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Abstract: This paper presents the implementation of real-time tracking algorithm for following and evaluating the 3D
position of a generic spatial object. The key issue of our approach is the development of a new algorithm
for pattern recognition in machine vision, the Least Constrained Square-Fitting of Ellipses (LCSE), which
improves the state of the art ellipse fitting procedures. It is a robust and direct method for the least-square fitting
of ellipses to scattered data. Although it has been ellipse-specifically developed, our algorithm demonstrates
to be well suitable for the real-time tracking any spherical object, and it presents also robustness against
noise. In this work we applied it to the RobotCub humanoid robotics platform simulator. We compared its
performance with the Hough Transform, in terms of robustness (success/failure in the object detection) and
fitting precision. We performed several tests to prove the robustness of the algorithm within the overall system.
Finally we present our results.

1 INTRODUCTION

The impressive advance of research and development
in robotics and autonomous systems over the past few
years has led to the development of robotic platforms
of increasing motor, perceptual, and cognitive capa-
bilities. These achievements are opening the way for
new application opportunities that will require these
systems to interact with other robots or nontechni-
cal users during extended periods of time. The final
goal is creating autonomous machines that learn how
to execute complex tasks and improve their perfor-
mance throughout their lifetime. Motivated by this
objective the RobotCub (ROBotic Open-Architecture
Technology for Cognition, Understanding and Behav-
ior) project has been developed (Sandini et al., 2007).
This is a research initiative dedicated to the realization
of embodied cognitive systems.

1.1 Related work

The detection of circular objects is fundamental
in many applications, other than the developmental
RobotCub scenarios. An example is in the rescue em-

ployment of robotics platforms. A rescue robot is a
robot that has been designed for the purpose of aid-
ing rescue workers. Common situations that employ
rescue robots are mining accidents, urban disasters,
hostage situations, and explosions. Currently, the re-
search in rescue robotics is very fruitful (Carpin et al.,
2007). In addition, the NIST implemented a simula-
tor, USARSim (Urban Search And Rescue Simula-
tion) in order to develop rescue robots (Wang et al.,
2003). Circular ad elliptical objects can occur in body
parts, such as head, and eyes. Obviously, a clear
and precise object recognition is fundamental for such
robots to find an accident victim as soon as possible
with the highest precision as possible. Vamossy et
al applied an ellipse detection algorithm to a rescue
robot (Vamossy et al., 2003) in 2003, while, more
recently, Greggio et al used an ellipse detection al-
gorithm for recognizing the ball within the RoboCup
context (Greggio et al., 2009).

Other work in the robotics implementation of el-
lipse pattern recognition techniques has been per-
formed. Deniz et al used an ellipse detection algo-
rithm for face detection (Deniz et al., 2002). In their
work the authors focussed more on Human-computer



interaction. Moreover, Vincze et al used a RANSAC-
like method to find ellipses in real-world examples
(Vincze et al., 2000). They made experiments to vali-
date the capabilities of the approach with in real con-
texts. Finally, Teutsch et al applied the ellipse recog-
nition in industrial processes, focussing on the real-
time characteristics of their approach (Teutsch et al.,
2006).

1.2 Our Contribution

In this paper we implemented for the first time in a
real context our least-square fitting of ellipses tech-
nique (Greggio et al., 2010). We tested our new al-
gorithm, the B2AC (Fitzgibbon et al., 1999), and the
Hough transform (Leavers, 1992) under the same ex-
perimental conditions. We choose an actual task, i.e.
3D localization of a ball, and we compared these al-
gorithms’ performance in terms of overall localiza-
tion precision, and their robustness in terms of suc-
cess/failure detection of the object. We used the
simulation of a state of art robotics platform, the
RobotCub, in order to test it at best before doing this
with the real platform.

1.3 Outline

This paper is organized as follows. In section 1.3 we
will discuss the state of the art problem of the least-
square fitting of ellipses. Then, in section 4 we will
describe the RobotCub robotics platform, in terms of
its mechanics and the simulator we used. Further-
more, in section 5 we will briefly explore our vision
algorithms. In sec. 6 we will describe our experimen-
tal set-up. In section 7 we will discuss our results.
Finally, in section 8 we will conclude our work and
explain our projects as future research.

2 LEAST SQUARE FITTING OF
ELLIPSES

2.1 Least Square Fitting of Ellipses and
Hough transform: The State of the
Art

Two main approaches can be considered for circle de-
tection.

The first one is to use the Hough Transform (Yuen
et al., 1989). Since spatial perspective alters the per-
ceived objects, there is the need of calibrating the
camera(s). Then, a pattern recognition algorithm,

such as a simple color detection, can be applied and
subsequently the Hough circle transform can be ap-
plied in order to estimate all the ball’s features.

However, this approach can be complex to be im-
plemented, and even elevate resource consumption.
First, it requires the camera calibration. Moreover,
it can be argued that using a Hough Transform, for
instance, by augmenting the image’s resolution the
computational burden increases as well. Finally, the
Hugh transform needs to be set well, in terms of the
accumulator threshold at the center detection stage
parameter.

The second one is to use ellipse specific pat-
tern recognition algorithms, such as (Maini, 2006),
(Fitzgibbon et al., 1999). By processing a ball think-
ing of it as it were an ellipse, we overcome the distor-
tion problems. Circles in man-made scenes are almost
always distorted when projected onto the camera im-
age plane, therefore generating ellipses.

Some approaches based on Least Square (LS)
come out in recent years (Fitzgibbon et al., 1999),
(Gander et al., 1994). The principal reason is because
of its computational costs. There are two main kinds
of LS techniques: those based on the minimization
of the algebraic distance between (Algebraic Distance
Least Square, ADLS) the data points and the ideal
curve (intended as the deviations of the implicit equa-
tion from the expected value, i.e. zero, at each given
point) and those based on the minimization of the ge-
ometric distance (intended as the orthogonal, or short-
est, distances from the given points to the geomet-
ric feature to be fitted) of the same data points (Geo-
metric Distance Least Square, GDLS). ADLSs suffer
of high curvature bias (Kanatani, 1994) with the the
non-invariance to Euclidean transformation (Zhang,
1997). However, GDLSs suffer of being dependent
of iterative algorithms (Rosin and West, 1995) as
do cluster/voting (CV) techniques, therefore making
them not suitable for real-time applications (Fitzgib-
bon et al., 1999). This is a notable drawback, because
iterative algorithms do not have a fixed computational
time. Nevertheless, algebraic fitting algorithms may
guarantee a direct one-step convergence. We will fo-
cus on this way, starting from the work of Fitgibbon et
Al., called B2AC, which will be described in the next
section (Fitzgibbon et al., 1999).

2.2 Least Square Fitting of Ellipses
Algorithm

A central conic can be expressed by a second order
equation in its implicit form, as follows in the eq. (1):

F(x,y) = ax2 +bxy+ cy2 +dx+ ey+ f = 0 (1)



This can also be expressed in the vectorial form:

Fa(x) = x ·a =0 (2)

where a =[a,b,c,d,e, f ]T is the vector of the equation
coefficients, and x =[x2,xy,y2,x,y,1] is the vector of
the points’ coordinates, both relative to the conic sec-
tion.

Considering that we have this set of data points:

T = {(xi,yi) : i = 1...N} (3)

our aim is to minimize the sum of the squared dis-
tances of the curve 1 to he given points (3). In other
words, by assuming F(a,pi) as the algebraic distance
from the point pi = (xi,yi) to the conic expressed
by (2) the following non-linear minimization problem
has to be solved (DeSouza and Kak, 2002):

mina(
N

∑
i=1

F(a,pi)) = mina(
N

∑
i=1

F(a ·pi)2) (4)

In (Fitzgibbon et al., 1999) Fitzgibbon et Al. demon-
strated that solving the problem with the following
constraints gives rise to a unique exact solution:{

min‖D ·a‖2

aT ·C ·a = 1
(5)

where

D =

 x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

N xNyN y2
N xN yN 1

 (6)

and

C =


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (7)

Now, by using the Lagrange mulltiplier λ and dif-
ferentiating we obtain:{

2DTDa−2λCa = 0
aT ·C ·a = 1 (8)

or in the form: 
Sa = λCa
aT ·C ·a = 1
S = DTD

(9)

Finally, Fitzgibbon and colleagues demonstrated
that ãi = µiui is a unique solution of the system equa-
tions in (5) (Fitzgibbon et al., 1999), where:

µi =

√
1

uT
i Cui

=

√
λi

uT
i Sui

(10)

Therefore, the correspondent affine anti-
transformation (Maini, 2005) needs to be performed
after having found the optimal solution ã6.

Some improvements to the original method
(Fitzgibbon et al., 1999) have been made within the
last years. One deserves particular noticing. In
(Maini, 2005) it has been proposed to compute the
following affine transformation to the input points
before applying the Fitzgibbon’s et Al. algorihm
(Fitzgibbon et al., 1999) :

x̃ =
x− xm

sx
−1 ỹ =

y− ym

sy
−1 (11)

where

xm =
N

min
i=1

xi ym =
N

min
i=1

yi (12)

and

sx =
maxN

i=1 xi−minN
i=1 xi

2
sy =

maxN
i=1 yi−minN

i=1 yi

2
(13)

2.3 Least Square Fitting of Ellipses:
Drawbacks and Our improvement

In 2006 Maini criticized the ill-conditioning of the
scatter matrix S = DTD (9) and proposed an affine
transformation for solving it by recentering the el-
lipse points within a square with side length equals
to 2 (Maini, 2006). Moreover, in (Maini, 2006) it has
been reported that the algorithm in (Fitzgibbon et al.,
1999) has a specific source of errors not mentioned in
the paper, and that this causes numerical instabilities,
giving rise to the fact that the closer the data points are
to the ellipse (i.e. the less noise is present), the more
difficult is to locate a unique solution. This results
in the impossibility of having a solution (i.e. a pre-
cise and unique ellipse curve equation) when the data
points lie exactly on, or too close to, the ideal ellipse
curve. In (Maini, 2005), and (Maini, 2006), a resam-
pling procedure has been proposed, that perturbs the
data points with gaussian noise in the case of they are
too close to the ellipse. However, this requires an ex-
cessive computational burden. In fact, he claims that
the procedure must be applied an adequate number
of times M in order to make the algorithm effectively
robust. This makes this approach it not suitable for
real-time applications.

In this work we propose the application of a new
pattern recognition algorithm for the least square of
ellipses we presented in (Greggio et al., 2010) that
improves the original formulation (Fitzgibbon et al.,
1999). Our solution takes advantage of the improve-
ments given in (Maini, 2006) in terms of the ill-



conditioning of the scattered matrix S (9), and imple-
ments an alternative solution to the problem of the im-
possibility of having a solution when the data points
lie too close to the ideal ellipse curve. Moreover, our
approach is twofold, because on one hand it allows to
overcome this instability problem, while on the other
hand it can be always applied because of its extremely
low computational complexity.

3 LCSE: LEAST CONSTRAINED
SQUARE-FITTING OF
ELLIPSES

3.1 Instability of the exact ellipse
solution

In this section we propose a technique that overcomes
the previous problems. Instead of perturbing the orig-
inal points with gaussian noise for many times, we
decided to perturb the ellipse’s polar transformation
by adding a periodic symmetric function. We apply
the data perturbation only if the case of not stable nu-
merical solution, as in (Maini, 2006). However, due
to our low computational burden, it does not affect the
total computation sensibly, and can therefore be used
any time is required. The scheme is illustrated in Fig.
1.

Figure 1: The RobotCub’s Head. On the left image the head
without the cover is shown, while in the right image the
cover is shown.

The procedure is then described as follows:

• (a) Application of the affine transformation
(Maini, 2006).

• (b) Transformation from the cartesian coordinates

(x,y) to the polar ones (ρ,θ). The point i results:

ρi =
√

x2
i + y2

i

θi = arctan(
yi

xi
); with : xi ≥ 0,yi ≥ 0

θi =
π

2
− arctan(

xi

yi
); with : xi ≤ 0,yi ≥ 0

θi = π+ arctan(
yi

xi
); with : xi ≤ 0,yi ≤ 0

θi =
3π

2
− arctan(

xi

yi
); with : xi ≥ 0,yi ≤ 0

(14)

Figure 2: the original ellipse after the recentering procedure
(top-left), that represented in polar coordinates (middle), the
polar transformed ellipse with the sinusoidal perturbation
(bottom), and the resultant perturbed ellipse (top-right).

Our aim is to move the points around their initial
position, but maintaining the ellipse average over the
whole polar representation period (2π) within its po-
lar representation. Any symmetric periodic function
with period taken as integer multiplier of 1 added to
the original scattered data leaves the ellipse polar av-
erage unaltered. Therefore, we choose the sinusoidal
function, being continuous, easy to be implemented,
with zero average and infinitely derivable.

• (c) We choose the amplitude equals to A = 0.001
and the frequency equals to f = 1000Hz. The
point i obeys to:

ρ̂i = ρi +A · sin(2π f θi); (15)

• (d) When the ellipse is remapped in cartesian co-
ordinates, its results equally slightly perturbed in-
side and outside its ideal curve, which is the curve
that best interpolates these data. It results, for the
point i:

x̂i = ρ̂i · cos(θi);
ŷi = ρ̂i · sin(θi);

(16)



• (e) Now the ellipse is ready to be fitted by building
the design matrix (7), and by solving the eigenval-
ues problem (9).

• (f) Finally, the affine denormalization transforma-
tion of the point (a) has to be applied.

Fig. 2 shows the original ellipse after the recenter-
ing procedure (top-left), that represented in polar co-
ordinates (middle), the polar transformed ellipse with
the sinusoidal perturbation (bottom), and the resultant
perturbed ellipse (top-right).

3.2 Computational burden analysis

Now we analyze the computational complexity of the
algorithm proposed in (Maini, 2006), and our tech-
nique. Low computational complexity means higher
frame rates in real-time applications, and therefore
faster control loops. This results essential essential
in many actual applications (Vincze, 2001) (Kwolek,
2004) (Nelson and Khosla, 1994). Our new approach
is able to eliminate the numerical instability that af-
fects the original algorithm (Fitzgibbon et al., 1999)
as (Maini, 2006) does, but greatly faster. We consider
N being the number of points composing the ellipse
scattered data.

Now we will describe:

a. The resampling procedure proposed in (Maini,
2006);

b. Our new approach;

c. The final comparison between these two algo-
rithms.

→ a. Resampling procedure - (Maini, 2006): The
complete procedure has been explained in (Maini,
2005). For each point a gaussian noise compo-
nent is added. Therefore, this operation goes with
O(N). Therefore the sequence of operations 2, 3,
4, 5 has to be performed. This process goes with
O(6N)+O(42N), repeated for M times. Thus, the re-
sultant complexity is O(49MN). Finally, an averaging
procedure through all the ellipse data has to be per-
formed, which makes the overall process going with
O(MN)+O(49MN) = O(50MN).
→ b. Add sinusoidal perturbation - our new method:

This adds the sinusoidal perturbation to the ellipse
data after having been transformed into polar coor-
dinates (originally, they are expressed in cartesian
representation). Thus there are three operations to be
performed: the first one is the transformation of all
the data points from cartesian to polar representation.
This takes O(2N). After that, the addition of the
sinusoidal perturbation takes O(N) operations. Then,
the polar coordinates are remapped into cartesian

ones, taking O(2N). Therefore, the whole operation
goes with O(5N).
→ c. Computational comparison and improvement.

In (Maini, 2006) it has been suggested 50≤M≤ 200.
Moreover, in (Maini, 2006) it has been reported that
EDFE performed better performances than B2AC
for M ≥ 200. However, it is clear that repeating the
resampling procedure more than 200 times costs a
very high computational burden. Even if M were
equal to 50, our procedure is 500 times faster than
(Maini, 2006). In fact, by comparing (Maini, 2006)
versus our procedures for eliminating the numerical
instability, i.e. the passages 8 and 9, respectively,
it is possible to see that our procedure is faster of
O(50MN)/O(5N)⇒ 10M = 10 ·50 = 500 times.

4 THE ICUB ROBOTIC
PLATFORM

The robot is composed of 53 degrees of freedom
(DOFs). Most of them are directly actuated, such as
the shoulders, others are under-actuated, such as the
hands (Metta et al., 2005).

In vision, the robotic head design plays an impor-
tant role. Both eyes can tilt (i.e. to move simultane-
ously up and down), pan (i.e. to move simultaneously
left and right), and verge (i.e. to converge or diverge,
with respect to the vision axes). The pan movement
is driven by a belt system, with the motor behind the
eye ball.

An exhaustive explanation about a kinematic and
a dynamic analysis for the upper body structure can
be found in (Nava et al., 2008).

4.1 The ODE iCub Simulation

On the one side, the simulator information is not ex-
haustive, but it is a good approximation for the soft-
ware debugging before using it on the real robot. On
the other side, our algorithm claims to overcome the
original Fitzgibbon’s approach drawback of failing in
detecting the ellipse when the curve lies on the ideal
curve (i.e. is case of noise absence.) (Maini, 2006).
It is clear that image segmentation in the real robot
will never, or very seldom, produce perfect ellipses
after image segmentation, due to all the imperfection
within the real word (light gradients, light contrasts,
color gradients, not regular object shapes, etc), there-
fore testing this ellipse pattern recognition algorithm
to the real robot will not produce comprehensive re-
sults. Contrariwise, the simulator does not present
these artifacts, or at least it limits them.



Tikhanoff et al. developed a completely open
source simulator for the iCub (Tikhanoff et al., 2008),
based entirely on the ODE (Open Dynamic Engine).
We use this simulator in order to test our algorithms.

Fig. 4 shows a print screen of the simulator.

5 AI032-CUB: THE ROBOT
CONTROLLING TOOL

5.1 The Vision Module

The vision module receives the images from the two
cameras mounted on the iCub head. In order to detect
the ball, and all its features, we implemented a simple
but efficient image processing algorithm. We identify
the ball by means of a color filter.

(a) The left camera output. (b) The object recognized
within the left camera.

Figure 3: The input image, as seen by the robot within the
simulator with the egocentric view (a) and the same image
with the superimposition of an ellipse, drawn by using the
characteristic parameters obtained by computing the LCSE
(b).

For the identification of the blob corresponding to
the ball, we use a connected components labeling al-
gorithm. We assume the largest blob is the ball, so we
look for the blob with the largest area. Subsequently,
we proceeded by applying our LS technique (Greggio
et al., 2010) to the found blob, in order to detect all
the parameters of the curve that describes the bound-
ary of the blob. In Fig. 3(a) the input to the left camera
is presented, i.e. the experimental scenario, while in
Fig. 3(b) output of the algorithm is presented.

5.2 The Motor Control Module

In addition, we implemented a tracking algorithm in
a closed loop. The information received from the vi-
sion module are then processed sent to the motors
of the iCub’s head by means of a velocity control

scheme. that directly commands the head of the robot,
Then, using the forward robot’s kinematics and the
encoders’ information we are able to reconstruct the
target object’s center of gravity (COG) spatial posi-
tion. 1. In Fig. 4 a screenshot is depicted, that shows
an operative situation in which the simulator tracked
the ball.

Figure 4: A screenshot depicting the moment in which the
simulated robot tracked the ball position in the 3D surround-
ing environment. Therefore, our program uses the encoders
information to triangulate the position of the centroid of the
object within the simulated space.

5.3 The Kinematics Module

Then, the Denavit-Hartemberg convention for the ob-
ject’s COG coordinates is analyzed. Tab. III shows
the parameters of the D-H symbols notation.

Figure 5: Schematization of the iCub’s kinematics. This is
not all the kinematics, of course. We focussed on the head
and neck’s joints.

1The reference system is centered on the floor plane, at
the center of the pole that sustains the robot. The x axis
evolves along the front of the robot, the y axis runs along
the left of the robot, and the z axis evolves along its height.



Lenght Symbol Meaning[SMU ]
0.35 EY D Eyes y distance: Related to the y axis, it represents the distance between the eyes along their axis
0.36 EXO Eyes x offset: Related to the x axis, it represents the distance between the neck pitch axis and the eyes axis
3.50 EZO Eyes z offset: Related to the z axis, it represents the distance between the neck yaw axis and the eyes axes

3.01 HZO
Head z offset: Related to the z axis, it represents the distance between the origin of the reference system and

the neck pitch joint

Table 1: Body kinematics lenghts.

Link ai αi di θi
L1 0 π/2 hL1 0
L2 0 -π/2 0 θ∗1
L3 lL3 π/2 hL3 θ∗2
L4 0 -π/2 0 θ∗3
L5 d0 0 0 θ∗4

Table 2: Body kinematics Denavit-Hartenberg parameters.

Here, the angles represent:

• θ∗1: Neck pitch - positive up

• θ∗2: Neck yaw - positive left

• θ∗3: Eyes tilt - positive up

• θ∗4: Eyes version - positive left

Then, d0 represents the target’s COG distance
from the eyes’ middle axis point EMID (see Fig. 5).
This is evaluated with a simple geometrical relation-
ship, as follows:

d0 =
EY D

2
tan
(

π

2
−EV G

)
=

EY D

2
tan−1 (EV G) (17)

The target’s COG coordinates (xCOG,yCOG,zCOG) are
evaluated as follows:

 xCOG
yCOG
zCOG

1

=
[
T 5

0

] x5
y5
z5
1

 (18)

with:

T 5
0 =



cosθ∗1 cosθ∗2 cosθ∗3 cosθ∗4+ −sinθ∗4 cosθ∗1 cosθ∗2 cosθ∗3+
−cosθ∗1 sinθ∗2 sinθ∗4 −cosθ∗1 sinθ∗2 cosθ∗4

sinθ∗2 cosθ∗3 cosθ∗4+ sinθ∗2 sinθ∗4 cosθ∗3+
cosθ∗2 sinθ∗4 cosθ∗2 cosθ∗4

sinθ∗1 cosθ∗2 cosθ∗3 cosθ∗4+ −sinθ∗1 sinθ∗4 cosθ∗2 cosθ∗3+
−sinθ∗1 sinθ∗2 sinθ∗4 −sinθ∗1 sinθ∗2 cosθ∗4

0 0

−sinθ∗3 cosθ∗1 cosθ∗2 d0 cosθ∗1 cosθ∗2 cosθ∗3 cosθ∗4+
−d0 sinθ∗4 cosθ∗1 sinθ∗2+

lL3 cosθ∗1 cosθ∗2
−sinθ∗2 sinθ∗3 −d0 cosθ∗3 cosθ∗4 sinθ∗2+

d0 cosθ∗2 sinθ∗4
lL3 sinθ∗2

−sinθ∗1 sinθ∗3 cosθ∗2+ d0 cosθ∗2 cosθ∗3 cosθ∗4 sinθ∗1+
cosθ∗1 cosθ∗3 −d0 sinθ∗1 sinθ∗2 sinθ∗4

lL3 sinθ∗1 cosθ∗2+
hL1 cosθ∗1 +hL1

0 1



6 EXPERIMENTS

We performed three types of experiments:
a. The robot has to localize a green cylinder (ob-

tained as a section of the ball used in the experi-
ment (b)), and having a negligible height) in front
of it; the cylinder goes away along the x-axis di-
rection at each trial;

b. The robot has to evaluate the ball’s radius while
an occlusion hides the object;

c. The robot has to localize a green ball in front of it.
Localization is intended in terms of 3D cartesian

coordinates. At each trial the Hough transform, the
B2AC, and the LCSE algorithms are used in order to
evaluate the ball’s center of mass (COM) within the
2D camera images. Therefore this information is tri-
angulated with the encoders’ values in order to deter-
mine the ball spatial position.

Since there is a prospective error, introduced by
the spatial perspective, the ball is not seen as a 2D cir-
cle by the two camera, hence distorted, bringing about



to an artifact during these scenarios experiments that
is not due to the goodness of the three tested algo-
rithms. In order to reduce this effect we tried to iso-
late the perspective error by performing the experi-
ment (a). For each scenario we performed at least 30
trials. The robot stands up and remains in the same
position.

We tested both the precision in localization and
the percentage of success/failure in detection.

7 RESULTS AND DISCUSSION

In the scenario a and b the error between the real and
the evaluated cylinder’s and ball’s position is deter-
mined, while in the scenario c the error between the
real and evaluated ball’s radius is calculated.

7.1 Error Propagation Evaluation

We evaluated the error propagation for the position
detection as follows. All of the terms are measured in
simulator measure unit (SMU). The errpixel is the ab-
solute error relative to the value of one square pixel.
In order to evaluate it we referred to the known ball’s
radius. By knowing it (as a fixed value, i.e. 0.17
SMU) and by evaluating it at each measure we can es-
timate the value of a square pixel in SMU (this is the
image resolution at the object distance) as the ratio
between the known radius and the one estimated with
each of the three algorithms considered (i.e. Hough
transform, B2AC, and LCSE).

The errors of the encoders can be considered neg-
ligible within the simulator. Since there is no docu-
mentation on the encoders’ resolution within the sim-
ulator, we considered the accuracy of their informa-
tion approximated to their last digit, which is the
forth one (therefore negligible). Finally the errors due
robot’s lengths need to be considered. Again, there
is no information about the error the lengths of the
robot’s parts have been expressed with. Therefore, in
order to fix their accuracy we analyzed the simula-
tor’s source code. So far, we found that the lengths of
the robot’s parts were expressed with the second digit
of approximation. Hence, we approximated them as
0.01 SMU.

7.2 Scenarios’ Evaluation

As a first result, Fig. 6(a) shows the results of the sce-
nario a. With exception for the quadratic error within
the range [2.15− 2.35], the Hough Transform gives
rise to the highest error. Both the ellipse fitting al-
gorithms cause lower error. Specifically, the B2AC

algorithm is the most precise in terms of quadratic
error, within the ranges [1.2− 1.9], and [2.7− 3.4].
However, it presents several discontinuities, and a to-
tal non-linear characteristic emerges, even following
the Hough Transform approach’s error (but keeping
almost lowest). The LCSE seems to be not the low-
est error prone, but it has a very regular characteristic
of the function of the distance. By increasing the dis-
tance it fits the B2AC error curve well, while keeping
little bit higher.

The experiment of the scenario b shows a great
linearity between the occlusion of the ball and the er-
ror on its radius evaluation. Fig. 6(b) illustrates the re-
sults of this experiment. Here, the Hough Transform
gets better results within the range [5 % - 20 %] of oc-
clusion, where Pr is the residual number of pixels, and
Pt is the total number of target object pixels, deter-
mined with no occlusion), then almost superimposing
with the other two approaches after he 20 % of occlu-
sion. The characteristic is quite linear for all the tech-
niques adopted, with the exception of the cited range,
in terms of a slight decrease from the linear ideal line
for the Hough Transform and a slight increment for
both ellipse detection approaches. Subsequently, the
error introduced by spatial perspective is mapped as
a function of the object’s distance from the eyes axis
midpoint. We isolate the perspective error by compar-
ing the absolute error obtained within the tests in the
scenario a and c, as absolute errors. It is worth noting
that in order to compare these errors, the cylinder and
and the ball we used have the same radius (0.17 SMU)
within the trials. Therefore the percentage perspective
error has been evaluated as the ratio between the abso-
lute perspective error and the module of the distance
between the eyes axis midpoint and the object. The
two ellipse recognition techniques are more sensitive
than the Hough Transform to the spatial perspective.

Finally, the scenario c is discussed. In spite of the
fact that the ellipse detection approaches give rise to a
bigger spatial perspective error than the Hough Trans-
form, the precision given within the overall system is
superior than the one obtained with the Hough Trans-
form. In 6(c) this is showed. We did not filter the
results, in order to keep them as natural as possible.
By acting in this way, the noise affects the trend of
the curves most. Therefore, we inserted three trend
lines (one for each technique, each of them with ex-
ponential characteristic) in order to evidence the most
fruiting approach. Here, the B2AC’s and the LCSE’s
trend lines appear superimpose, so that it is not pos-
sible distinguishing them from each other. However,
the Hough Transform’s trend line shows of this tech-
nique is the most error prone for balls’ spatial position
detection in image processing.



(a) (b) (c)

Figure 6: Cylinder’s position error as function of the distance while considering the perspective effect negligible (a), ball
Percentage Error on radius, in % of the radius value (b), and percentage square error, measured in % of the simulator measure
unit (c).

7.3 Some aspects of the Hough
transform

It is worth mentioning, that the Hough transform de-
pends on some parameters in order to be well set. Of
most importance is the accumulator threshold at the
center detection stage (ATCDS). The smaller its value
is, the more false circles may be detected, but the
higher it is, the less circles may be detected. We tested
that the smaller the ATCDS is, the more instability
is produced on the Hough computation. In the first
case, an ATCDS lower setting causes that other cur-
vatures, e.g. artifacts on the ball’s border caused for
instance by inaccuracies of the color filtering, may be
detected as additional objects. These inaccuracies, in
fact, can be interpreted as small circles by the Hough
transform, giving rise to wrong results. However, set-
ting ATCDS too high can cause the opposite problem.
In our case there was only one circular object within
the image (i.e. the ball), but wrong setting values (e.g.
ATCDS too high) were sufficient to not detect it. This
was true even if the detected ball was the only color
blob after the erosion of the image, and even if it was
substantially big too not be negligible (i.e. not to be
misinterpreted as a color artifact). This means that
one has to find the right value in every condition, in
terms of the best compromise between sensibility (in-
tended as the capability of detecting all the possible
circles in the image) on one hand, and the stability
(intended as the accuracy of the algorithm of not de-
tecting false circles) on the other hand. Therefore, we
looked for the biggest value that is able to perform
all the experiments without avoiding the detection of
the circles and maintaining the best possible stability.
In our experiments we set ATCDS = 2. In table ??
there are some ATCDS values: each one represents
the maximum worth able to perform the experiments
at some fixed occlusion and distance values.

However, both B2AC and LCSE algorithms do

ATCDS 3 2.6 2.3 2.1 2 2
Occlusion [%] 5 10 15 20 25 30

ATCDS 3.4 3 2.6 2.4 2.1 2
Distance [SMU] 1.2 1.6 2 2.4 2.8 3.2

Table 3: Maximum value for the accumulator threshold for
getting stability in our experiments.

not present a similar drawback, permitting them to
be used in any situation without any previous setting.
This can be considered a great advantage, since they
do not require any a priori information of the scene to
be analyzed. This is twofold, because allows not only
to build a robust and scene− independent technique,
but also it fits with the concept of cognitive robotics
perfectly.

8 CONCLUSIONS

In this work we presented the first implementation of
the LCSE ellipse square fitting algorithm, and we ap-
plied it to a humanoid robotics platform. Moreover,
we implemented a real-time tracking algorithm to lo-
calize an object with the Robot’s stereo vision, and
subsequently we used it to determine the 3D position
of the object’s centroid in the environment. We com-
pared the Hough Transform, the B2AC, and the LCSE
performances in terms of localization precision and
failure in detection in presence of induced artifacts
(such as the ball occlusion by another object) and as
function of the distance of the target. We found that
the B2AC and LCSE give rise to overall more pre-
cise results than the Hough Transform. In the near fu-
ture we plan to apply our techniques to the real iCub
robotics platform, in order to compare and validate
our results with the real robot, and not only with the
ODE simulator. Then, we will make our code freely
available within the iCub repository.
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