
Robotic Color Image Segmentation by Means of
Finite Mixture Models

Nicola Greggio⊘,†- IEEE Member, Alexandre Bernardino† - IEEE Member
José Santos-Victor† - IEEE Member

⊘ ARTS Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera
Viale R. Piaggio, 34 - 56025 Pontedera, Italy

† Instituto de Sistemas e Robótica, Instituto Superior Técnico
1049-001 Lisboa, Portugal

⊘nicola.greggio@sssup.it - †ngreggio@isr.ist.utl.pt

Abstract— Image segmentation for robots requires to be fast,
in order to deal with ever more powerful processors. Moreover, it
is assumed to be robust to environmental changes, such as light
conditions. In this paper we propose the application of a couple of
unsupervised learning algorithms for the estimation of thenumber
of components and the parameters of a mixture model for image
segmentation. These serve for the unsupervised identification of
multiple different objects in a visual scene, such as for a subsequent
localization and tracking. We compare our previous technique
against the new one. The distinctive aspect of our new approach
is related to a top-down hierarchical search for the number of
components by means of a binary tree decision structure. This
work analyzes both approaches, two previous work of ours, in
terms of applicability to object detection for robotic applications.
Besides, we propose the computational burden evaluation for the
two algorithms.

Index Terms - Robotics, Computer Vision, Object Seg-
mentation, Unsupervised Learning, Self-Adapting Expectation
Maximization

I. I NTRODUCTION

Nowadays, computer vision and image processing are in-
volved in many practical applications. The constant progress
in hardware technologies leads to new computing capabilities,
and therefore to the possibilities of exploiting new techniques.
Image segmentation is a key low level perceptual capability
in many robotics related application, as a support function
for the detection and representation of objects and regions
with similar photometric properties. Several applications in
humanoid robots [1], rescue robots [2], or soccer robots [3]
rely on some sort on image segmentation [4]. Additionally,
many other fields of image analysis depend on the performance
and limitations of existing image segmentation algorithms:
video surveillance, medical imaging and database retrieval are
some examples [5], [6].

A. Related Work

Two main principal approaches for image segmentation are
adopted: Supervised and unsupervised. The latter one is the
one of most practical interest. It may be defined as the task
of segmenting an image in different regions based on some
similarity criterion among each region’s pixels.

Several techniques have been proposed in the literature
for unsupervised learning, from Kohonen maps [7], Growing
Neural gas [8], [9], k-means [10], to Independent component
analysis [11], [12], etc. Particularly successful is the Expecta-
tion Maximization algorithm applied to finite mixture models.
Fitting a mixture model to the distribution of the data is
equivalent, in some applications, to the identification of the
clusters with the mixture components [13].

One of the most widely used distributions is the normal,
or Gaussian, distribution. The normal distribution can be used
to describe, at least approximately, any variable that tends to
cluster around the mean. If data is generated by a mixture of
Gaussians, the clustering problem will reduce to the estimation
of the number of Gaussian components and their parameters.
Expectation-Maximization (EM) algorithm is well known and
attractive approach for learning the parameters of mixture
models [13], [14]. It always converges to a local optimum
[15], especially for the case of Normal mixtures [13], [16].
However, it also presents some drawbacks. For instance, if
requires thea-priori specification of the model order, namely,
the number of components and its results are sensitive to
initialization. The selection of the right number of components
is a critical issue. The more components there are within the
mixture, the better the data fit will be. Unfortunately, increas-
ing the number of components will lead to data overfitting and
to increase in the computational burden. Therefore, findingthe
best compromise between precision, generalization and speed
is an essential concern. A common approach to address this
compromise is to try different hypothesis for the number of
components, and then selecting the best model according to
some appropriate model selection criteria.

Different techniques can be used to select the best number
of components in a mixture distribution. These can be divided
into two main classes:off-line andon-line techniques.

The first ones evaluate the best model by executing indepen-
dent runs of the EM algorithm for many different initializa-
tions, and evaluating each estimate with criteria that penalize
complex models (e.g. the Akaike Information Criterion (AIC)
[17], the Schwarz’s Bayesian Information Criterion [18], the
Rissanen Minimum Description Length (MDL) [19], and Wal-



lace and Freeman Minimum Message Length (MML) [20]).
All of these criteria, in order to be effective, have to be eval-
uated for every possible number of models under comparison.
Therefore, it is obvious that, for having a sufficient search
range the complexity goes with the number of tested models
as well as the model parameters.

The second ones start with a fixed set of models and
sequentially adjust their configuration (including the number
of components) based on different evaluation criteria. Pernkopf
and Bouchaffra proposed a Genetic-Based EM Algorithm
capable of learning gaussians mixture models [21]. They
first selected the number of components by means of the
minimum description length (MDL) criterion. A combination
of genetic algorithms with the EM has also been explored.
Simulating annealing has also been explored as a possible
solution for mixture selection, with Ueda and Nakano who
proposed the deterministic annealing (DAEM), in which a
modified posterior probability parametrized bytemperatureis
derived to avoid local maxima [22]. Uedaet Al. proposed
a split-and-merge EM algorithm (SMEM) to alleviate the
problem of local convergence of the EM method [23].

Greedy algorithms take part within the second class of
unsupervised classification techniques. They are characterized
by making the locally optimal choice at each stage with
the hope of finding the global optimum. Applied to the
EM algorithm, they usually start with a single component
(therefore side-stepping the EM initialization problem),and
then increase their number during the computation. At the
time, no precise solution has been posted to address this
drawback. In 2002 Vlassis and Likas introduced a greedy
algorithm for learning Gaussian mixtures [24]. They start with
a single component covering all the data. Then they split an
element and perform the EM locally for optimizing only the
two modified components. Nevertheless, the total complexity
for the global search of the element to be splitO(n2).
Subsequently, Verbeek et al. developed a greedy method to
learn the gaussians mixture model configuration [25]. Their
search for the new components is claimed to takeO(n), while
our recursive search by means of the binary tree onlyO(log n).

B. Our contribution

We want to find a procedure for the unsupervised identi-
fication of multiple different objects in a visual scene, fora
further localization and tracking. Therefore, we first needto
segment the color image in a unsupervised way in order to
detect the different targets and distinguishing them from the
background. Then, we need to identify them. We decided to
use Gaussian mixture models due to their accuracy and general
applicability. Besides, in order to sidestep the shortcoming
of high computational burden together with the need of the
a − priori decision of the number of components, we opted
for a greedy self-organizing approach.

However, greedy algorithms mostly (but not always) fail to
find the globally optimal solution, because they usually do not
operate exhaustively on all the data. Our new technique tries
to overcome this limitation by using a binary tree for deciding

which component has to be replicated in an exhaustive way.
The optimization of the parameters is done with expectation
maximization (EM) and the search for the best number of
parameters is done in a top-down manner, by starting with a
single component and progressively adapting the mixture by
adding new elements according to a binary tree structure. We
compare a previous greedy algorithm we developed in [26],
and then refined in [27], versus our new technique, presented
in [28]. The restriction of the previous approach relies on
the excessive number of input parameters to be tuned before
the computation, and the heuristic stopping criterion. The
latter may cause that more components than those effective
necessary may be employed, resulting in an excessive mixture
complexity and long computation.

C. Outline

In sec. II we introduce the analyzed algorithms. Besides,
in sec. II-F and II-G we propose a computational complexity
analysis. Then, in sec. III we describe our experimental set-up
for testing the validity of our new technique and we compare
our results against our previous alternative. Finally, in sec. V
we conclude.

II. THE FINITE MIXTURE LEARNING ALGORITHMS

In this section we provide a description about the differences
between the two approaches. Since now, we will refer to these
as:

• FASTGMM: The previous approach [27];
• FSAEM: The new algorithm [28].
In the following we present a brief overall description of

both approaches, and a deeper analysis of the adding a new
component process, together with the stopping criterion.

A. FASTGMM Overall Description

The basic idea is to incrementally estimate the mixture
parameters and the number of components simultaneously.
This algorithm starts with a single component and only incre-
ments its number as the optimization procedure progresses.
The number of components is incremented at certain stages
of the optimization procedure but the values of the mixture
parameters are incrementally changed and not reinitialized.

The key issue of our technique is looking whether one or
more Gaussians are not increasing their own likelihood during
optimization.

For this algorithm we need to introduce a state variable
related to the state of the gaussian component:

• Its age, that measures how long the component’s own
likelihood does not increase significantly;

Then, the split process is controlled by the following adaptive
decision thresholds:

• One adaptive thresholdΛTH for determining a significant
increase in likelihood;

• One adaptive thresholdATH for triggering the split
process based on the component’s own age;

• One adaptive thresholdξTH for deciding to split a
gaussian based on its area.



It is worth noticing that even though we consider three
thresholds to tune, all of them are adaptive, and only require
a coarse initialization.

However, one of the biggest limitations is that this is suitable
only for Gaussian mixtures, and not for generic ones.

B. FSAEM Overall Description

This algorithm starts with a single component. Then, by
following a binary tree structure new classes are added by
means of replicating existing ones, once a time. Subsequently,
our modified EM algorithm is run in order to achieve the
current mixture best configuration [28]. Furthermore, the cost
function is evaluated in order to decide whether keeping or
discarding the current mixture. In the first case, the binary
tree will be updated with the new solution. When a new
mixture element is added, it will become a child together
with the original one. Therefore, within our representation,
its father dies, and only the two children survive. Otherwise,
in the second case (i.e. when the new mixture configuration is
discarded), the previous mixture will be restored as a starting
point for a new component replication, and that node will
never be proposed to have children anymore. Finally, when
there will no node eligible to have children (i.e. when all the
combinations have been tried), the algorithm terminates.

It is worth noticing that this technique can be applied to
any mixture, rather than Gaussian ones, merely.

C. Adding a new mixture class

One the one hand, FASTGMM splits the component with
highest covariance matrix determinant (and therefore that
covering the highest number of data), when this overcome a
threshold. The latter one follows a decreasing law, in orderto
avoid stationary situations. However, both the splitting process
itself is ill-posed (there are infinite solutions [23]), andthe
chosen decision criterion is arbitrary. Finally, the law leading
the thresholds variation is heuristic.

On the other hand, FSAEM employs a replication process
rather than a splitting procedure. The new component will
be the exact copy of that candidate to be replicated. This
allows to a unique solution, with the only exception of a
variation in the mean of these components (in order to not have
them exactly superimposed, situation not allowing the EM
procedure to escape the current local minimum [28]). Besides,
instead of relying on empirical thresholds for determiningthe
most suitable component to be replicated, all the classes are
replicated in sequence, in order to exploit all the mixture
combinations possibilities. This is achieved thanks to the
binary tree decision structure, showed in Fig. 1.

D. Model Selection Criterion: Minimum message length
(MML)

Since no merging or annihilating operation ha been envi-
sioned, it is worth being sure about a new component insertion.
FSAEM integrates a derivation of the MML criterion in order
to evaluate whether the new mixture configuration (i.e. that
after the last component replication) provides a better data

1

2

4

11

5

10

3

(a) Binary tree indexes

0

0

2

4

0

3

1

(b) Binary tree contents

Fig. 1. Binary tree mixture distribution structure example: On the left the
binary tree indexes representation, used as decision structure; on the right the
contents of the binary tree used as look up table. The array correspondent
representation is:[0, 0, 1, 2, 0, 3, 4]. The0 contents are relative to the parents
have been eliminated after creating their children.

description in terms of the MML evaluation. In the affirmative
case, the current mixture configuration is kept, a new replica-
tion is performed following the updated binary tree. Otherwise,
the old mixture configuration is resumed (therefore voiding
the last component insertion). The binary tree is updated in
order to not replicate the same component anymore once the
correspondent mixture has been discarded.

We adopted the minimum message length (MML) criterion
developed in [29], which formulation is:

ϑ̄opt = arg min
ϑ̄

{ −L
(

X |ϑ̄
)

+
N

2

c
∑

i=1

ln
(n · wi

12

)

+
c

2
(N + 1 − ln 12n)

}

(1)

In eq. (1):

• −L
(

X |ϑ̄
)

is the log-likelihood of the whole distribution;
• N is the number of parameters specifying each compo-

nent (e.g. in case of a normal distribution they are the
mean and the covariance matrix, counted as 1 parameter
for each input dimension for the mean and 1 for each
the covariance among each dimension, resulting inN =
d + (d + 1) ∗ d/2);

• c is the number of mixture components;
• n is the number of input data;
• wi is thea-priori class, or component, probability, there-

fore resultingn · wi the number of components of the
classi.

E. Stopping criterion

On the one side, FASTGMM relies on an empirical stopping
criterion. This, together with the splitting procedure mayresult
in having the best mixture data description.

On the other side, FSAEM stops when all the mixture repli-
cation combinations have been exploited. Besides, the MML
criterion described in sec. II-D ensure that when the insertion
of a new component do not improve the data description, this
is discarded.

F. FASTGMM Computational complexity evaluation

TakingD as the input dimension, the computational burden
of each iteration is:



• the original EM algorithm takesO (N · D · nc) for each
step, for a total ofO (4 · N · D · nc) operations;

• the algorithm takesO (nc) for evaluating all the single
Gaussians log-likelihood;

• the split operation requiresO (D).
• the others takeO (1).
• the optional procedure of optimizing the selected mixture

takesO (4 · N · D · nc), being the original EM.
Therefore, the original EM algorithm takes:

• O (4 · N · D · nc), while our algorithm adds
O (D · nc) on the whole, or O (4 · N · D · nc),
giving rise to O (4 · N · D · nc) + O (D · nc) =
O (4 · N · D · nc + D · nc) = (nc · D · (4N + 1)) in the
first case;

• 2 · O (4 · N · D · nc) + O (D · nc) =
O (8 · N · D · nc + D · nc) = (nc · D · (8N + 1)) in
the second case, with the optimization procedure.

G. FSAEM Computational complexity evaluation

The computational burden of each iteration of the algorithm
is:

1. The original EM algorithm takesO(k · D · nc) for the
whole mixture log-likelihood evaluation,O(k ·D ·nc) for
the E-step, and approximatively the same amount for the
M-step, andO(nc) for the prior re-estimation, therefore
resulting inO(k · D · (nc + 1)) for each step;

2. The binary tree, if complete, takesO(log nc) for the
insertion, the selection, and the removal operation.

3. Our algorithm takesO(nc) for evaluating all the com-
ponents possible ill-conditioning (this would result in
evaluating the covariance matrix determinants in case of
Gaussian components, which requiresO(D!) addition-
ally, and anotherO(D) for replicating along all the input
dimensions whether necessary);

4. Our replication operation requiresO(D!) for the SVD
decomposition, plus otherO(nc) for the components
reallocation.

This gives rise to the total computation:O(k ·D ·(nc+1))+
O(log nc)+O(nc)+O(D!)+O(D)+O(D!)+O(nc)+O(1) =
O(k · (D + 1) · (nc + 3) + log nc) + 2O(D!)).

Considering that usuallyD << k and nc << k, we
can assume that the computational complexity does not differ
considerably between the general case and the application to
the mixtures of Gaussians. Therefore, we assume that the total
computational burden goes withO(k ·D · (nc + 1) + log nc).

III. EXPERIMENTS

Due to its robotic application, we tested our algorithm on
camera images taken from our robotic platform, the iCub. The
iCub cameras are two DragonFly with VGA resolution and 30
fps speed. The acquired images have a resolution of320x240.
We will segment these images by means both algorithms,
in order to compare them both in terms of accuracy and,
processing speed.

We segmented the images as 5-dimensional input in the
(R,G,B) space and (x,y), i.e. a generic input point was of kind:

p ∈ (R, G, B, x, y). Then, we applied a simple Gaussian blur
and the connected component labeling.

The color image segmentation results are shown in Fig.
III. We highlight the blob findings, centering them on their
mean and surrounded by their covariance matrix (represented
as an ellipse in 2D, green for the binary images and red for
the color ones). Input(1), (2), (3) have been chosen to have
a considerably lower light contrast than the last two ones,
(4), (5). For each row, the first three images on the left, for
each column, are obtained with the FASTGMM algorithm,
while the other three on the right with the FSAEM approach.
Here, the original image, the mixture learning segmented
image, and the connected component resultant image are
shown, respectively.

We made the same experiments with the same input images
both with theRGB color segmentation and theHSV one.
Then, we also show the results for the same images in the
(H, S, V, x, y) representation in Fig. IV.

Finally, we also measure the elapsed time of both algo-
rithms. This has been performed by means of thetime profile
matlab function. However, although this is claimed to be
not sensitive to the other running applications (it counts the
number of float operations), we experimented that this is
not true, indeed. Therefore, this test cannot be consideredas
precise ad exhaustive, but indicative, only.

IV. DISCUSSION

The accuracy of the image segmentation greatly depends on
the number of employed mixture components. The higher it is,
the more accurate the image reconstruction will be. However,
using too many components may lead to an overfitting of
the input set, together with an excessive increase of the
computational burden. Therefore, finding thebest compromise
is a must. With FSAEM thebest compromise is decided by
the MML criterion of eq. (1).

In tab. I the results of FASTGMM and FSAEM applied
to the selected images with theRGB color segmentation are
shown, while in tab. II there are the results for theHSV color
space. In each table we report:

• The number of detected components;
• The actual number of components, i.e. that of the gener-

ation mixture;
• The number of total iterations;
• The elapsed time (this is relative to the image segmenta-

tion only, and not to the connected component labeling);
• The percentage difference in time for the new algo-

rithm (T imeFSAEM) with respect to the old formulation
(T imeFSAEM), evaluated asTimeF SAEM−TimeF SAEM

TimeF SAEM
·

100;
• The final log-likelihood;
• The percentage difference in final log-likelihood for the

new algorithm versus the previous approach.

A. RGB versusHSV color space

Comparing the results shown in in Fig. 2 and in Fig. 3 it
can be seen that generally both algorithm perform better under



Original Image
FASTGMM color FASTGMM

Original Image
FSAEM Color FSAEM

reconstructed image binary image reconstructed image binary image

(1)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(2)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(3)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(4)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(5)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Fig. 2. Image segmentation in theRGB color space. FASTGMM results are shown on the left, while FSAEM outcomes are represented on the right. For
each image, there is a subset composed by the original image,the color image reconstruction, and the binary image labeled with the connected components,
respectively. Each image contains the objects of interest highlighted in red for the color output, and green for the binary one superimposed. The objects have
been marked with their mean and covariance, represented as aregular ellipse in 2D, obtained with the connected components labeling.

RGB Color Segmentation Results

Image number Algorithm
Detected number of Number Elapsed Percentage time Final Percentage difference

Gaussian components of iterations Time [s] difference log-likelihood on log-likelihood

(1) FASTGMM 2 38 1.244413 -37.05064155 -278959.4334 -55.54316696
FSAEM 2 26 1.705476 -433902.3373

(2) FASTGMM 3 21 0.933944 -129.1852616 -313336.7632 -12.9245556
FSAEM 2 38 2.140462 -353834.1474

(3) FASTGMM 2 62 2.244048 -101.9897524 -285480.1774 -54.44871057FSAEM 2 121 4.532747 -440920.453

(4)
FASTGMM 11 332 46.743716

95.54896534
-403884.4389

-2.432889246FSAEM 3 31 2.080579 -413710.5

(5) FASTGMM 11 285 34.017004 82.4117315 -387677.3402 -4.231222296
FSAEM 4 106 5.983002 -404080.8302

TABLE I

EXPERIMENTAL RESULTS ON REAL ROBOTIC IMAGES. SEGMENTATION PERFORMED IN THERGB COLOR SPACE.

the HSV color segmentation than theRGB one. It is well-
known that theHSV representation is more robust to light
changes, for instance. Images1, 4, and5 are better segmented
in terms of number of effective objects detected. Specifically,
input 3 gives rise to better results for the FSAEM approach,
while resulting less precise with the FASTGMM segmentation.
However, image2 is confused for both algorithms within the
HSV color space. Besides, image4 is better segmented by
FASTGMM in both color spaces. Finally, it is wort noticing
that segmenting withinHSV color space requires less itera-

tions.

Comparing the segmented images, it may seem at a first
glance that FASTGMM performs better than FSAEM. This is
because generally FSAEM uses less mixture components for
representing the image (this is clear both in Fig. 2 and in Fig. 3,
where the FSAEM reconstructed images - the middle column
on the right set - are less precise). However, the final results
in terms of object recognition may seem similar. Nevertheless,
FSAEM is capable of extracting the important features as well
as FASTGMM, while requiring less computational resources.



Original Image
FASTGMM color FASTGMM

Original Image
FSAEM Color FSAEM

reconstructed image binary image reconstructed image binary image

(1)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(2)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(3)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(4)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(5)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Fig. 3. Image segmentation in theHSV color space. FASTGMM results are shown on the left, while FSAEM outcomes are represented on the right. The
input images are the same as in Fig. III, and so are the output subsets organization. As for the images in the previous figure, the recognized objects of interests
have been highlighted and superimposed to the original pictures.

HSV Color Segmentation Results

Image number Algorithm Detected number of Number Elapsed Percentage time Final Percentage difference
Gaussian components of iterations Time [s] difference log-likelihood on log-likelihood

(1) FASTGMM 2 25 0.755909 -171.7325763 -338069.989677 -33.18992954FSAEM 2 48 2.054051 -450275.181

(2)
FASTGMM 3 22 0.877972

-288.2384632
-340969.8623

-17.78399023FSAEM 2 76 3.408625 -401607.9093

(3)
FASTGMM 2 25 0.754844

-117.6407311
-352858.824

-29.54999667FSAEM 2 33 1.642848 -457128.5947

(4) FASTGMM 7 80 6.484346 0.1370223 -455537.6481 -3.387910601
FSAEM 4 117 6.475461 -470970.8564

(5) FASTGMM 10 274 48.567681 93.45860059 -435224.6992 -2.347807229FSAEM 3 56 3.177006 -445442.9361

TABLE II

EXPERIMENTAL RESULTS ON REAL ROBOTIC IMAGES. SEGMENTATION PERFORMED IN THEHSV COLOR SPACE.

B. Log-Likelihood

Fig. 4 shows the final log-likelihood of both approaches.
Here it is possible to see when the FASTGMM or FSAEM add
a component, i.e. corresponding to the spikes that lower the
curve. Then, when the log-likelihood does not increase any-
more significantly the FASTGMM computation stops, while
FSAEM stops when there are no more components to be
replicated.

C. Cost Function

Finally, we provide the cost function evolution of the MML
information criterion as function of the number of components
for the FSAEM algorithm (FASTGMM do not provide an
information criterion). Fig. 5 shows a couple of examples,
namely those of the image no. 4 and, both present in Fig. 2
and in Fig. 3.

D. Elapsed time

Generally FSAEM performs faster than FASTGMM. The
results in tab. I and in tab. II demonstrate that generally



0 20 40 60 80 100 120
−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

−3.9
x 10

5 LogLikelihood

Iteration number

Lo
gL

ik
el

ih
oo

d

0 10 20 30 40 50 60
−5.6

−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2
x 10

6 LogLikelihood

Iteration number

Lo
gL

ik
el

ih
oo

d

(a) (b)

0 100 200 300 400 500 600
−6

−5.9

−5.8

−5.7

−5.6

−5.5

−5.4

−5.3
x 10

5 LogLikelihood

Iteration number

Lo
gL

ik
el

ih
oo

d

0 5 10 15 20 25 30 35 40
−4.5

−4.45

−4.4

−4.35

−4.3

−4.25

−4.2

−4.15

−4.1
x 10

5 LogLikelihood

Iteration number

Lo
gL

ik
el

ih
oo

d

(c) (d)
Fig. 4. The final log-likelihood evolution as function of thenumber of iterations of two different kinds of input data used within the experiments: The image
(4) - (a) FASTGMM and (b) FSAEM, and the image (5) - (c) FASTGMMand (d) FSAEM.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10

6 Cost function

Number of components

C
os

t f
un

ct
io

n

1 1.5 2 2.5 3 3.5 4
4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5
x 10

5 Cost function

Number of components

C
os

t f
un

ct
io

n

(a) (b)
Fig. 5. The cost function evolution as function of the numberof components of two different kinds of input data used within the experiments for the FSAEM
algorithm: (a) The image (4), (b) and the image (5).

FSAEM runs faster. Indeed, for the first three images the
elapsed time can be considered comparable, if not double for
FSAEM with respect to FASTGMM. Nevertheless, the elapsed
time is so low that it makes this comparison not accurate. As
a confirmation the last two images,4 and 5, that require a
longer computation, advantage FSAEM.

Our explanation relies both on the splitting procedure and
the stopping criterion, which are more heuristic in FAST-
GMM. The FSAEM replication process, that exploit all the
mixture classes by means of the binary tree, may be the
reason for the slower computation with the first three images.
However, this also provides a better accuracy in the choice of



the component to be replicated, and this in long term gives rise
to a fewer EM iterations, and then to a lower elapsed time.

Moreover, FSAEM does not depend on the FASTGMM
heuristic parameters and thresholds.

Finally, it can be argued that the approaches take always
more than 750 ms to process each image. In a robotics
framework, this time could be excessively high (it is near
to 1-1.2 fps) and it could be a source of security problems.
However, the algorithms have been implemented under Matlab
herein, which is a interpreted language rather than C++, which
is a compiled one. This means that the first one will result
much slower than the second one. Generally, and this is for the
iCub repository software, for this reason robotics applications
are written in C/C++, and not in Matlab. We choose the latter
for a sake of practicality.

V. CONCLUSION

In this paper we compared two unsupervised algorithms
that on-line learns a finite mixture model from multivariate
data, presented in a couple of previous work of ours. We
briefly summarized the algorithms, with respect to their more
salient characteristics. Besides, we also presented an accurate
computational complexity analysis of both approaches. Finally,
we discuss our results, arguing for a more general validity of
the more recent approach.

ACKNOWLEDGEMENTS

This work was supported by the European Commission,
Project IST-004370 RobotCub and FP7-231640 Handle, and
by the Portuguese Government - Fundação para a Ciência
e Tecnologia (ISR/IST pluriannual funding) through the
PIDDAC program funds and through project BIO-LOOK,
PTDC / EEA-ACR / 71032 / 2006.

REFERENCES

[1] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning
object affordances: From sensory motor maps to imitation,”IEEE Trans.
on Robotics, vol. 24, no. 1, 2008.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Bridging
the gap between simulation and reality in urban search and rescue”,” in
Robocup 2006: Robot Soccer World Cup X, 2006.

[3] N. Greggio, G. Silvestri, E. Menegatti, and E. Pagello, “Simulation of
small humanoid robots for soccer domain.”Journal of The Franklin
Institute - Engineering and Applied Mathematics, vol. 346, no. 5, pp.
500–519, 2009.

[4] M. Vincze, “Robust tracking of ellipses at frame rate,”Pattern Recog-
nition, vol. 34, pp. 487–498, 2001.

[5] J. G. G. Dobbe, G. J. Streekstra, M. R. Hardeman, C. Ince, and
C. A. Grimbergen, “Measurement of the distribution of red blood
cell deformability using an automated rheoscope,”Cytometry (Clinical
Cytometry), vol. 50, pp. 313–325, 2002.

[6] H. Shim, D. Kwon, I. Yun, and S. Lee, “Robust segmentationof cerebral
arterial segments by a sequential monte carlo method: Particle filtering,”
Computer Methods and Programs in Biomedicine, vol. 84, no. 2-3, pp.
135–145, December 2006.

[7] T. Kohonen, “Analysis of a simple self-organizing process.” Biological
Cybernetics, vol. 44, no. 2, pp. 135–140, 1982.

[8] B. Fritzke, “A growing neural gas network learns topologies.” Adv ances
in Neural Inform ation Processing Systems 7 (NIPS’94), MIT Press,
Cambridge MA, pp. 625–632, 1995.

[9] J. Holmström, “Growing neural gas - experiments with gng, gng with
utility and supervised gng,” 2002.

[10] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations.”Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability., pp. 281–297, 1967.

[11] P. Comon, “Independent component analysis: a new concept?” Signal
Processing, Elsevier, vol. 36, no. 3, pp. 287–314, 1994.

[12] A. Hyvärinen, J. Karhunen, and E. Oja, “Independent component
analysis,”New York: John Wiley and Sons, vol. ISBN 978-0-471-40540-
5, 2001.

[13] G. McLachlan and D. Peel, “Finite mixture models.”John Wiley and
Sons, 2000.

[14] H. Hartley, “Maximum likelihood estimation from incomplete data.”
Biometrics, vol. 14, pp. 174–194, 1958.

[15] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood estimation
from incomplete data via the em algorithm,”J. Royal Statistic Soc.,
vol. 30, no. B, pp. 1–38, 1977.

[16] L. Xu and J. M., “On convergence properties of the em algorithm for
gaussian mixtures,”Neural Computation, vol. 8, pp. 129–151, 1996.

[17] Y. Sakimoto, M. Iahiguro, and G. Kitagawa, “Akaike information
criterion statistics,”KTK Scientific Publisher, Tokio, 1986.

[18] G. Schwarz, “Estimating the dimension of a model,”Ann. Statist., vol. 6,
no. 2, pp. 461–464, 1978.

[19] J. Rissanen, “Stochastic complexity in statistical inquiry.” Wold Scientific
Publishing Co. USA, 1989.

[20] C. Wallace and P. Freeman, “Estimation and inference bycompact
coding,” J. Royal Statistic Soc. B, vol. 49, no. 3, pp. 241–252, 1987.

[21] F. Pernkopf and D. Bouchaffra, “Genetic-based em algorithm for learn-
ing gaussian mixture models,”IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 27, no. 8, pp. 1344–1348, 2005.

[22] N. Ueda and R. Nakano, “Deterministic annealing em algorithm,” Neural
Networks, vol. 11, no. 2, pp. 271–282, 1998.

[23] N. Ueda, R. Nakano, Y. Ghahramani, and G. Hiton, “Smem algorithm
for mixture models,”Neural Comput, vol. 12, no. 10, pp. 2109–2128,
2000.

[24] N. Vlassis and A. Likas, “A greedy em algorithm for gaussian mixture
learning,” Neural Processing Letters, vol. 15, pp. 77–87, 2002.

[25] J. Verbeek, N. Vlassis, , and B. Krose, “Efficient greedylearning of
gaussian mixture models,”Neural Computation, vol. 15, no. 2, pp. 469–
485, 2003.

[26] N. Greggio, A. Bernardino, and J. Santos-Victor, “Image segmentation
for robots: Fast self-adapting expectation maximization.” International
Conference on Image Analysis and Recognition (ICIAR), Povoa de
Varzim, Portugal, June 21-23, 2010.

[27] N. Greggio, A. Bernardino, C. Laschi, P. Dario, and J. Santos-Victor,
“Fast estimation of gaussian mixture models for image segmentation,”
Machine Vision and Application, Accepted for publication 2011.

[28] N. Greggio, A. Bernardino, C. Laschi, J. Santos-Victor, and P. Dario,
“Unsupervised greedy learning of finite mixture models.”IEEE 22th
International Conference on Tools with Artificial Intelligence (ICTAI
2010), Arras, France, October 27-29 2010.

[29] A. Figueiredo and A. Jain, “Unsupervised learning of finite mixture
models,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 24, no. 3, 2002.


