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Abstract. The segmentation of the stream of perceptual inputs a robot receives into
discrete and meaningful events poses as a challenge in bridging the gap between in-
ternal cognitive representations, and the external world. Event Segmentation The-
ory, recently proposed in the context of cognitive systems research, sustains that
humans segment time into events based on matching perceptual input with predic-
tions. In this paper we propose a framework for online event segmentation, target-
ing robots endowed with active perception. Moreover, sensory processing systems
have an intrinsic latency, resulting from many factors such as sampling rate, and
computational processing, and which is seldom accounted for. This framework is
founded on the theory of dynamical systems synchronization, where the system
considered includes both the robot and the world coupled (strong anticipation). An
adaption rule is used to perform simultaneous system identification and synchro-
nization, and anticipating synchronization is employed to predict the short-term
system evolution. This prediction allows for an appropriate control of the robot
actuation. Event boundaries are detected once synchronization is lost (sudden in-
crease of the prediction error). An experimental proof of concept of the proposed
framework is presented, together with some preliminary results corroborating the
approach.

Keywords. Event segmentation, anticipative systems, active perception, cognitive
robotics.

Introduction

The perception of a robot is grounded on the physical world. Its sensors receive a con-
tinuous stream of information, as for instance the light patterns hitting the CCD sen-
sor of a video camera. Cognitive representations, however, are often discrete, as in the
case of events and objects. Discretization is commonly performed in fixed, not always
adjustable, discretization step (e.g, the frame rate and the pixel resolution of a video
camera). The detection of meaningful events from a stream of sensory information is
an important challenge, from the point of view of a robot cognitive architecture design,
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contributing to bridge the gap between a continuous time world and discrete time, event-
based cognitive representations.

The segmentation of a continuous stream of information into events is often over-
looked, being commonly performed in an ad-hoc manner, either recurring to threshold
values over heuristic functions, or fixed time triggers. These methods are mostly sensor
modality dependent, as well as task specific. This paper addresses the problem of bridg-
ing the gap between the time continuous stream of sensory/actuation information, and
the discrete time sequence of cognitive representations, proposing a modality and task
independent framework for event segmentation.

The Event Segmentation Theory (EST) provides a model of how the human brain
segments perception into a sequence of events [15,6]. This model sustains that event
segmentation is based on the detection of prediction errors in the sensory stream. In
particular, the human brain is permanently making predictions and comparing them with
the actual outcome [11]. Events are detected whenever a significant disparity between
prediction and outcome is encountered. An event segmentation mechanism can be built
following this principle, but the problem of how to make predictions about perceptions
has to be addressed first.

Dubois distinguishes between strong and weak anticipation [3,12]: the latter is based
on an explicit model of the world, where the physics is encoded in analytical constructs,
that can be mathematically solved given an initial condition. On the contrary, strong an-
ticipation does not rely on a model, but rather on the dynamical evolution of the interac-
tion of the agent with the world, seen as a single system.

Stepp proposes an approach to strong anticipation based on the work developed
in the field of chaotic systems concerning synchronization of dynamical systems [12].
Consider two systems, denoted D (drive) and R (response), connected by a unidirectional
flow of information from D to R. It is possible to design the system R such that its
dynamic evolution synchronizes with the one of D, regardless of the initial condition
of each system. More interestingly, if this feedback loop contains a delay, system R is
capable, under certain conditions, to anticipate system D [13].

One problem remains to be solved: how to design system R? No system model is
assumed a priori, since it depends on the coupling involving the robot and the world.
A possible approach is to adapt system R during interaction. A solution to the adapta-
tion of response systems in the context of dynamical systems synchronization has been
proposed by Chen [1], where the convergence to the solution has been proved using the
Lyapunov stability theory. This result does not directly apply, however, to anticipating
synchronization.

The contributions of this paper are:

e An event segmentation method based on Stepp’s strong anticipation concept [12],
cast as an anticipating system synchronization framework;

e The application of Chen’s parameter identification method [1] to anticipating syn-
chronization;

e A proof-of-concept implementation of an architecture for event segmentation and
active perception, employing these methods.

This paper is organized as follows: after a short section surveying related work,
two sections on the theoretical background behind strong anticipation and the adapta-
tion method to learn the response system R follow. Then, the proposed architecture for



event segmentation is described, followed by some experimental results of a proof of
concept implementation of these ideas. A section presenting some conclusions and open
questions closes the paper.

1. Related work

The problem of event segmentation has been studied in the past. See [9] for a review
of recent techniques for the formation of event memories in robots. Ramoni et al. pro-
posed a method to cluster robot activities using Markov chain models [10]. The spatio-
temporal segmentation of video have been studied in [14], applying motion model clus-
tering, and in [2] using hierarchical clustering of the 3D space-time video stream. Ges-
ture segmentation and recognition has been addressed in [5] employing hidden-Markov
models (HMM).

2. Strong anticipation

In [12] strong anticipation is modeled using a dynamical system synchronization frame-
work. Consider two continuous dynamical state vectors x(t), y(¢) € R™ with the follow-
ing coupled dynamics:

b= ()
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where y, = y(t —7), i.e., a feedback loop with a constant delay 7, and k is a scalar gain.
The first system is called the drive (D) while the second the response (R). This delayed
feedback loop in the response system is a fundamental aspect, and is responsible for the
response system capability of anticipating the trajectory of the drive.

This delayed feedback loop is neurophysiologically supported by the discovery of
forward models in the brain, which predict sensory consequences of motor commands [7,
4]. One important function of this mechanism is to overcome the sensory processing
latency in the brain, when the subject is performing quick, controlled movements.

3. Adaptive synchronization

If the drive system corresponds to the world-robot coupled system, its dynamics is not
known a priori. One way of tackling this problem is to adapt the response system, online,
during synchronization.
Chen proposes in [1] an approach to adapt response systems in the context of dy-
namical system synchronization. It does not account, however, for a delayed feedback.
Consider that the drive system has the form

&= f(z)+ F(x)0 2)
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Figure 1. System architecture Figure 2. Simulated scenario
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where § € R™ is a vector of (constant) parameters, f(z) € R™ and F(z) € R"*™. The
response system is identical, except for the parameter vector that is unknown, and for the
synchronization feedback loop

y = f(y) + F(y)OL + U(y,x,t,a) 3)

where « is the response parameter vector, and U (y, x, ¢, «) is called the controller of the
response. Chen et al. proved in [1] that, under certain conditions, not only the response
system synchronizes with the drive, but also that the response parameters « converge to
the ones of the drive 6.

4. Event segmentation

The event segmentation framework we propose in this paper, depicted in Figure 1, con-
sists of a pair of response systems, one performing adaptation (labeled adaptive re-
sponse), and the other anticipation (labeled anticipating response). The adaptive re-
sponse learns the parameter vector « as described in the Adaptive synchronization sec-
tion, while anticipating response performs anticipating synchronization as explained in
the Strong anticipation section. The robot-world coupled system is modeled by the con-
trolled drive system. Note that the access of the architecture to the world state is subject
to a delay, modeling for instance the latency of the perceptual channel (image acquisi-
tion, processing, and tracking). The controller computes the actuation vector v based on
the anticipated world state y.

According to the theory of Event Segmentation [15], perceptual systems contin-
uously make predictions about perceptual input, and perceive event boundaries when
transient errors in prediction arise. On the adaptive synchronization framework, the Lya-
punov function provides a solid estimate of the prediction error. Event boundaries are
detected using a simple hypothesis testing on the statistics of the prediction error. A
detailed description of the method can be found in [8].

5. Experimental results

As a proof of concept for the ideas presented here, a simple scenario was simulated: a
ball rolling free on a series of inclined planes, with different slopes, is observed by a



robot camera which aims to follow it, in order to center it on the image, as depicted in
Figure 2. The camera moves parallel to the plane, for simplicity sake. For this proof of
concept, we set the response system to be structurally identical, thus employing the same
functions f and F, and control input u.

The experiments were conducted after discretizing the system using a simple ap-
proximation £(t) ~ [z(t + T) — z(t)]/T. The sampling rate was 100Hz. The delay con-
sidered was 7 = 0.65s (65 samples). The system is initialized with the ball starting on
the top left position of the ramp, and as the ball transverses the scenario there are two
events, corresponding to the two changes of the ramp slope. Each simulation takes 100s
of simulated time.

Figure 3 (top) shows the evolution of the ball horizontal position in the camera with-
out an anticipating response system. As expected, the delay introduced by perceptual
channel jeopardizes the control of the camera. Figure 3 (bottom) shows the ball horizon-
tal position in the camera using the full architecture. In this case, the ball coordinates
in the image converge to zero (except for a brief time after each slope change, while
the adaptive system learns the new parameters). Also, the anticipating response makes it
possible to control the drive system satisfactorily.

Figure 4 (top) attests the performance of the adaptive response system. As can be
seen, the synchronization error converges to zero after each event boundary. This only
happens because the parameter vector v converges to the true parameters 6. Finally,
Figure 4 (bottom) shows the event segmentation results. As expected, each change of
plane is detected as an event boundary by the framework.

These results show that the proposed system is capable of correctly (1) detecting the
event boundaries that correspond to the change of ramp slope by the ball, (2) controlling
the camera movement using anticipation, and (3) learning the correct system parameters.
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Figure 3. Ball position: response without antici- Figure 4. Synchronization error for the ball hori-
pation (top) and with full architecture (bottom). zontal position (top) and detected events (bottom).

6. Conclusions and future work

This paper describes an event segmentation framework, targeting active perception in
robots, based on the concept of strong anticipation proposed by Stepp et al. in [12]. A
dynamical system synchronization paradigm is used as theoretical foundation of the pro-



posed architecture, where the robot-world coupled system is identified using an adaptive
parametric method proposed by Chen et al. in [1], and the control is anticipatory. This
anticipation accommodates for the net delay of the perceptual channel. The capability of
the architecture to anticipate perception allows the robot to control its actuation based on
the prediction of the robot-world state, instead of relying on the delayed perceptual data.

Having the described proof of concept experiments shown that the proposed archi-
tecture behaves as expected, future work includes scaling this approach to more com-
plex domains. This involves tackling the issues of the learning rate, which is hidden in
the proportionality constant of the Lyapunov function, used in the Chen’s learning rule,
as well as the automatic design of the controller, given the adapted parameters. Other
open questions include dealing with hidden state variables, as well as complex relations
among objects (e.g., grasping, occlusion, and so on).
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