers, a phenomenon designated age polythe-

ism (Oster and Wilson 1978; Wilson 1971). Second, size and
morphology is also strongly correlated with the likelihood of
workers to undertake the various tasks in species with distinct
morphological castes (Wilson 1980). Third, in species with
multiply-mated queens or multiple queens per colony, differ-
ent patrilines and matrilines tend to differ in their tendencies
to perform certain tasks demonstrating a genetic component
in response threshold (e.g., Robinson and Page (1988)). Fi-
nally, individual experience has been shown to influence task
preference in the ant Cerapachys biroi (Ravary et al 2007).

The combined effects of age, size, genetic background and
individual experience should lead to substantial intra-colony
variation in response thresholds. The resulting individual
difference in the response of workers to a given stimulus in-
tensity leads to individuals with a lower threshold for a given
task being more likely to perform that task than individuals
with a higher threshold. A variety of models have been pro-
posed to account for the emergence of intra-colony division of
labor on the basis of variation in response thresholds (Robin-
son 1987, 1992; Bonabeau et al 1996; Page Jr and Mitchell
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1998; Theraulaz et al 1998; Graham et al 2006; Jeanson et al
2007) (see Beshers and Fewell (2001) and Smith et al (2008)).

The two most often used models are the deterministic
response threshold model (DTM) (Page Jr and Mitchell
1998), and the probabilistic response threshold model (PTM)
(Bonabeau et al 1996). Both models assume that all workers
receive information of the colony needs via commonly per-
ceived stimuli. With the DTM each worker performs the task
with the highest positive difference between the stimulus and
its own corresponding response threshold. If all the stim-
uli are lower than the corresponding thresholds the worker
remains idle. With the PTM the relation between stimulus
and threshold is interpreted as a probability to perform the
task. While these response threshold models are frequently
used to explain division of labor in colonies of social insects
(Bertram et al 2003; Graham et al 2006; Jeanson et al 2007),
no attempts have been made to quantify their efficiency in
task allocation. Here we show with analysis and quantita-
tive simulations that DTM (Page Jr and Mitchell 1998) and
PTM (Bonabeau et al 1996) lead to sub-optimal colony per-
formance under some stimulus conditions. To overcome these
problems we propose an extended response threshold model
(ETM) that can result in an efficient task allocation for any
stimulus conditions. We experimentally compare all models
by means of directed evolution (Nolfi and Floreano 2000; Flo-
reano and Keller 2010) in a foraging scenario that requires a
dynamic re-allocation of workers to different tasks according
to colony needs (Tarapore et al 2010). Finally, we show that
the response threshold models can be formulated as artificial
neural networks (McClelland et al 1986; Haykin 1998), which
consequently constitute a comprehensive framework for mod-
eling task allocation in social insects.

Materials and Methods

Task allocation mechanism

We assumed that workers receive information of the colony
needs via commonly perceived stimuli and that workers’
thresholds do not vary during their lifetime. We consid-
ered a colony composed of 1000 workers facing two distinct
tasks. In DTM every worker has two thresholds correspond-
ing to each of the two tasks. A worker performs the task
with the highest positive difference between the stimulus and
its own corresponding response threshold, or remains idle if
both of its thresholds are higher than the stimuli (Page Jr
and Mitchell 1998; Jeanson et al 2007). If the difference be-
tween the stimulus and the worker’s corresponding response
thresholds is the same for all tasks, one of them is randomly
chosen and performed by the worker. In PTM, every worker
has two thresholds corresponding to each of the two tasks and
the difference between stimulus and corresponding response
threshold constitutes the probability of being engaged in the
corresponding task. In Electronic Supplementary Material
(ESM) Appendix we show that our probabilistic model is very
similar to the original probabilistic response threshold model
(Bonabeau et al 1996), as both models lead to similar colony
performance and patterns of division of labor [ESM Appendix
D ]. In ETM, every worker has two thresholds corresponding
to each of the two tasks and two weights corresponding to
each of the two stimuli. A worker performs the task with

the highest positive difference between the weighted stimu-
lus and its own corresponding response threshold, or remains
idle if both of its thresholds are higher than the weighted
stimuli. If the difference between the weighted stimulus and
the worker’s corresponding response threshold is the same for
all tasks, one of them is randomly chosen and performed by
the worker. For formal definitions of all models see [ESM
Appendix A].

The response threshold models (DTM and PTM) and the
extended response threshold model (ETM) can all be formu-
lated as a more general class of parallel distributed process-
ing models, known as artificial neural networks (McClelland
et al 1986; Haykin 1998; Lek and Guégan 1999). Artificial
neural networks have been successfully used to control the
behaviour of individuals in a colony (see e.g. Floreano et al
(2007); Waibel et al (2009)) making it a useful approach to
consider in modeling task allocation in social insects. An ar-
tificial neural network is a computational model that consists
of a set of units (neurons) connected by weighted links, where
the response of the output units is the sum of weighted inputs
(McClelland et al 1986). In DTM and PTM, each stimulus
constitutes an input, the thresholds are the weights of the ad-
ditional input constantly set to −1 and the allocated task for
the worker is derived from the output neurons (Fig. 1A and
1B). While in DTM and PTM the weights for task stimuli
are set to +1, in ETM they can vary between workers (Fig.
1C ). In DTM and ETM a worker performs the task corre-
sponding to the output unit with highest positive value, or
remains idle if both outputs are lower or equal to 0. In PTM
the values of the output units are interpreted as probabilities
of performing the corresponding tasks.

In artificial neural networks with so-called hidden neurons,
a non-linear activation function that transforms the output
of the neuron is often used. Because the artificial neural
networks used here do not need non-linear activation func-
tions and do not have hidden units, we do not mention such
a function explicitly. Mathematically speaking, we consider
the activation function to be the identity function. If the
neuronal formalism gets extended, one may use the activa-
tion function, depending on the needs of the architecture.

Colony tasks

To quantify the workers’ efficiency in task allocation we used
a stochastic agent-based simulation to model a situation in
which workers had to perform two distinct tasks (Tarapore
et al 2010). Our aim was to mimic situations with two vital
tasks such as foraging and regulation of nest temperature.
If the colony is efficient in foraging but does not regulate
nest temperature well, the brood may die. Conversely, if nest
temperature is well regulated, but little food is collected, only
few offspring can be reared. A colony consisted of 1000 work-
ers placed in an environment with an infinite number of two
types of items, foraging and regulatory. The colony lifespan
was divided into 100 time-steps. At the beginning of each
time-step, a worker was presented with two task stimuli, one
for the foraging items and the other for the regulatory items.
If there were no items in the nest, the corresponding stimu-
lus was set to its maximal intensity, which was 1. Otherwise,
the intensity of the stimulus for each task was inversely pro-
portional to the number of corresponding items in the nest.
At each time step, every worker performed the chosen task
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(or stayed idle) according to the task allocation mechanism
(DTM, PTM, ETM) considered in the experiment. At each
time step, a worker had a probability of 0.1 to successfully
collect one item corresponding to the task performed and, at
each time-step, the number of foraged and regulated items in
the nest were depleted by ten items with an expected proba-
bility of 0.4. For formal definitions of the stimulus dynamics
and the foraging scenario see [ESM Appendix C ].

The colony performance directly depended on the number
of collected foraging items, but these were counted only when
the number of regulatory items in the nest was within pre-
defined bounds (140− 160 items). At the first time-step of a
simulation, there were no items of the foraging and regulatory
tasks in the nest. The colony performance (fitness) f was cal-
culated by adding the partial performance obtained at each
time-step, with f =

∑100
t=1 f(t) where the colony performance

at each time-step (f(t)) was quantified as the number of items
of the foraging task collected when the number of items of
the regulatory task present in the nest was between 140 and
160: f(t) = b(t) · gF (t) where b(t) = 1 if 140 ≤ gR(i) ≤ 160
and b(t) = 0 otherwise, gF (t) represents the number of items
foraged at time-step t and gR(t) the number of items being
regulated within the nest at time-step t. Thus, if colonies
performed well in only one of the two tasks, their fitness was
low. We normalized the resulting fitness values by 10000,
which is the expected amount of foraging items collected if
all 1000 workers were foraging for all 100 time-steps with the
probability of success equal to 0.1.

In all simulations the regulatory bounds were constantly
fixed to the same values (140 − 160 items) (Tarapore et al
2010). Changing the regulatory bounds would not qualita-
tively affect our results. First, the regulatory bounds have
to be narrow for the regulatory task to require a dynamic
reallocation of workers. Thus, the difference between the reg-
ulatory upper bound and the regulatory lower bound should
not be varied. Second, placing the regulatory bounds on
a different level (e.g., 100 − 120 or 200 − 220 items) would
change only the relative length of the “initialization” phase
(i.e., when the regulatory items are accumulated to reach the
lower bound for the first time) and the “control” phase (i.e.,
when the regulatory items are maintained within the regu-
latory bounds). Such a change does not qualitatively affect
any of the models’ properties that we investigated.

The fitness function used here lead to a strong influence
of the efficient performance of the regulatory task on the
benefits of foraging. It is likely that the efficient performance
of two tasks frequently does not interact so strongly under
natural conditions. However, we used such a strong on-off
transition to get clearer results on the processes regulating
the efficient performance of two complementary tasks. In
some cases such a strong on-off transition may also occur
in natural situations, for example as a result of dramatic
variation in temperature affecting brood survival or colony
response to flooding (which requires rapid movement of all
individuals to avoid colony extinction). Note also that, for
simplicity we assume no conflict of interest among colony
members about task allocation (i.e., the fitness of all colony
members is proportional to overall colony performance). This
would, for example, be the case of a species where workers are
completely sterile or when task performance does not affect
the likelihood of an individual to reproduce in the future.

Genetic architecture

In experiments with DTM each worker had a genome con-
sisting of two thresholds, both ranging from −1 to +1 (8-bit
encoding, 256 possible real values with a resolution of 1

128 ).
In experiments with PTM each worker had a genome con-
sisting of two thresholds, both ranging from −1 to +1 (8-bit
encoding, 256 possible real values with a resolution of 1

128 ).
In experiments with ETM each worker had a genome consist-
ing of two thresholds and two weights, all ranging from −1 to
+1 (8-bit encoding, 256 possible real values with a resolution
of 1

128 ).
Although threshold values are typically expected to be non-

negative (Bonabeau et al 1996; Page Jr and Mitchell 1998;
Graham et al 2006; Jeanson et al 2007) we allowed values be-
tween −1 to +1 in order to be consistent with the formalism
of neural networks weights. We conducted a control exper-
iment for DTM with thresholds in the range from 0 to +1
(8-bit encoding, 256 possible values with a resolution of 1

256 )
to make sure that our choice did not significantly affect the
result of the experiments. We support this claim in [ESM
Appendix D ], showing that the different range of threshold
values does not importantly alter the division of labor pat-
terns and colony behavior in the treatments with DTM.

Reproduction and selection

Artificial selection was conducted in thirty independent repli-
cates for each of the three treatments. We used populations
of 1000 colonies, each consisting of 1000 workers. At the
first generation of each replicate, the alleles of all 1 000 000
workers were set randomly to one of the 256 values be-
tween −1 and +1 with a resolution of 1

128 . To construct
the 1000 colonies of the following generation we selected the
300 colonies with the highest fitness (performance). This se-
lected pool of 300×1000 workers was used to create the next
generation of workers by using fitness proportional selection
(i.e., the probability of a worker to contribute to the next
generation was proportional to its colony fitness). The newly
created 1 000 000 workers were then randomly distributed
among the new 1000 colonies of the following generation. Fi-
nally, the alleles of the workers were mutated, i.e., with a
probability of 0.001 each allele was set randomly to one of
the 256 values between −1 and +1 with a resolution of 1

128 .

Worker behaviour and statistical analysis

To compare the task allocation efficiency for DTM, PTM and
ETM we averaged, for each treatment and replicate, the per-
formance of the 1000 colonies (30 replicates per treatment) at
generation 1000. The same procedure was applied to compare
other characteristics of the models. In order to understand
the difference in performance between the models, we com-
pared the proportion of workers in each of the three states
(foraging, regulating, idle) averaged over all 100 time-steps
(Fig. 3). We also compared the proportion of workers in
each of the three states as a function of the time-step (Fig.
4). Next, we compared the number of workers’ transitions
between states summed over all 1000 workers and all 100
time-steps, normalized by the number of all state transitions
(separately for each model). Next, we compared the time that
the regulatory items were out of the predefined bounds dur-

3



ing the entire colony lifespan (Fig. 6A). We also compared
the time until the regulatory items were within the prede-
fined bounds (140-160) for the first time (Fig. 6B). Finally,
we compared the proportion of colonies that kept the regu-
latory items within the predefined bounds as a function of
the time-step (Fig. 7). In a statistical test we compared the
proportion of colonies that kept the regulatory items within
the predefined bounds after they were within the predefined
bounds for the first time (in order to provide a fair compari-
son it was performed at the 50th time-step for all treatments).
Statistical significance within all treatments was determined
with the Kruskal-Wallis test (nonparametric one-way analy-
sis of variance) and between a pair of treatments with the
Wilcoxon test (rank sum test for equal medians). The statis-
tical tests were performed after the 1000th generation.

Results

Theory

The common understanding of the response threshold mod-
els is that the workers’ tendency to perform various tasks
depends on its thresholds and that, by changing the thresh-
old values, the worker can express any behavior, from gener-
alist (switching between tasks) to specialist (dedicated to a
specific task) (Robinson 1992; Bonabeau et al 1996; Beshers
and Fewell 2001). However, a mathematical analysis of the
DTM reveals that the worker’s behavioral flexibility depends
not only on the worker’s thresholds, but also on the differ-
ence between stimulus intensities. In particular, a worker
can switch from task A to task B, only if there is a decrease
in the difference between stimulus intensities of task A and
task B. A worker can switch back from task B to task A,
only if there is an increase of the aforementioned difference.
[see ESM Appendix B for more details]. Thus, contrary to
the intuition standing behind the response threshold mod-
els (Robinson 1992), the workers’ behaviors were influenced
not only by the absolute intensities of the stimuli, but also
by their relative intensities. Consequently, the values of the
stimuli constrain the worker’s ability to switch tasks regard-
less of the values of the individual thresholds. In the PTM
this constraint is less marked, because the workers’ responses
are stochastic, thus allowing them to switch tasks more easily.
However, stochastic individual responses make the response
at the colony level more unreliable, even under fixed stimuli
conditions (i.e., for the same stimuli intensities the response
of a worker may be different, due to its random component).
Thus, both the DTM and the PTM have limitations, which
could be detrimental to colony performance. These problems
can be overcome by extending the DTM with additional vari-
ables that weigh stimuli (ETM, Fig. 1). The weights relax
the constrains on the flexibility of task allocation by allowing
the workers to scale the stimuli if needed [see ESM Appendix
B for more details]. At the same time, the deterministic deci-
sion rules employed in the ETM allow the workers to precisely
response to changing colony needs.

Simulations

To test whether the ETM allows a higher behavioral flexibil-
ity of workers and/or more precise responses at the colony

level to varying stimuli, hence translating in a higher colony
performance, we conducted experimental evolution with a
stochastic agent-based simulation to model a situation in
which workers had to perform two distinct tasks. The first
was a regulatory task where workers had to maintain the
amount of a given food item in their colony within prede-
fined bounds. This would, for example, be the case of a
honeybee colony maintaining about one kilogram of pollen in
the hive or workers regulating within-hive temperature (See-
ley 1995). The other was a foraging task where workers had
to collect the highest possible amount of a second type of
food item. Consequently, at a given point in time a worker
could be engaged in the regulatory task, could be engaged in
the foraging task (foraging worker) or could be inactive (idle
worker). The fitness of colonies was a function of workers
being able to perform both tasks efficiently (Tarapore et al
2010, see Methods).

For each of the three models, the performance of the
colonies rapidly increased within the first 200 generations
of selection, and converged within 1000 generations (Fig.
2). However, there were important efficiency differences be-
tween the models (Kruskal-Wallis test, df = 2, p < 0.001).
The highest performance was achieved for the ETM (PTM:
−10.3%; DTM: −20.4%; all pairwise Wilcoxon tests df = 29,
p < 0.001).

The difference in performance between threshold models
was associated with differences in the proportion of work-
ers engaged in the foraging task (Kruskal-Wallis test, df = 2,
p < 0.001). The proportion of foraging workers was the high-
est for the ETM (PTM: −1.1%; DTM: −10.5%; all pairwise
Wilcoxon tests df = 29, p < 0.001; Fig. 3). The proportion
of workers staying idle also differed (Kruskal- Wallis test,
df = 2, p < 0.001) and was the lowest for the ETM (PTM:
+2293.2%; DTM: +21907.5%; all pairwise Wilcoxon tests
df = 29, p < 0.001; Fig. 3). By contrast, there was only little
variation in the proportion of workers engaged in the regu-
latory task (Fig. 3), although the differences among models
were significant (Kruskal-Wallis test: df = 2, p < 0.001).
Furthermore, with the PTM the proportion of foraging work-
ers was not constant during the entire colony lifespan and
decreased in time, which was not observed for other models
(Fig. 4).

The differences in workers’ distribution among the three
threshold models was associated with the differences in the
frequency of worker transitions between being engaged in the
foraging and regulatory tasks and staying idle (six Kruskal-
Wallis tests, one for each type of transition: all df = 2,
all p < 0.001; Fig. 5). In line with theoretical predictions
the behavioral flexibility between the foraging and regula-
tory tasks was constrained with the DTM, with the effect
that the workers switched much more often between the reg-
ulatory task and staying idle, than with other models (all
pairwise Wilcoxon tests: df = 29, p < 0.001; Fig. 5). This
lack of flexibility in switching tasks resulted in a high pro-
portion of idle workers with DTM so as to respond efficiently
to changes in colony needs (Fig. 3). By contrast, with the
PTM and ETM the workers readily switched between the
regulatory and foraging tasks (all pairwise Wilcoxon tests:
df = 29, p < 0.001; Fig. 5), thus not requiring the colonies
to maintain a high proportion of idle workers (Fig. 3).

The difference in foraging strategies induced by the three
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threshold models translated in variation in the proportion of
time during which the regulatory items were out of the pre-
defined bounds during colony lifespan (Kruskal-Wallis test:
df = 3, p < 0.001). The most efficient regulation was with
the ETM (all pairwise Wilcoxon tests: df = 29, p < 0.001;
Fig. 6A). The difference between models in the efficiency
of regulation was primarily due to two factors. First, there
were differences in the time until the regulatory items were
within the predefined bounds for the first time (Kruskal-
Wallis test: df = 3, p < 0.001), the most efficient model be-
ing the ETM (PTM: +267.5%, DTM: +384.2%; all pairwise
Wilcoxon tests: df = 29, p < 0.001; Fig. 6B). Second, there
were differences in the proportion of colonies that successfully
kept the regulatory items within the predefined bounds, after
they first were within predefined bounds (Kruskal-Wallis test:
df = 3, p < 0.001), the most efficient models being both the
DTM and ETM (PTM: −2.1%; Wilcoxon test between DTM
and ETM: df = 29, p = 0.11; all other pairwise Wilcoxon
tests: df = 29, p < 0.001; Fig. 7).

We investigated the sensitivity of our findings to changes
in the implementation of mutations and in the population’s
size. We conducted additional experiments with two alter-
nate mutation’s implementations (Gaussian mutations and
mutations switched off instead of uniform mutations) and
two smaller population’s sizes (100 and 500 colonies instead
of 1000). These experiments showed that the results were ro-
bust to changes in both cases [see ESM Appendix E for more
details].

Discussion

A comparison of the deterministic (Page Jr and Mitchell
1998), probabilistic (Bonabeau et al 1996) and our new ex-
tended response threshold models showed that they affect
the workers’ responses to varying stimuli and colony perfor-
mance. As predicted by our formal analysis, the deterministic
response threshold model was found to constrain the work-
ers’ ability to switch tasks because workers with a high for-
aging threshold and a low regulatory threshold became idle
when the regulatory items were within bounds and the forag-
ing stimulus was lower than the workers’ thresholds. Conse-
quently, the colony performance was low with the determin-
istic response threshold model when a dynamic task alloca-
tion was required. In the case of the probabilistic response
threshold model, the workers’ behavioral flexibility was less
limited, but the colony was unable to precisely respond to
changes in the stimuli values as a response of the stochastic
switching between tasks. This led to a relatively low colony
performance. Additionally, when the stimuli decreased, the
probability that a worker performed a corresponding task de-
creased too (even if the stimulus was above the threshold).
Thus, when the foraging stimulus was low, workers more of-
ten switched between being engaged in the foraging task and
staying idle, which also had a detrimental effect on colony
performance. The extended model did not suffer from these
limitations because the weights of the stimuli allowed the
workers to switch tasks, while keeping their response deter-
ministic.

We showed that the response threshold models (Bonabeau
et al 1996; Page Jr and Mitchell 1998) and the extended mod-
els proposed in this paper could be formulated as artificial

neural networks. The neuronal formalism introduced here
will be useful for further extension of models, such as for
example changing the threshold values with age or the inte-
gration of adaptive learning, where the connection weights
of the neural network are updated using experience-based
learnings rules (Floreano and Urzelai 2001; Floreano et al
2008). Furthermore, one could use neural networks with re-
current connections (Mandic and Chambers 2001), to equip
the workers with a memory. These, and other, extensions
would facilitate addressing increasingly complex and biologi-
cally relevant questions on division of labor in social insects.
Of note, although we considered a situation with only two
tasks, the neuronal formalism can be easily scaled for a higher
number of tasks.

We focused on a situation with two tasks, one of which
is regulatory (the number of items in the nest ought to be
kept within boundaries) and the other that is maximizing
(the number of foraged items ought to be maximized). The
results allow us to speculate how the models compare in three
other situations: 1) with both foraging tasks, 2) with both
regulatory tasks and 3) with more than two tasks. First,
with two foraging tasks the simulation is strongly simplified,
and of little interest, because there is no need to dynamically
reallocate the workers between the tasks. Thus, all models
should lead to high colony performance. Second, with two
regulatory tasks, there could be two outcomes, depending
on whether or not a dynamic reallocation of the workers is
required. If not, the workers could split into two distinct sub-
sets and handle the tasks independently. The workers from
the first subset would perform the first task, or be idle, and
the workers from the second subset would perform the sec-
ond task, or be idle. In such a case, high performance should
be obtained under both the deterministic and extended re-
sponse thresholds models. While the probabilistic response
threshold model, which is unable to provide a precise colony
response to a stimulus change, should lead to a lower perfor-
mance. On the contrary, if the dynamic reallocation of work-
ers is required, the tasks cannot be handled independently
by distinct subsets of workers. Consequently, this consti-
tutes similar conditions to those of one regulatory task and
one foraging task, and thus the colony performance and be-
havior should not differ from the ones observed in this study.
Finally, if there are more than two tasks, all the limitations
of the considered models still hold, and this should not qual-
itatively affect the results.

Our foraging system implicitly assumed that it was benefi-
cial to minimize the number of idle workers. This might not
always be the case in nature, as some idle workers may be
beneficial for the colony, for example because of energy con-
straints (Gordon 1989; Robinson 1992; Krieger et al 2000) or
to serve as reserve force that can be mobilized when needed
(Wilson 1983; Gordon 1989; Robinson 1992). It would be pos-
sible to include such effects in more complex foraging scenario
and study for example the expected relationship between the
proportion of idle workers and colony size (Jeanson et al 2007;
Dornhaus et al 2009). Finally, we assumed that the task stim-
uli are available to all workers in the colony. What happens
to the workers’ behavioral flexibility and task allocation ef-
ficiency in cases when stimuli are available to only a subset
of workers, or depend on spatial configurations, is a question
that remains to be investigated.
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To further investigate the possible consequences of par-
tial information, we performed a simulation with the ver-
sion of the deterministic response threshold model proposed
by Jeanson et al (2007). The stimuli are presented to each
worker sequentially in a random order, and not all at once,
as is assumed by Page Jr and Mitchell (1998). In particu-
lar, the workers always perform the first encountered task for
which their threshold is lower than the corresponding stim-
ulus. Thus, although the decisions made by the workers are
deterministic, the model does not limit the workers’ abil-
ity to switch tasks, because of the random order of task en-
counters. The performance and the behavior of the colonies
evolved with the deterministic response threshold model with
random task encounters are similar to the ones obtained for
treatments with the extended response threshold model [ESM
Appendix D ]. This similarity of the phenotypic traits evolved
using very different mechanisms of task allocation is interest-
ing and might be a promising direction for further studies.

The main focus of the paper was to compare several com-
monly used models of task-allocation. We showed that by
allowing for variation not only in stimulus response thresh-
olds, but also by adding the weights to these perceived stim-
uli, one obtains a much more flexible task allocation system.
In contrast to the original response thresholds models, the
extended response thresholds model performs well under a
wide range of environmental stimuli. However, it remains to
be investigated what rule ants and other social insects use.
In particular it would be interesting to study whether social
insects employ more sophisticated rules than fixed threshold.
While evolution is often considered to be an effective opti-
mization process (Parker and Smith 1990) there are many
factors such as stochasticity, genetic drift, insufficient time
to reach the optimum or the existence of local maxima and
other developmental and physiological constraints that may
lead to non-optimal behavior (Pérez-Escudero et al 2009).
With social insects the question of evolutionary optimality
is especially difficult to address, because colonies are com-
plex, multi-component systems. There are multiple functions
on which persistence of the colony depends (e.g., foraging,
colony maintenance, defense) and many constraints that the
colony must respect (e.g., spatial, energy). Consequently, one
cannot rule out the possibility that if a foraging strategy is
sub-optimal, this might be due to increase performance of
some other tasks that are also important.

It has recently been suggested that in systems of many
components, the largest deviations from optimality are ex-
pected in those components with less impact on the indirect
measure of fitness (Pérez-Escudero et al 2009). Applying
this idea to social groups leads to some predictions associ-
ated with colony size differences. For example, an efficient
and flexible task allocation is expected to be particularly im-
portant in small colonies which typically contain only few
idle workers. By contrast, deviations from optimality in task
switching might have a lower impact in large colonies which
usually contain a substantial reserve force that can be mo-
bilized when needed (Wilson 1983; Gordon 1989; Robinson
1992). Of interest would thus be to compare the mechanisms
of task allocation among species varying in colony size and
also investigate whether there are differences within species
during the ontogeny of the colony.

Overall, our analyses highlight the limitations of the re-

sponse threshold models that are currently used in the litera-
ture (Robinson 1987, 1992; Bonabeau et al 1996; Page Jr and
Mitchell 1998; Theraulaz et al 1998; Beshers and Fewell 2001;
Bertram et al 2003; Graham et al 2006; Jeanson et al 2007;
Smith et al 2008). We extended these models by weight-
ing the stimuli. We also showed that the response thresh-
olds model could be formulated as artificial neural networks
thus providing a solid theoretical framework for further stud-
ies. Finally, it is worth mentioning that although threshold
models have been developed to explain division of labor in
social insect, they may also be used to devise efficient sys-
tems of task allocation and dynamic scheduling in engineer-
ing (Bonabeau et al 2000; Campos et al 2000; Matarić et al
2003; Berman et al 2009).
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A Online Appendix. Task allocation

models

We assume that workers receive information of the colony
needs via commonly perceived stimuli (Bonabeau et al 1996;
Page Jr and Mitchell 1998) and that the workers’ thresholds,
and weights, do not vary during their lifetime (Bonabeau et al
1996; Page Jr and Mitchell 1998; Jeanson et al 2007). Follow-
ing are the formal definitions of the deterministic response
threshold model (DTM, Page Jr and Mitchell (1998)), the
probabilistic response threshold model (PTM), the extended
response threshold model (ETM) and the original proba-
bilistic response thresholds model (oPTM) adopted from
(Bonabeau et al 1996).

Let T = {1, 2, 3, ..., n} be the set of all time-steps indices.
Let M = {1, 2, 3, ..., m} be the set of all workers indices.
Let sA(t) be the stimulus of task A at the time-step t. Let
sB(t) be the stimulus of task B at the time-step t. For every
worker j there are two decision variables oA

j (t) and oB
j (t) that

translate into being engaged in task A or B, or staying idle.

DTM and PTM: oA
j (t) = 1 · sA(t) − θA

j and oB
j (t) = 1 ·

sB(t) − θB
j where θA

j and θB
j are the thresholds of the

worker j for tasks A and B, respectively.

ETM: oA
j (t) = wA

j · sA(t)− θA
j and oB

j (t) = wB
j · sB(t)− θB

j

where wA
j and wB

j are the weights of the worker j for
stimuli A and B, respectively.

oPTM: oA
j (t) = (sA)2

(sA)2+(θA
j )2

and oB
j (t) = (sB)2

(sB)2+(θB
j )2

.

Let Wj(t) ∈ {A, B, I} be the state of the worker j at the
time-step t, where A and B stand for being engaged in task
A and B, respectively, and I stands for staying idle.

DTM, ETM

Wj(t) =















A if oA
j (t) > 0 and oA

j (t) > oB
j (t)

B if oB
j (t) > 0 and oB

j (t) > oA
j (t)

Z if oA
j (t) = oB

j (t) > 0
I otherwise

(1)

PTM, oPTM

Wj(t) =















A if PA
j (t) = 1 and PB

j (t) = 0
B if PA

j (t) = 0 and PB
j (t) = 1

Z if PA
j (t) = 1 and PB

j (t) = 1
I otherwise

(2)

Z is a random variable, which takes value A with probabil-
ity 1

2 (otherwise B). PA
j (t) and PB

j (t) are random variables,

which take value 1 with probability oA
j (t) and oB

j (t), respec-
tively (otherwise 0).

B Online Appendix. Formal analy-

sis of DTM and ETM

Let us consider the DTM (see ESM Appendix A). In practice,
the third condition from Equation 1 is rarely met, therefore

for further analysis the model can be simplified:

Wj(t) =







A if sA(t) − θA
j > 0 and sA(t) − θA

j > sB(t) − θB
j

B if sB(t) − θB
j > 0 and sB(t) − θB

j > sA(t) − θA
j

I otherwise
(3)

Let us denote by T A
j = {t ∈ T | Wj(t) = A} the set of time-

steps in which worker j is is engaged in task A and let us
denote by T B

j = {t ∈ T | Wj(t) = B} the set of time-steps
in which worker j is engaged in task B. From Equation 3 it
follows:

∀ j ∈ M ∀ tAj ∈ T A
j ∀ tBj ∈ T B

j :

sA(tAj ) − sB(tAj ) > θA
j − θB

j and

sA(tBj ) − sB(tBj ) < θA
j − θB

j

(4)

From Equations 4 it follows:

∀ j ∈ M ∀ tAj ∈ T A
j ∀ tBj ∈ T B

j :

sA(tBj ) − sB(tBj ) < sA(tAj ) − sB(tAj )
(5)

Equation 5 holds true if and only if

∀ j ∈ M |T B
j 6= ∅ ∧ T A

j 6= ∅ :

max
t∈T B

j

(

sA(t) − sB(t)
)

< min
t∈T A

j

(

sA(t) − sB(t)
) (6)

Equation 6 means that the difference between stimulus
for task B and task A (sB(t) − sA(t)) in moments when a
worker is performing task A (t ∈ T A

j ), is always smaller than

the analogous difference (sB(t) − sA(t)) in moments when a
worker is performing task B (t ∈ T B

j ). Note that Equation 6
holds true 1) for every worker, 2) regardless of the values of
the thresholds and 3) regardless of the type of the two tasks
(i.e., the tasks do not need to be foraging and regulation).
Equation 6 limits the task allocation flexibility, because the
sets T A

j and T B
j must be such that the Equation 6 is met. In

other words, regardless of the individual thresholds, the val-
ues of stimuli may by definition constrain the workers’ ability
to switch tasks by restraining the T A

j set and/or the T B
j set

(and thus restraining the time when the worker j can perform
tasks A and B). In the extreme case, if one of the sets T B

j

and T A
j is empty, then Equation 6 is always met, regardless

of the other set. Note that if T B
j or T A

j is empty, it means
a worker j is a specialist (performs only one task or is idle).
This explains the experimental results where the number of
transitions between performing a regulatory task and stay-
ing idle (which corresponds to the number of specialists) was
higher while evolving the colonies for treatments with the
DTM, than with other treatments [see Results in the Main
article].

We obtained an analogous constraint (compare Equations
6 and 7) for the ETM by applying the same reasoning as for
the DTM:

∀ j ∈ M |T B
j 6= ∅ ∧ T A

j 6= ∅ :

max
t∈T B

j

(

wA
j · sA(t) − wB

j · sB(t)
)

< min
t∈T A

j

(

wA
j · sA(t) − wB

j · sB(t)
)

(7)

The additional parameters in Equation 7 (the weights wB
j and

wA
j ) lift the constraints on the flexibility of task allocation.
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Every worker has its own set of weights, which can evolve as
such, that Equation 7 is met even if both T B

j and T A
j are not

empty. Note that if both sets T B
j and T A

j are not empty, a
worker j is a generalist (switches tasks). This explains the
experimental results where the number of transitions between
performing distinct tasks (which corresponds to the number
of generalists) is higher while evolving the colonies for treat-
ments with the ETM, compared to the DTM [see Results in
the Main article].

The PTM escapes this analysis, because the model is not
deterministic and basis on probabilities.

C Online Appendix. Simulation

definition

Let T = {1, 2, 3, ..., n} be the set of all time-steps indices
(n = 100). Let M = {1, 2, 3, ..., m} be the set of all workers
indices (m = 1000). The state of each worker j in every
time-step t (Wj(t)) is decided according to one of the models
presented in ESM Appendix A, where task A is foraging task
F and task B is regulatory task R. The foraging stimulus
sF (t) and the regulatory stimulus sR(t) are defined as

sF (t) = 1 − 0.0001 · aF (t − 1)

sR(t) = 1 − 0.005 · aR(t − 1)

aF (t) and aR(t) are the number of items accumulated in the
nest at the time-step t, and are defined as

aF (0) = 0

aR(0) = 0

aF (t) =

t
∑

i=1

(

gF (i) − dF (i)
)

aR(t) =

t
∑

i=1

(

gR(i) − dR(i)
)

gF (t) and gR(t) are the number of items gathered at the
time-step t, and are defined as

gF (t) =

m
∑

j=1

XF
j (t)

gR(t) =

m
∑

j=1

XR
j (t)

XF
j (t) and XR

j (t) are random variables such that

XF
j (t) =

{

1 with probability pF if Wj(t) = F

0 otherwise

and

XR
j (t) =

{

1 with probability pR if Wj(t) = R

0 otherwise

The probability of successful foraging pF is set to value 0.1.
The probability of successful regulation pR is set to value 0.1.
Values dF (t) and dR(t) are the number of items depleted from
the nest at the time-step t, and are defined as

dF (t) =







0 if dF (t − 1) = 10
D if dF (t − 1) = 0 and dF (t − 2) = 10
10 if dF (t − 1) = 0 and dF (t − 2) = 0

and

dR(t) =







0 if dR(t − 1) = 10
D if dR(t − 1) = 0 and dR(t − 2) = 10
10 if dR(t − 1) = 0 and dR(t − 2) = 0

where D is a random variable, which takes value 10 with
probability 1

2 (otherwise 0).

D Online Appendix. Other re-

sponse thresholds models

Deterministic response threshold model with non-

negative values of thresholds. Although threshold values
are typically expected to be non-negative (Bonabeau et al
1996; Page Jr and Mitchell 1998; Graham et al 2006; Jean-
son et al 2007), in our experiments we allowed values be-
tween −1 to +1 in order to be consistent with the formalism
of neural networks weights. We conducted a control exper-
iment to confirm that our choice did not affect the results
of the experiments. We found support for this claim, show-
ing that there is a reasonable good agreement between the
DTMs with different range of threshold values with respect
to colony performance (Fig. D1, left) and colony dynamics
(Fig. D2, top).

Original probabilistic response threshold model.

We conducted a control experiment to test whether the PTM
(which is in fact a probabilistic interpretation of the de-
terministic response threshold model proposed by Page Jr
and Mitchell (1998)) produces a similar colony performance
and workers’ behavior, as the original probabilistic response
threshold model proposed by Bonabeau et al (Bonabeau et al
1996) (oPTM). We found support for this claim, showing that
there is a reasonable good agreement between different proba-
bilistic response thresholds models with respect to the colony
performance (Fig. D1, right) and colony dynamics (Fig. D2,
bottom).

Deterministic response threshold model with ran-

dom order of task encounters. We conducted a control
experiment to test the effects of using the DTM as formulated
by Jeanson et al (2007) (DTMR). The stimuli are presented
to each workers sequentially in a random order, and not all
at once, as in the DTM. In particular, the workers always
perform the first encountered task for which their threshold
is lower than the corresponding stimulus. Thus, although the
decisions made by the workers are deterministic, the model
does not limit the workers’ ability to switch tasks, because of
the stochastic order of task encounters. Interestingly, there
is a very good agreement between the DTMR and ETM with
respect to the colony performance (compare Fig. 2 and D1,
right) and dynamics of the system (compare Fig. 4 and D2,
top). It seems that the DTMR and ETM, which are different
with respect to the mechanisms of task allocation, lead to the
evolution of similar phenotypic traits. The possible implica-
tions of this finding still require to be solidly investigated.

Methods. In treatments with the DTM [-1,1], PTM[-
1,1], oPTM[-1,1] and DTMR[-1,1] each worker had a genome
consisting of two thresholds, both ranging from −1 to +1 (8-
bit encoding, 256 possible values with a resolution of 1

128 ). In
treatments with the DTM [0,1], oPTM[0,1] each worker had
a genome consisting of two thresholds, both ranging from 0
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to +1 (8-bit encoding, 256 possible values with a resolution
of 1

256 ). We tested the oPTM with non-negative values of
the thresholds, because in this way the model was defined
originally Bonabeau et al (1996). Of note, on contrary to
the models based on artificial neural networks proposed in
the Main article, using negative thresholds with the oPTM
does not increase the explanatory power of the model. This
is because in the oPTM the thresholds are risen to the second
power and thus information about the sign of the thresholds
is disregarded. We used the same experimental methods and
settings as in the Main article [see Methods ].

E Online Appendix. Sensitivity

analysis.

Using different population sizes. To test the sensitiv-
ity of the results to different population size we performed
two control experiments, with populations consisting of 100
colonies and with populations consisting of 500 colonies.
Other simulation settings were the same as in the Main arti-
cle [see Methods ]. In particular, we used the same mutation
(i.e., with a probability of 0.001 each allele was set randomly
to one of the 256 values between −1 and +1 with a resolution
of 1

128 ), to which we refer as uniform mutation. We found that
both control experiments are in agreement with the results
reported in the main text, with respect to the colony perfor-
mance (Fig. E1.A,B) and colony dynamics (Fig. E2.A,B).

Using different mutation. To test the sensitivity of the
results to different mutations we performed two control ex-
periments. In the first one, the mutation was switched off.
In the second one, all alleles of the workers were mutated by
adding a random value with a resolution of 1

128 . The values
of mutations were generated using a Gaussian distribution
(mean ± s.d.: 0±0.0075), so that the magnitude of the value
was inversely proportional to its probability of occurrence.
We refer to this mutation as frequent Gaussian mutation.
All alleles that by mutation became lower than −1 or greater
than +1 were reflected back above −1 or below +1 accord-
ingly (i.e., if the value after mutation was v > +1 we used
2 − v instead, and if the value after mutation was v < −1
we used −2− v instead). Other simulation settings were the
same as in the Main article [see Methods ]. We found that
both control experiments are in agreement with the results
reported in the main text, with respect to the colony perfor-
mance (Fig. E1.C,D) and colony dynamics (Fig. E2.C,D)
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Figure 1: Task allocation mechanisms: A) deterministic response threshold model (DTM), B) probabilistic response thresh-
old model (PTM), C) extended response threshold model (ETM). Consider a colony composed of multiple workers facing
two tasks: A and B. sA stands for the task A stimulus, sB for the task B stimulus, θA and θB are the corresponding
thresholds. Outputs are the sum of the weighted inputs and are calculated as oA = 1 · sA − θA and oB = 1 · sB − θB (for
DTM and PTM), and as oA = wA ·sA−θA and oB = wB ·sB −θB (for ETM). Note that ETM uses two additional variables,
namely wA and wB which are the weights for the connections between corresponding input and output neurons. In the
case of the DTM and PTM these weights are constant and set to +1. In A and C each worker collects items of the type
corresponding to the output unit with highest positive value, or remains idle if both outputs are lower or equal to 0. In B
the values of the output units are interpreted as probabilities for the worker to choose the corresponding task. For the sake
of simplicity we considered a situation with only two tasks, but the presented formalism scales to any number of tasks.
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Figure 2: Mean ± s.d. (in grey) performance of each of the
three response threshold models over 1000 colonies (30 repli-
cates). The performance directly depended on the number
of the collected items of the foraging task, but these were
counted only when the number of items of the regulatory
task was within predefined bounds. Thus, the performance
was high only if the workers efficiently performed both the
regulatory and foraging tasks.

Foraging Regulating Idle
0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f 
w

o
rk

e
rs

 

 
DTM

PTM

ETM

Figure 3: Mean ± s.d. proportion of workers engaged in
foraging, regulating or staying idle. Results are given for each
of the three models, over 100 time-steps and 1000 colonies of
the 1000th generation (30 replicates).
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task (short-dashed line), in the regulating task (long-dashed
line) or staying idle (solid line) as a function of time-steps.
Results are given for each of the three models, over 1000
colonies of the 1000th generation (30 replicates).
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Figure 5: Mean proportion of transitions between being
engaged in foraging and regulatory tasks and staying idle,
summed over 1000 workers. R stands for the regulatory task,
F stands for the foraging task, I stands for idle and → stands
for the direction of the transition. Results are given for each
of the three models, over 100 time-steps and 1000 colonies of
the 1000th generation (30 replicates). Normalized separately
for each model, by the number of all state transitions (number
of all state transitions DTM: 3829± 147, PTM: 10926± 296,
ETM: 4543 ± 327).
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Figure 6: Box and Whisker plots showing the number of time-
steps: A) that the regulatory items were out of the predefined
bounds during entire colony lifespan, B) until the regulatory
items were within the predefined bounds for the first time.
Results are given for each of the three models, over 1000
colonies of the 1000th generation (30 replicates).
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Figure 7: Mean proportion of colonies, with regulatory items
within the desired bounds as a function of time-step. Results
are given for each of the three models, over 1000 colonies of
the 1000th generation (30 replicates).
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Figure D1: Mean ± s.d. (in grey) performance for three
deterministic (left) and three probabilistic (right) response
threshold models over 1000 colonies (30 replicates). Note
that values of oPTM[-1,1] and oPTM[0,1] match, making the
corresponding plots indistinguishable.
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Figure D2: Mean proportion of workers engaged in the for-
aging task (short-dashed line), in the regulating task (long-
dashed line) or staying idle (solid line) as a function of
time-steps. Results for three deterministic (top) and three
probabilistic (bottom) response threshold models, over 1000
colonies of the 1000th generation (30 replicates).
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Figure E1: Mean ± s.d. (in grey) performance of each
of the three response threshold models (30 replicates). A)
100 colonies were evolved with uniform mutations. B) 500
colonies were evolved with uniform mutations. C) 1000
colonies were evolved with frequent Gaussian mutations. D)
1000 colonies were evolved with mutations switched off.
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Figure E2: Mean proportion of workers engaged in the for-
aging task (short-dashed line), in the regulating task (long-
dashed line) or staying idle (solid line) as a function of
time-steps. Results for three response threshold models,
over all colonies of the 1000th generation (30 replicates).
A) 100 colonies were evolved with uniform mutations. B)
500 colonies were evolved with uniform mutations. C) 1000
colonies were evolved with frequent Gaussian mutations. D)
1000 colonies were evolved with mutations switched off.

13


