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Portugal

{plinio,pedro,jasv}@isr.ist.utl.pt

Abstract. We address the empirical feature selection for tracker-less
recognition of human actions. We rely on the appearance plus motion
model over several video frames to model the human movements. We
use the L2Boost algorithm, a versatile boosting algorithm which simpli-
fies the gradient search. We study the following options in the feature
computation and learning: (i) full model vs. component-wise model, (ii)
sampling strategy of the histogram cells and (iii) number of previous
frames to include, amongst others. We select the features’ parameters
that provide the best compromise between performance and computa-
tional efficiency and apply the features in a challenging problem, the
tracker-less and detection-less human activity recognition.

1 Introduction

Works on human activity recognition rely on detection and tracking algorithm
in order to discriminate the human patterns present in videos [9]. On one hand,
the detection algorithms are image-based approaches that segment the region of
interest for further processing [6]. On the other hand, tracking algorithms use
the detector output and data association techniques to segment video regions
where the activity patterns are learnt and matched (e.g. [1]).

The state-of-the-art approaches for people detection and tracking have at-
tained very good performances in challenging data sets (see [1,6]). However,
their application on more realistic scenarios does not provide good results yet
due to the following challenges: real-time video stream input, outdoor illumina-
tion variations, large amounts of clutter, motion blur, moving cameras, amongst
others. Since most of the human activity recognition approaches assume flaw-
less detectors and trackers, their application on more challenging scenarios is
even more difficult. Considering these constraints for the application of human
activity recognition on real scenarios, we address the following questions in this
paper:
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1. Is it possible to remove the tracking algorithm and find features for activity
recognition with good performance, assuming a flawless person detector?

2. If (1) is possible, would the found features work properly in a scenario with-
out detector? In other words, would be feasible to detect people and recognize
their activities?

In order to address the questions above, we rely on the state-of-the-art model
for human activity recognition: the combination of appearance and motion pat-
terns of each activity [9]. The appearance is encoded by the histogram of image
gradients and the motion is encoded by the histogram of the optic flow (dense).
In order to learn how to discriminate the patterns we use the popular boosting
algorithms, which are efficient, versatile and have shown similar recognition re-
sults to more elaborate techniques. Our choice is the L2Boost algorithm [3], which
has two main differences with common boosting methods (e.g. AdaBoost): i) the
data points do not have weights to adapt because they are basically included
in the gradient computation and ii) the weak learners do not have weighting
coefficients because L2boost uses a fixed step size equal to 1.

We choose the Weizmann dataset for the experiments, originally recorder
by [2], because it addresses an interesting multiclass problem that has been
virtually solved using the detector plus tracker assumption [7,11]. Thus, the
common training and testing steps of the previous works use the the location
and size of the people over time, provided by the groundtruth.

In order to address question (1) we use the location and size for each frame
separately, so the temporal data association is not considered. We build a spatio-
temporal cuboid for each detection independently, so the detected region of
interest is projected onto the previous frames. This means that the person may
not fully visible on the previous regions of interest. Then, the feature selection
procedure searches for the parameters of feature computation that provide very
good recognition results and low computational requirements.

In order to answer question (2), we use the features obtained in the previous
step and add the “background class” (i.e Nobody performing any activity) to
the multi-class problem. Thus, we are able to apply the sliding window method
in order to detect people and recognize their activities. In the case of video se-
quences, the sliding window turns into the sliding cuboid for person and activity
detection. The results show that the tracker-less activity recognition is plausi-
ble, while the tracker-less and detector-less activity recogntion is a very difficult
problem.

2 Human activity model

The state-of-the-art action recognition approaches use a combination of appear-
ance and motion-based features in order to extract the activities’ patterns from
videos [11]. We follow this approach, using the image gradient and optical flow
(dense) as the raw features to extract the action patterns. Figure 1-A and 1-B
show an example of the video volume (cuboid) for feature computation. Note
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that the person’s bounding box at frame It maintain the same location over
the previous τ − 1 frames, so we do not consider the data association provided
by a tracking algorithm. Thus, we use only the person’s location at the cur-
rent frame, making the problem even more complicated, but allowing for an
easier development toward the use of moving cameras (for instance mounted on
moving robots). The most discriminative and efficient features based on gra-

Fig. 1. Feature computation (extracted from [10]): A) example of a volume of video
used to compute the features for the person detected in image It, B) the two types of
raw features used, gradient and flow vectors, computed inside the volume correspondent
to the person detected, C) polar sampling used to divide each window into subregions
and D) weighted histograms computed for each region, producing a 2D matrix coding
the evolution of each bin over a set of T frames.

dients compute weighed histogram of the raw features, such as the histogram
of gradients (HOG) [4] and histogram of optic flow [5]. Given a gradient im-
age or optic flow image, the weighed histogram divides the image in subregions
(according to a sampling strategy, e.g. Cartesian, polar) and computes the his-
togram of the gradient (or flow) orientation weighed by its magnitude. Figure
1-C shows the polar sampling strategy. In the case of polar sampling, the his-
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togram features are parametrized by the number of subregions (cells) nR and
the number of bins nB for each subregion. The correspondent parameters of
Cartesian sampling, are the number of intervals the x direction nIx, the num-
ber of intervals in the y direction nIy and the number of bins nB, which defines
nIx×nIy subregions (cells). We denote the gradient histogram as the row vector
gt ∈ RnB·nR and gt ∈ RnIy·nIx·nB for the polar and Cartesian histograms respec-
tively. Similarly, the flow histograms are denoted as the row vector ot ∈ RnB·nR
and ot ∈ RnIy·nIx·nB , computed at frame t.

At frame It and its correspondent rectangular region of interestR(xc, yc, w, h)
1, the appearance and motion feature vector for each person detected is

ht,R = [gtot] ∈ R2·nB·nR polar sampling (1)

ht,R = [gtot] ∈ R2nIy·nIx·nB cartesian sampling (2)

We consider two ways of modeling the human activity patterns in the spatio-
temporal cuboid: (i) the component-wise approach and the (ii) full representa-
tion. The component-wise stacks the vector component htj in the previous t+τ−1
frames, so the row feature vector is as follows:

Xj
i =

[
htj . . . h

t+τ−1
j

]
. (3)

The full representation stacks all the ht vectors in the previous τ − 1 frames,

Xi =
[
ht . . . ht+τ−1

]
, (4)

where i is the data sample index.

3 L2Boost with temporal models

The binary L2boost algorithm estimates the function F : Rd → R by minimizing
the expected cost E [C(y, F (X))] based on the data (yi, Xi), i = 1, ..., n. The cost
function is C(y, f) = (y − f)2/2 with y ∈ {−1, 1} and its respective population
minimizer is F (X) = E [y|X = x]. The overall optimization is achieved by means
of a sequential stagewise approximation along M rounds, optimizing a so called
weak learner in each round, m [3]. The weak learner is the linear combination of
the components of the feature vector Xi, so the weak learner of the component-
wise model of Eq (3) is fm(Xj

i ) = Xj
i β

m and for the full model of Eq. (4) is
fm(Xi) = Xiβ

m.
In order to use matrix notation, we stack all the yi values into the vector

Y ∈ RN and all the Xi data points into the matrix X. In the case of the
component-wise model, at each round m, we optimize a temporal model β for
each possible feature j = 1, ..., D, choosing the one that achieve less error:

β̂ = arg min
β,j

(Y −Xjβ)T (Y −Xjβ). (5)

1 centroid, width and height
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The solution is β̂m = (XjmTXjm)−1XjmTY , where jm is the component that
achieves less error. In the case of the full model of Eq. (4), the feature index j

is removed from Eq. (5), so β̂ = arg minβ(Y −Xβ)T (Y −Xβ), whose solution

is β̂m = (XTX)−1XTY . The component-wise L2boosting algorithm with linear
temporal models of Eq. (3) is as follows:

1. Initialization Chose M and set m=0. Given data (Y,X), fit the first weak

learner, F̂0 = Xj0 β̂0. β0 and j0 are computed from Eq. (5).
2. Projection of gradient to learner Compute the negative gradient (in

this case are the residuals) um+1
i = yi − F̂m(Xi)(i = 1, ..., n). For simplicity,

stack all ui values into the vector U ∈ RN .
Use the residuals Um+1 to fit the learner f̂m+1 = Xjm+1

β̂m+1 changing Y
for U in Eq. (5).

Update F̃m+1 = F̂m + f̂m+1. Compute F̂m+1 = sign(F̃m+1) min(1, |F̃m+1|).
3. Iteration If m+ 1 < M increase m by 1 and goto step2.

If m + 1 = M return Θj = {j0, ..., jm, ...}, and one set of models, Θβ =
{β0, ..., βm, ...}

The classification of a new point Xi is given by the sign of the strong classifier
result, sgn F̂M (Xi). Notice that the last computation of step 2 constraints the
strong classifier to be in [−1 1], so we apply the L2Boost with constraints [3],
which works better in the classification setup. The algorithm just presented is
very similar to the full model one, but removing the feature index j. The strong
classifier F (x) relates the class-conditional probabilities,

F (x) = 2p(y = 1|x)− 1, |F (x)| = |p(y = 1|x)− p(y = −1|x)|, (6)

and its module |F (Xi)| is the classification margin, that is the probability of
labeling the new data point given the models estimated. In order to extend the
L2Boost with linear-temporal models to multi-class problems we use the one vs.
all approach, which solves C binary problems to discriminate between C classes

where Y ∈ {1, . . . , C}. The multi-class version of L2 starts by computing F̂
(c)
M

on the basis of the binary response variables

Y
(c)
i =

{
1 if Yi = c

−1 if Yi 6= c
i = 1, . . . , n (7)

and then builds the classifier as Ĉm(x) = arg maxc∈{1,...,C} F̂
(c)
M (x).

4 Feature selection for tracker-less recognition

We address this problem by comparing the recognition rate between different
types of features in the Weizmann dataset [2], which contains 9 subjects per-
forming 9 actions: {1 - bending down, 2 - jumping jack, 3 - jumping, 4 - jumping
in place, 5 - running, 6 - galloping sideways, 7 - walking, 8 - waving one hand,
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9 - waving both hands}. We follow the evaluation protocol proposed by [2] that
performs a leave-one-out test with the 9 subjects, so each subject belongs to one
of the testing sets. Then, the confusion matrix is averaged over all the leave-
one-out test sets and the trace of the averaged matrix is used as the measure of
recognition performance.

We consider the following options to select the feature computation method:
(i) component-wise vs. full model , (ii) cartesian and polar cell sampling, (iii)number
of frames τ of the linear temporal model, (iv)optic flow algorithm, (v) two op-
tions for the region of interest in the image (detected bounding box) and (vi) cell
overlapping. We observe in Table 1 that the component-wise L2Boost performs

Average confusion matrix’s trace (%)

Feature type component-wise all features dims

polar nR = 8, nB = 16 91,29 89,76 256

polar nR = 16, nB = 16 95,42 93,2 512

cartesian nIx = 4, nIy = 8, nB = 16 95,42 93,2 512

cartesian nIx = 3, nIy = 6, nB = 16 95,46 92,79 576
Table 1. Component-wise vs. full model results, using two sets of parameters for
each sampling approach. (τ = 10, no overlapping between cells and using groundtruth
detections), Ogale’s optic flow [8]

better than the full model one, so in the rest of the experiments we just con-
sider the component-wise approach. In addition,we select the polar and cartesian
sampling that attain the top recognition result, nR = 16, nB = 16 for polar and
nIx = 4, nIy = 8 for cartesian. The next step is to compare the effect of the
optic flow algorithm in the classification results. Table 2 shows that Ogale’s

Average confusion matrix’s trace (%)

Feature type Ogale et. al. [8] Werlberger et. al. [12]

polar nR = 16, nB = 16 95,42 94,11

cartesian nIx = 4, nIy = 8, nB = 16 96,01 94,9

Table 2. Effect of two optic flow approaches on the recognition rate (τ = 10, no
overlapping between cells and using groundtruth detections)

τ 1 3 5 7 10 13 15

polar nR = 16, nB = 16 86,2 90,36 92,64 93,27 94,11 93,55 93,47

cartesian nIx = 4, nIy = 8, nB = 16 87,88 91,7 92,35 94,1 94,9 94,36 94,11

Table 3. Temporal support comparison. (no overlapping between cells and using
groundtruth detections)
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et. al. [8] algorithm has a better performance than Werlberger’s one. In this
case our choice is the Werlberger’s algorithm because of the GP/GPU imple-
mentation that allows to compute the optic flow (dense) in near real-time for
normal cameras. The reason behind this choice is the quicker evaluation of our
approach on other datasets (e.g. [10]), and the near real-time plausibility of [12],
which facilitates future deployment of the system. The temporal support used
in the previous test (τ = 10) was motivated by Schindler et. al. [11]. Table 3
re-validates their choice τ = 10. In the following we compare the groundtruth
boxes against a manually set bounding box for all the detections. We define a
bounding box with constant width/height ratio in order to select the spatio-
temporal cuboids. The rationale of this fixed ratio bounding box is two-folded:
(i) facilitate the application of the sliding window method and (ii) allow the
search over multiple scales. Table 4 shows that the selected w/h is practically
equal to the groundtruth boxes, because the persons of the Weizmann dataset
have similar sizes. Finally, we apply the idea of overlapping between cells [4].

Average confusion matrix’s trace (%)

Feature type groundtruth ROI [2]
Fixed size ROI

w = 60, w/h = 0.779

polar nR = 16, nB = 16 94,11 94,84

cartesian nIx = 4, nIy = 8, nB = 16 94,9 95,56
Table 4. Region of interest comparison. Groundtruth boxes vs. manually selected ones.
(no overlapping between cells)

In the case of polar sampling, we add more cells to the previous ones in such
a way that each new cell overlaps with two of the original neighboring cells in
equal proportion. In the case of the cartesian sampling, each new cell overlaps
with four of the original neighboring cells in equal proportions. Table 5 shows
that cell overlapping and cartesian sampling brings better results, but at the ex-
pense of a larger computational load. Since we are interested in features having
a lower computational load and good performance, we choose the polar sampling
with no overlap. Summarizing, the feature selection options are: (i) component-
wise L2Boost, (ii) Welberger’s optic flow [12], (iii) τ = 10, (iv) fixed w/h ratio
bounding boxes and (v) no overlap polar sampling cells.

Average confusion matrix’s trace % (dimensions)

Feature type half interval overlap no overlap

polar nR = 16, nB = 16 95,15 (1024) 94,84 (512)

cartesian nIx = 4, nIy = 8, nB = 16 95,68 (1696) 95,56 (1024)
Table 5. Comparison between cells with and without overlap.
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4.1 Tracker-less and detection-less scenario

The features found above attain very good recognition rates in a tracker-less
scenario. In this section we want to evaluate their performance on a tracker-less
and detector-less scenario. Thus, we need to add the background activity class
(i.e. spatio-temporal cuboids where no person is doing any action) to the activity
classes in order to both detect people and recognize their activities. We obtain the
background samples by the random selection of video segments in the Weizmann
dataset. Then, we compute the features selected in the previous section and re-
train the L2Boost algorithm with the 9 activities plus the “background” activity.

The testing phase comprises the application of the volume-based version of
the sliding window algorithm. This image-based algorithm is applied on pedes-
trian detection, by moving the region of interest (window) along the image grid.
For each grid point, the image features are computed inside the window, followed
by the binary classification (person or background). We perform the volumetric
version of the algorithm, by moving the region of interest (cuboid) along the
video (3D) grid. Then, we classify each cuboid as a particular human activity or
the “background” activity. We sample the video grid every 5 pixels in each image
direction and every 2 frames in the temporal direction. The trace of the confu-
sion matrix for the 10 classes is 94, 74%. This looks like a good result because of
the larger number of background samples compared to the human activity sam-
ples. After removing the background samples the trace of the confusion matrix is
30, 04%. This result is explained by the absence of the perfectly aligned detection
results provided by the groundtruth. These misalignments of the cuboids in the
video were not learnt during training, so the L2Boost is not able to discriminate
between the human activities.

5 Conclusions

We address the feature selection for human activity recognition in a tracker-less
scenario. We construct features that encode appearance and motion by means
of the Histogram Of Gradients (HOG) [4] and the Histogram Of Flow (HOF) [5]
over several video frames. Our choice of learning approach, the L2Boost, it finds
the linear models for binary problems and we apply the one vs. all approach for
the final classification.

In this feature-classifier context, we select experimentally the parameters
that: (i) attain very good results and (ii) have low computational requirements.
In addition, we evaluate the selected features in a tracker-less and detector-less
scenario, a very challenging problem due to the large appearance variation in
the background and the reduced amount of motion information contained in it.
Future work must study the combination of features from both worlds: human
activity recognition and pedestrian detection in order to have features that do
not assume flawless person trackers and detectors.
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6. Gerónimo, D., López, A., Sappa, A., Graf, T.: Survey of pedestrian detection for
advanced driver assistance systems. IEEE PAMI 32(7), 1239 –1258 (july 2010)

7. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A Biologically Inspired System for
Action Recognition. In: Proceedings ICCV. pp. 1–8 (October 2007)

8. Ogale, A.S., Aloimonos, Y.: A roadmap to the integration of early visual modules.
International Journal of Computer Vision 72(1), 9–25 (april 2007)

9. Poppe, R.: A survey on vision-based human action recognition. Image and Vision
Computing 28(6), 976 – 990 (2010)

10. Ribeiro, P.C., Moreno, P., Santos-Victor, J.: Unsupervised and online update of
boosted temporal models: the UAL2boost. In: Proc. of ICMLA (December 2010)

11. Schindler, K., van Gool, L.: Action snippets: How many frames does human action
recognition require? In: IEEE CVPR 2008. pp. 1–8 (June 2008)

12. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.:
Anisotropic Huber-L1 optical flow. In: Proc. of BMVC (September 2009)


	Lecture Notes in Computer Science
	Introduction
	Human activity model
	L2Boost with temporal models
	Feature selection for tracker-less recognition
	Tracker-less and detection-less scenario

	Conclusions


