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Abstract— Image segmentation for robots requires to be fast, Several techniques have been proposed in the literature
in order to deal with ever more powerful processors. Moregvié  for unsupervised learning, from Kohonen maps [7], Growing
is assumed to be robust to environmental changes, such ahtlig Neural gas [8], [9], k-means [10], to Independent component

conditions. In this paper we propose the application of a e of . - .
unsupervised learning algorithms for the estimation of thmimber analysis [11], [12], etc. Particularly successful is thep&ota-

of components and the parameters of a mixture model for imagdion Maximization algorithm applied to finite mixture model
segmentation. These serve for the unsupervised identifizatof ~ Fitting a mixture model to the distribution of the data is
multiple different objects in a visual scene, such as for absiequent equivalent, in some applications, to the identification tud t
localization and tracking. We compare our previous technig clusters with the mixture components [13].

against the new one. The distinctive aspect of our new a a . S .
isg related to a top-down hierarchical sgarch for the num%n:?o One Of_ the r_nost m_ndely used dlstrlt)_utlpns_ls the normal,
components by means of a binary tree decision structure. sThior Gaussian, distribution. The normal distribution can bedu
work analyzes both approaches, two previous work of ours, ifo describe, at least approximately, any variable thatsend
terms of applicability to object detection for robotic appations. cluster around the mean. If data is generated by a mixture of
Besides, we propose the computational burden evaluationtfte G5 ssians, the clustering problem will reduce to the esiima
two algorithms. - .
. . : of the number of Gaussian components and their parameters.
Index Terms - Robotics, Computer Vision, Object Se&;( ectation-Maximization (EM) algorithm is well known and
mentation, Unsupervised Learning, Self-Adapting Expixcta pec ) &g .
S attractive approach for learning the parameters of mixture
Maximization i
models [13], [14]. It always converges to a local optimum
[15], especially for the case of Normal mixtures [13], [16].
However, it also presents some drawbacks. For instance, if
Nowadays, computer vision and image processing are igquires thea-priori specification of the model order, namely,
volved in many practical applications. The constant pregrethe number of components and its results are sensitive to
in hardware technologies leads to new computing capasiliti jnitialization. The selection of the right number of compaots
and therefore to the possibilities of exploiting new tecjugis. s a critical issue. The more components there are within the
Image segmentation is a key low level perceptual capabilifyixture, the better the data fit will be. Unfortunately, ieas-
in many robotics related application, as a support functigig the number of components will lead to data overfitting and
for the detection and representation of objects and regiogSincrease in the computational burden. Therefore, finthieg
with similar photometric properties. Several applicaidn pest compromise between precision, generalization anedspe
humanoid robots [1], rescue robots [2], or soccer robots [@ an essential concern. A common approach to address this
rely on some sort on image segmentation [4]. Additionallgompromise is to try different hypothesis for the number of
many other fields of image analysis depend on the performarggnponents, and then selecting the best model according to
and limitations of eXiSting image Segmentation algorithmgome appropriate model selection criteria.
video surveillance, medical imaging and database retr@ea  Different techniques can be used to select the best number
some examples [5], [6]. of components in a mixture distribution. These can be divide
into two main classeff-line and on-line techniques.
A. Related Work The first ones evaluate the best model by executing indepen-
Two main principal approaches for image segmentation adent runs of the EM algorithm for many different initializa-
adopted: Supervised and unsupervised. The latter one is tibas, and evaluating each estimate with criteria that [ma
one of most practical interest. It may be defined as the tasttmplex models (e.g. the Akaike Information Criterion (AIC
of segmenting an image in different regions based on soifig], the Schwarz’s Bayesian Information Criterion [18jet
similarity criterion among each region’s pixels. Rissanen Minimum Description Length (MDL) [19], and Wal-

I. INTRODUCTION



lace and Freeman Minimum Message Length (MML) [20]which component has to be replicated in an exhaustive way.
All of these criteria, in order to be effective, have to belevaThe optimization of the parameters is done with expectation
uated for every possible number of models under comparisamaximization (EM) and the search for the best number of
Therefore, it is obvious that, for having a sufficient seargharameters is done in a top-down manner, by starting with a
range the complexity goes with the number of tested modaisngle component and progressively adapting the mixture by
as well as the model parameters. adding new elements according to a binary tree structure. We
The second ones start with a fixed set of models aedmpare a previous greedy algorithm we developed in [26],
sequentially adjust their configuration (including the hem and then refined in [27], versus our new technique, presented
of components) based on different evaluation criteriankgpf in [28]. The restriction of the previous approach relies on
and Bouchaffra proposed a Genetic-Based EM Algoriththe excessive number of input parameters to be tuned before
capable of learning gaussians mixture models [21]. Thélye computation, and the heuristic stopping criterion. The
first selected the number of components by means of tladter may cause that more components than those effective
minimum description length (MDL) criterion. A combinationnecessary may be employed, resulting in an excessive raixtur
of genetic algorithms with the EM has also been exploredomplexity and long computation.
Simulating annealing has also been explored as a possiale
solution for mixture selection, with Ueda and Nakano who”
proposed the deterministic annealing (DAEM), in which a In sec. Il we introduce the analyzed algorithms. Besides,
modified posterior probability parametrized tgmperaturés i sec. lI-F and 1I-G we propose a computational complexity
derived to avoid local maxima [22]. Uedet Al. proposed analysis. Then, in sec. Il we describe our experimentaupet
a split-and-merge EM algorithm (SMEM) to alleviate thdor testing the validity of our new technique and we compare
problem of local convergence of the EM method [23]. our results against our previous alternative. Finally,en.sv
Greedy algorithms take part within the second class ¥ conclude.
unsupervised classification techniques. They are chaizee || THE FEINITE MIXTURE LEARNING ALGORITHMS
by making the locally optimal choice at each stage with
the hope of finding the global optimum. Applied to th
EM algorithm, they usually start with a single compone
(therefore side-stepping the EM initialization problerahd ' i
then increase their number during the computation. At the® FASTGMM: The previous approach [27];
time, no precise solution has been posted to address thig FSAEM: The new algorithm [28].
drawback. In 2002 Vlassis and Likas introduced a greedy!n the following we present a brief overall description of
algorithm for learning Gaussian mixtures [24]. They staithw both approaches, and a deeper analysis of the adding a new
a single component covering all the data. Then they split &émponent process, together with the stopping criterion.
element .a.nd perform the EM locally for optimizing only theA_ FASTGMM Overall Description
two modified components. Nevertheless, the total complexit
for the global search of the element to be spli{n?).
Subsequently, Verbeek et al. developed a greedy metho
learn the gaussians mixture model configuration [25]. Th
search for the new components is claimed to 1@ke), while
our recursive search by means of the binary tree Gflyg n).

Outline

In this section we provide a description about the diffeesnc
r(:tietween the two approaches. Since now, we will refer to these

The basic idea is to incrementally estimate the mixture
parameters and the number of components simultaneously.
i‘[ Is algorithm starts with a single component and only incre
ments its number as the optimization procedure progresses.
The number of components is incremented at certain stages
of the optimization procedure but the values of the mixture
B. Our contribution parameters are incrementally changed and not reinithlize

We want to find a procedure for the unsupervised identi—The key igsue of our t_echniql_Je I Iqoking \_/vhe_ther one or
fication of multiple different objects in a visual scene, for more _Gagssmns are not increasing their own likelihoodnduri
further localization and tracking. Therefore, we first need optlmlzat_|0n. . . .
segment the color image in a unsupervised way in order toFor this algorithm we need to introduce a state variable
detect the different targets and distinguishing them frowm trelated to the state of the gaussian component:
background. Then, we need to identify them. We decided to* !tS @ge, that measures how long the component's own
use Gaussian mixture models due to their accuracy and denera likelihood does not increase significantly;
applicability. Besides, in order to sidestep the shortemmi Then, the split process is controlled by the following adlept
of high computational burden together with the need of ttiecision thresholds:

a — priori decision of the number of components, we opted « One adaptive thresholtlr;; for determining a significant
for a greedy self-organizing approach. increase in likelihood;

However, greedy algorithms mostly (but not always) fail to « One adaptive thresholdi;y for triggering the split
find the globally optimal solution, because they usually do n process based on the component’s own age;
operate exhaustively on all the data. Our new technique trie « One adaptive thresholdry for deciding to split a
to overcome this limitation by using a binary tree for deegli gaussian based on its area.



It is worth noticing that even though we consider three (1) (0)
thresholds to tune, all of them are adaptive, and only requir

a coarse initialization. (2 (3) (0 (1)
However, one of the biggest limitations is that this is solga

only for Gaussian mixtures, and not for generic ones. (5) (2) (o)

B. FSAEM Overall Description (o) (1) G) (@)

This algorithm starts with a single component. Then, by
following a binary tree structure new classes are added by
means Of repllcatlng eXI_Stmg _ones, ane atime. Supsem’len{;ig. 1. Binary tree mixture distribution structure exampln the left the
our modified EM algorithm is run in order to achieve th@inary tree indexes representation, used as decisionstenon the right the
current mixture best configuration [28]. Furthermore, thetc contents of the binary tree used as look up table. The arrapsmondent
function is evaluated in order to decide whether keeping ﬁfﬁgﬁﬁ?ﬂ:ﬂtgagﬁﬁ’(f’r’eﬂfir;hfhoeﬁogéﬁgﬁse:re relative to the parents
discarding the current mixture. In the first case, the binary
tree will be updated with the new solution. When a new
mixture element is added, it will become a child togethefescription in terms of the MML evaluation. In the affirmativ
with the original one. Therefore, within our representafio case, the current mixture configuration is kept, a new raplic
its father dies, and only the two children survive. Otheewistion is performed following the updated binary tree. Othisauy
in the second case (i.e. when the new mixture configurationtife old mixture configuration is resumed (therefore voiding
discarded), the previous mixture will be restored as aist@rt the last component insertion). The binary tree is updated in
point for a new component replication, and that node wilirder to not replicate the same component anymore once the
never be proposed to have children anymore. Finally, wheBrrespondent mixture has been discarded.
there will no node eligible to have children (i.e. when akth e adopted the minimum message length (MML) criterion
combinations have been tried), the algorithm terminates. developed in [29], which formulation is:

It is worth noticing that this technique can be applied to .
any mixture, rather than Gaussian ones, merely. Gopt = argmin{ —L (X|7) + g Zln (nlguz)

7 i=1 1)

(a) Binary tree indexes (b) Binary tree contents

C. Adding a new mixture class

One the one hand, FASTGMM splits the component with
highest covariance matrix determinant (and therefore thatip gq. (1):

covering the highest number of data), when this overcome &, _ 1 (x| s the log-likelihood of the whole distribution;
thre_shold.. The IatFer one follows a decrer;asling Ia|\‘N" inotder s the number of parameters specifying each compo-
avoid stationary situations. However, both the splittinggess nent (e.g. in case of a normal distribution they are the

itself is ill-posed (there are infinite solutions [23]), attte mean and the covariance matrix, counted as 1 parameter
chosen decision criterion is arbitrary. Finally, the lawadang for each input dimension for the mean and 1 for each

the thresholds variation is heuristic. L the covariance among each dimension, resulting/ia-
On the other hand, FSAEM employs a replication process d+ (d+1) % d/2);

rather than a splitting procedure. The new component will |
be the exact copy of that candidate to be replicated. This,
allows to a unique solution, with the only exception of a
variation in the mean of these components (in order to nat hav
them exactly superimposed, situation not allowing the EM
procedure to escape the current local minimum [28]). Beside
instead of relying on empirical thresholds for determinihg E. Stopping criterion

most suitable component to be replicated, all the classes aron the one side, FASTGMM relies on an empirical stopping

replicated in sequence, in order to exploit all the mixturgriterion. This, together with the splitting procedure nmagult

combinations possibilities. This is achieved thanks to thg having the best mixture data description.

binary tree decision structure, showed in Fig. 1. On the other side, FSAEM stops when all the mixture repli-

D. Model Selection Criterion: Minimum message length cation comb|n§t|on_s have been exploited. Besides, t_h_e MML
criterion described in sec. 1I-D ensure that when the iisert

(MML) of a new component do not improve the data description, this
Since no merging or annihilating operation ha been envi discarded.

sioned, it is worth being sure about a new component insertio ) ) _

FSAEM integrates a derivation of the MML criterion in ordef> FASTGMM Computational complexity evaluation

to evaluate whether the new mixture configuration (i.e. that Taking D as the input dimension, the computational burden
after the last component replication) provides a betten daif each iteration is:

+§ (N+1- 1n12n)}

¢ is the number of mixture components;

n is the number of input data;

o w; is thea-priori class, or component, probability, there-
fore resultingn - w; the number of components of the
classi.



« the original EM algorithm take® (N - D - nc) for each p € (R, G, B,z,y). Then, we applied a simple Gaussian blur

step, for a total oD (4 - N - D - nc) operations; and the connected component labeling.
« the algorithm take® (nc) for evaluating all the single The color image segmentation results are shown in Fig.
Gaussians log-likelihood; [ll. We highlight the blob findings, centering them on their
« the split operation require® (D). mean and surrounded by their covariance matrix (repredente
« the others take (1). as an ellipse in 2D, green for the binary images and red for
« the optional procedure of optimizing the selected mixtutée color ones). Inpufl), (2), (3) have been chosen to have
takesO (4- N - D - nc), being the original EM. a considerably lower light contrast than the last two ones,
Therefore, the original EM algorithm takes: (4), (5). For each row, the first three images on the left, for

e« O(4-N-D-nc), while our algorithm adds each column, are obtained with the FASTGMM algorithm,
O(D-nc) on the whole, or O(4-N-D-nc), while the other three on the right with the FSAEM approach.

giving rise to O4-N-D-nc) + O(D-nc) = Here, the original image, the mixture learning sggmented
O(A-N-D-nc+D-nc) = (nc-D-(4N + 1)) in the mage, and thg connected component resultant image are
first case: shown, respectively.
e 2 . O (4-N-D-nc) + O (D - nc) = We made the same experiments With the same input images
O@B-N-D-nc+D-n¢) = (nec-D-(8N+1)) in both with the RGB color segmentation and thHSV one.
the second case, with the optimization procedure. Then, we also show the results for the same images in the
_ ) _ (H,S,V,z,y) representation in Fig. IV.
G. FSAEM Computational complexity evaluation Finally, we also measure the elapsed time of both algo-
The computational burden of each iteration of the algorithnthms. This has been performed by means ofttime profile
is: matlab function. However, although this is claimed to be

1. The original EM algorithm take®)(k - D - nc) for the not sensitive to the other running applications (it couis t
whole mixture log-likelihood evaluatio) (k- D -nc) for number of float operations), we experimented that this is
the E-step, and approximatively the same amount for tRét true, indeed. Therefore, this test cannot be considased
M-step, andO(nc) for the prior re-estimation, thereforeprecise ad exhaustive, but indicative, only.
resulting inO(k - D - (nc + 1)) for each step;

2. The binary tree, if complete, také3(lognc) for the
insertion, the selection, and the removal operation. The accuracy of the image segmentation greatly depends on

3. Our algorithm takeg)(nc) for evaluating all the com- the number of employed mixture components. The higher it is,
ponents possible ill-conditioning (this would result ifhe more accurate the image reconstruction will be. However
evaluating the covariance matrix determinants in case #$ing too many components may lead to an overfitting of
Gaussian components, which requi@$D!) addition- the inputl set, together with an .ex<_:essive increase .of the
ally, and anothe©(D) for replicating along all the input computational burden. Therefore, finding that compromise
dimensions whether necessary); is a must. With FSAEM théest compromise is decided by

4. Our replication operation requirgg(D!) for the SvD the MML criterion of eq. (1).

decomposition, plus othe©(nc) for the components In tab. I the results of FASTGMM and FSAEM applied
reallocation. to the selected images with tHeG B color segmentation are

This gives rise to the total computatioBi(k-D - (nc+1))+ shown, while in tab. Il there are the results for tH&'V color
O(log nc)+0(ne)+O(D!)+O(D)+O(D!)+O(nc) +0(1) =  SPace. In each table we report:
O(k - (D + 1) - (nc + 3) 4 log ne) + 20(DY)). o The number of detected components;

Considering that usualyD << k and nc << k, we « The actual number of components, i.e. that of the gener-
can assume that the computational complexity does notrdiffe ~ ation mixture;
considerably between the general case and the application t« The number of total iterations;
the mixtures of Gaussians. Therefore, we assume that thie tot + The elapsed time (this is relative to the image segmenta-

computational burden goes with(k - D - (nc + 1) + log nc). tion only, and not to the connected component labeling);
« The percentage difference in time for the new algo-

lIl. EXPERIMENTS rithm (Timers.azar) With respect to the old formulation

Due to its robotic application, we tested our algorithm on  (Timepsapar), evaluated agimerﬁfnké;sT:ng“EM '
camera images taken from our robotic platform, the iCub. The 100;
iCub cameras are two DragonFly with VGA resolution and 30 « The final log-likelihood;
fps speed. The acquired images have a resolutid2@f240. « The percentage difference in final log-likelihood for the
We will segment these images by means both algorithms, new algorithm versus the previous approach.
in order to compare them both in terms of accuracy and,
processing speed. A. RGB versusHSYV color space

We segmented the images as 5-dimensional input in theComparing the results shown in in Fig. 2 and in Fig. 3 it
(R,G,B) space and (x,y), i.e. a generic input point was oflkincan be seen that generally both algorithm perform betteerund

IV. DISCUSSION




FASTGMM color FASTGMM FSAEM Color FSAEM

Original Image reconstructed image binary image Original Image reconstructed image binary image

¥

Fig. 2. Image segmentation in tHeG B color space. FASTGMM results are shown on the left, while ESBoutcomes are represented on the right. For
each image, there is a subset composed by the original infageolor image reconstruction, and the binary image labeli¢h the connected components,
respectively. Each image contains the objects of intenggstlighted in red for the color output, and green for the bnane superimposed. The objects have
been marked with their mean and covariance, representedegikar ellipse in 2D, obtained with the connected compté&beling.

[ RGB Color Segmentation Results |

Image number| Algorithm GDetec_ted number ofk l\llumb'er E_Iapsed Pereentage time Finel Percentage c_iifference

aussian components of iterations | Time [s] difference log-likelihood on log-likelihood
® e 2 26— Tosare 30906415 [ pigryary| 555431669
@ | Freae 2 S 2riofey| 291852616 | iginirrayy) 129245556
® [ remew 2 T asszrar] 0L989752¢ |“meprany| | -S444871087
@ | rean 3 ST zomsr| 9S85 | “Uiirigy-| 2432889240
©  |Freae 7 To5 TSm0z | S24UTS | inigrasoy 423122229

TABLE |

EXPERIMENTAL RESULTS ON REAL ROBOTIC IMAGES SEGMENTATION PERFORMED IN THERG B COLOR SPACE

the HSV color segmentation than theGB one. It is well- tions.
known that theH SV representation is more robust to light

changes, for instance. Imaggst, and5 are better segmented Comparing the segmented images, it may seem at a first

) . . . glance that FASTGMM performs better than FSAEM. This is
in terms of number of effective objects detected. Specifical :
rt])ecause generally FSAEM uses less mixture components for

input 3 gives rise to better results for the FSAEM approac ; . L - .
while resulting less precise with the FASTGMM segmentatiorr1épresemIng the image (this is clear both in Fig. 2 and in &ig

However, image is confused for both algorithms within theWhere the FSAEM reconstructed images - the middie column

HSV color space. Besides, imageis better segmented by%nté?r?]:g?z;eet& ?er(foler?i?ié)r:i(w::e)s.eg?nws\r/neilre:hﬁer\l/ne?:ﬂ;glseun
FASTGMM in both color spaces. Finally, it is wort noticing ) g y :

that seamenting withifZ SV color space requires less itera-FSAEM is capable of extracting the important features a$ wel
g 9 P q as FASTGMM, while requiring less computational resources.



FASTGMM color FASTGMM - FSAEM Color FSAEM
Original Image
reconstructed image binary image reconstructed image binary image

Original Image

@

@)

@ -
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® -

Fig. 3. Image segmentation in théSV color space. FASTGMM results are shown on the left, while ESoutcomes are represented on the right. The
input images are the same as in Fig. lll, and so are the outjnstess organization. As for the images in the previous figheerecognized objects of interests
have been highlighted and superimposed to the originalingst

[ HSV Color Segmentation Results |

image number| Algoritnm | eSS O L s | et | aftoresce | logkeihood | oniog skethood |

O F/'A:SSI\LI;EI:\AAM g ig %gigg? 171.7325763 '33‘85%6297-3_81%6177 -33.18992954
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TABLE Il

EXPERIMENTAL RESULTS ON REAL ROBOTIC IMAGES SEGMENTATION PERFORMED IN THEH SV COLOR SPACE

B. Log-Likelihood C. Cost Function

Finally, we provide the cost function evolution of the MML
information criterion as function of the number of compotsen
for the FSAEM algorithm (FASTGMM do not provide an

Fig. 4 shows the final log-likelihood of both approachesnformation criterion). Fig. 5 shows a couple of examples,
Here it is possible to see when the FASTGMM or FSAEM addamely those of the image no. 4 and, both present in Fig. 2
a component, i.e. corresponding to the spikes that lower thed in Fig. 3.
curve. Then, when the log-likelihood does not increase any- _
more significantly the FASTGMM computation stops, whild- Elapsed time
FSAEM stops when there are no more components to beGenerally FSAEM performs faster than FASTGMM. The
replicated. results in tab. | and in tab. Il demonstrate that generally
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Fig. 4. The final log-likelihood evolution as function of thember of iterations of two different kinds of input data diseithin the experiments: The image
(4) - (a) FASTGMM and (b) FSAEM, and the image (5) - (c) FASTGMMd (d) FSAEM.

x10° Cost function 10 Cost function

Cost function
Cost function
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w
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(a) (b)

Fig. 5. The cost function evolution as function of the numéliecomponents of two different kinds of input data used wittiie experiments for the FSAEM
algorithm: (a) The image (4), (b) and the image (5).

FSAEM runs faster. Indeed, for the first three images the Our explanation relies both on the splitting procedure and
elapsed time can be considered comparable, if not double foe stopping criterion, which are more heuristic in FAST-
FSAEM with respect to FASTGMM. Nevertheless, the elapsgaMM. The FSAEM replication process, that exploit all the
time is so low that it makes this comparison not accurate. Asixture classes by means of the binary tree, may be the
a confirmation the last two image$,and 5, that require a reason for the slower computation with the first three images
longer computation, advantage FSAEM. However, this also provides a better accuracy in the chdice o
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