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Abstract

This paper addresses the problem of segmenting perception in physical robots into meaningful events along time.
In structured environments this problem can be approached using domain-specific techniques, but in the general
case, as when facing unknown environments, this becomes a non-trivial problem. We propose a dynamical systems
approach to this problem, consisting of simultaneously learning a model of the robot interaction with the environment
(robot and world seen as a single, coupled dynamical system), and deriving predictions about its short-term evolution.
Event boundaries are detected once synchronization is lost, according to a simple statistical test. An experimental
proof of concept of the proposed framework is presented, simulating a simple active perception task of a robot
following a ball. The results reported here corroborate the approach, in the sense that the event boundaries are
correctly detected.
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1. Introduction

This paper is an extended version of the work originally presented at
the First International Conference on Biologically Inspired Cognitive Ar-
chitectures (BICA-2010) [9].

Decision-making systems usually assume a meaningful division of time
into discrete frames. For instance, decision theoretic agents determine
their action based on a given situation, action options, and possible
outcomes. Both the situation and the outcomes are represented with
respect to relevant time frames: the current situation frame, and the
action outcome frames. The application of these discrete-time frame-
works to physical robots faces the problem of the semantic discretiza-
tion of perception into meaningful frames. However, perception in
these systems is originated by sensor devices with fixed time resolution.
The segmentation of perception into frames in a data-driven fashion is a
non-trivial problem, unless specific domain-dependent techniques can
be applied.

This paper focuses on a particular kind of division: events. We address
the problem of event segmentation in perception, using a dynamical
systems approach. Since we target embodied and embedded agents,
we make two further assumptions: first, robot and environment are
here seen as a single, coupled system, and second, the sensor data
processing latency is taken into account for control purposes.
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This problem is addressed using a biologically inspired approach. The
Event Segmentation Theory (EST) provides a model of how the hu-
man brain segments perception into a sequence of events [7, 19]. This
model assumes that event segmentation is based on the detection of
prediction errors in the sensory stream. Prediction is a common mech-
anism found throughout the brain. In particular, it is known that the
human brain is permanently making predictions and comparing them
with the actual outcome [13]. Events are detected whenever a sig-
nificant disparity between prediction and outcome is encountered. An
event segmentation mechanism can be built following this principle, but
the problem of how to make predictions about perceptions has to be
addressed first.

Dubois distinguishes between weak and strong anticipation [3, 14]:
the former is based on an explicit model of the world, where the physical
system is modeled by analytical constructs, that can be mathematically
solved given an initial condition. On the contrary, strong anticipation
does not rely on a model, but rather on the dynamical evolution of the
interaction of the agent with the world, seen as a single system. An ex-
ample of strong anticipation can be found on the behavior of an outfield
baseball player when catching a well-struck ball1: weak anticipation of
the ball landing position requires modeling the physics of the ball, en-
coding the initial state of the system (initial velocity, mass, friction co-
eɺcient, etc), and then predicting the landing position by solving the
analytical model; in contrast, strong anticipation views the outfielder
and the ball as a single system with new dynamics, as the outfielder
moves itself driven by the projection of the ball on his retina. Empirical
evidence suggests that this is the way a human outfield player performs
the catch [14]. In the context of robotics, a model-based approach to

1 Example from [14].
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anticipation may be appropriate for passive sensors, but when design-
ing systems that actively engage in interactions with the world, as in
the case of active perception, the world can no longer be modeled as
an independent, self-contained system.

Stepp proposes an approach to strong anticipation grounded in the
field of chaotic systems concerning synchronization of dynamical sys-
tems [14]. Consider two systems, denoted D (drive) and R (response),
connected by a unidirectional flow of information from D to R. It is possi-
ble to design the systemR such that its dynamic evolution synchronizes
with the one of D, regardless of the initial condition of each system. One
way of doing this is for the R system to compare its state with the one
of D, and bias its dynamics accordingly, i.e., system R is controlled by
a feedback loop, where the error results from this comparison. More in-
terestingly, if this feedback loop contains a delay, system R is capable,
under certain conditions, of anticipating system D [15]. Considering
that system D includes both the robot and the world, and system R to
be a model internal to the robot, this approach suggests an interesting
mechanism to perform strong anticipation of the dynamical evolution of
the world-robot system.

One problem remains to be solved: how to design systemR. No system
model is assumed a priori, since it depends on the coupling involving
the robot and the world. The approach taken here is to adapt system R
during interaction. A solution to the adaptation of response systems in
the context of dynamical systems synchronization has been proposed
by Chen [1], where the convergence to the solution has been proved
using the Lyapunov's indirect method.

The contributions of this paper are:

1. an event segmentation method based on Stepp's strong antic-
ipation principle [14], cast into an anticipating system synchro-
nization framework;

2. the application of Chen's parameter identification method [1] to
anticipating synchronization;

3. a proof-of-concept implementation of an architecture for event
segmentation and active perception, employing these methods.

This paper is organized as follows: after section 2 surveying related
work, sections 3 and 4 provide the theoretical background behind
strong anticipation and response system adaptation. Then, the pro-
posed architecture for event segmentation is described in section 5,
followed by experimental results of a proof of concept implementation
of these ideas in section 6. Finally, section 7 presents a conclusion and
open questions, thus closing the paper.

2. Related work

The problem of event segmentation in perception has been studied in
various contexts. See [11] for a review of recent techniques for the
formation of event memories in robots. However, most of these tech-
niques make strongs assumptions on the nature of events, such as
events being repeatable signal patterns, events being changes of sen-
sor readings, or events activating heuristic, ad-hoc ''triggers''. Ramoni
et al. proposed a method to cluster robot activities using Markov chain
models [12], which is based on symbolic perceptual data, rather than
raw sensory input. In [4] a maximum likelihood estimator is used to fit a
sequence of time-indexed models to raw data. A batch and an online
version of this approach are proposed. The incremental one is based

on thresholding the likelihood of the current parametric model along
time. However, these models correspond to signal patterns, and thus
they are a more limited representation than dynamical systems mod-
els. The spatio-temporal segmentation of video has been researched
in [17], being applied to motion model clustering, and in [2] using hier-
archical clustering of the 3D space-time video stream. However, both
of these approaches are based on simple linear motion models and
are specific to video image processing. Gesture segmentation and
recognition has been addressed in [6] employing hidden-Markov mod-
els (HMM). However, this approach requires a prior oɻine training of
the HMM with a dataset. It is therefore not appropriate if event seg-
mentation precedes learning and recognition in the perception chain.

To the best of our knowledge, the approach proposed in this paper is
novel in the use of adaptive synchronization for event segmentation.
No publications were found by the authors concerning the usage of
either dynamical systems synchronization, or Chen's adaptive method,
outside the area of chaotic systems. It should also be stressed that our
approach is neither directed towards a specific application domain, nor
a sensor modality.

3. Strong anticipation

In [14] strong anticipation is modeled using a dynamical systems syn-
chronization framework. Consider two continuous-time state vectors
x(t), y(t) ∈ Rn with the following coupled dynamics:

ẋ = g(x)

ẏ = g(y) + k(x − yτ )
(1)

where g : Rn → Rn encodes the dynamics of the system, and yτ =
y(t − τ) is the delayed version of y. The first system is called the
drive, while the second the response. The response system contains
a feedback loop with a constant delay τ , and k is a scalar gain. This
delayed feedback loop in the response system is a fundamental aspect,
and is responsible for the response system's capability of anticipating
the evolution of the drive.

This delayed feedback loop is neurophysiologically supported by the
discovery of forward models in the brain, which predict sensory conse-
quences of motor commands [5, 8, 18]. These models receive as input
a copy of the subject motor action, and produce a prediction of future
perceptions. For instance, when performing an arm movement, these
models predict the trajectory followed by the arm, as perceived by the
subject. One important function of this mechanism is to overcome the
sensory processing latency in the brain, when the subject is performing
controlled, quick movements.

To understand how the response system can anticipate the drive, con-
sider that τ = 0 and that the systems are synchronized at time t0,
i.e., x(t0) = y(t0). Under these conditions, the systems will remain
synchronized, since x − yτ = 0 and thus there is null feedback in
the response. In this case, the concatenated state z = (x, y) ∈ R2n

evolves in the x = y hyperplane, called the synchronization mani-
fold [10]. The response system synchronizes with the drive if the error
system with state e = y − x , also called the transversal system

ė = g(y) − g(x) − k e (2)
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is able to reject the perturbation e, driving it to zero. For g(y) ≃ g(x),
system (2) behaves as a first-order system with an exponential decay
to zero. Anticipation is realized once τ > 0, as synchronization implies
x(t) = yτ = y(t − τ) and thus y(t) = x(t + τ), meaning that the
response anticipates the driver. This is called anticipating synchro-
nization [15], where x = yτ defines the anticipatory manifold [16].

Successful synchronization from an arbitrary initial condition (or when-
ever g(y) diɼers significantly from g(x)) is not guaranteed in general
(except for simple cases), and strongly depends on the values of k
and τ . However, for any delay value τ , e(t) = 0 is a fixed point of the
transversal system (2), meaning that once synchronized, the system
will remain so. Voss conjectures that, if e(t) = 0 is a stable fixed point
for τ = 0, then there is a τ0 > 0 such that, for any 0 < τ < τ0, the
transversal system has a stable fixed point at e(t) = 0. This conjecture
has been backed up by numerical simulations [16].

In general, for suɺciently small τ , stability of the transversal system can
be expected. In the case of this work, since τ models the delay of the
perceptual system (e.g., the latency from a change in the environment
up to its detection by the computer vision algorithm), this delay can be
assumed smaller than the time scale of the events being perceived.

4. Adaptive synchronization

If the drive system corresponds to the world-robot coupled system, its
dynamics are not known a priori. One way of tackling this problem
is to adapt the response system, online, during synchronization. Chen
proposed in [1] an approach to adapt response systems in the context
of dynamical systems synchronization. It does not account, however,
for a delayed feedback.

Consider that the drive system has the form

ẋ = f (x) + F (x)θ (3)

where θ ∈ Rm is a vector of (constant) parameters, f : Rn → Rn and
F : Rn → Rn×m. The response system is identical, except for the pa-
rameter vector that is unknown, and for the synchronization feedback
loop

ẏ = f (y) + F (y)α + U(y, x, t, α) (4)

where α is the response parameter vector, and U(y, x, t, α) is called
the controller of the response. Using Lyapunov's indirect method, Chen
et al. proved in [1] that, under certain conditions, not only the response
system synchronizes with the drive, but also that the response param-
eters α converge to the parameters of the drive θ, i.e.,

lim
t→+∞

||α(t) − θ|| = 0. (5)

These conditions are the existence of (1) a smooth controller
U(y, x, t, θ), and of a (2) scalar (Lyapunov) function V (e), where
e = y − x , such that:

1. c1||e||2 ≤ V (e) ≤ c2||e||2,

2. the derivative of V (e) along the solution of the coupled sys-
tem (3) and (4) with α = θ satisfying V̇ (e) ≤ −W (e), and

3. the parameter vector α is adapted according to the learning rule

α̇(t) = −F T (x) [∇V (e)]T (6)

for ∇V (e) denoting the gradient (row) vector of V with respect
to e,

where c1 and c2 are two positive constants, W (e) is a positive definite
function, and U(y, y, t, θ) = 0.
This result has two important consequences: first, it proves global
asymptotic convergence, provided that the response system is capa-
ble of synchronizing with the drive if α = θ (i.e., if the true parameters
were known), and second, it provides a learning law, in the form of the
gradient of α . However, in order to use this result, one has to find a
controller U and a function V satisfying the hypothesis of the theorem.
Chen showed also that the feedback linearizing controller

U(y, x, t, θ) = −e + f (x) − f (y) + [F (x) − F (y)] θ (7)

and the Lyapunov function

V (e) = 1
2eT e (8)

satisfy the hypothesis for any F and f .
The practical application of these results raises three practical issues.
One is the assumption that functions F and f are known, meaning that
one should have a prior knowledge of the structure of the dynamics of
the system. This argument can be turned around by stating that, given
functions f and F suɺciently generic, this method allows the adap-
tation to any dynamical system that can be modeled by (3) for some
parameter vector θ. Second, this result was proved for continuous
time systems. The discretization of α̇ raises the issue of the choice
of a learning rate (hidden in a proportionality constant of V , since the
theorem is invariant to a change of scale of this Lyapunov function).
However, a good approximation should be expected with a suɺciently
small discretization step. Finally, the third issue concerns hidden state
variables: if there is a state variable that is hidden, in the sense that
the Lyapunov function V (e) does not depend on its error, then V (e)
is no longer positive definite. This requires that all drive state variables
have to be fed to the response system controller. In this paper, how-
ever, we assume full observability of the state variables. This is the
case when the state variables correspond to observable quantities, as
often happens in perception (e.g., the outfield baseball player example
above).

5. Event segmentation

The event segmentation framework (Figure 1) we propose in this pa-
per consists of a pair of response systems, one performing adaptation
(labeled adaptive response), and the other anticipation (labeled an-
ticipating response). The adaptive response learns the parameter
vector α as described in section 4, while anticipating response per-
forms anticipating synchronization as explained in section 3. The drive
system includes the coupled dynamics of the robot and the world. The
access of the architecture to the world state (the perception) is subject
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Figure 1. System architecture, consisting of the drive system and the perceptual delay (in the world block), and the two response systems: the adaptive and the
anticipating ones. The anticipating response uses the parameters α obtained by the adaptive response. The control input u is obtained by a controller
fed with the anticipated state y.

to a delay, modeling the latency of the perceptual channel (e.g., image
acquisition, processing, and tracking). The controller computes the ac-
tuation vector u based on the anticipated world state y, encoding the
intention of the robot (e.g., reach a desired state).

The drive system is modeled by the dynamical system

ẋ = f (x) + F (x)θ + u (9)

where u is the control input, i.e., the actuation of the robot in the world.
Shifting this equation by a delay of τ one obtains

ẋτ = f (xτ ) + F (xτ )θ + uτ (10)

where uτ (t) = u(t − τ) and xτ (t) = x(t − τ). This model can be put
in the form of (3) defining a time varying function

fτ (xτ , t) = f (xτ ) + uτ (11)

from which ẋτ = fτ (xτ , t) + F (xτ )θ. The adaptive response receives
the delayed state xτ , together with the delayed control input uτ

ẏ∗ = f (y∗) + F (y∗)α + uτ + U(y∗, xτ , t, α) (12)

Once fτ (y∗, t) = f (y∗)+uτ , this equation can be put in the form of (4).
The anticipating response is described by

ẏ = f (y) + F (y)α + u + k(yτ − xτ ) (13)

where yτ = y(t − τ) as before, and the parameter vector α is the one
obtained by the adaptive response. The anticipatory synchronization
manifold is defined by yτ = xτ , and thus y = x , meaning that the
anticipating response is synchronized with the drive system, which is
the same to say that it is anticipating the delayed perception xτ . By
shifting (11) in time one can get fτ (y, t + τ) = f (y) + u, allowing us
to write (10) and (13) as

ẋτ = fτ (xτ , t) + F (xτ )θ

ẏ = fτ (y, t + τ) + F (y)α + k(yτ − xτ )
(14)

thus matching (1) when α = θ. Note that the time varying nature of
the f and F functions does not aɼect Chen's results from section 4.

According to the theory of Event Segmentation [19], perceptual sys-
tems continuously make predictions about perceptual input, and per-
ceive event boundaries when transient errors in prediction arise. On
the adaptive synchronization framework, the Lyapunov function V (e)
defined in (8), for e = y∗ − xτ provides an estimate of the prediction
error. Considering the function values in a time window, we can statis-
tically model the obtained samples with a random variable with Normal
distribution of mean µV and variance σ 2

V . Under this assumption, the
normalized metric

bV = V − µV

σV
(15)

is normally distributed with zero mean and unit variance. When |bV |
exceeds a threshold bevent, an event boundary is detected. If bV is
normally distributed with zero mean and unit variance, the cumulative
probability of the distribution tails for |bV | > bevent is the probability of
false positive detection. Thus, bevent should be suɺciently high so that
false positive detection is minimized, but low enough in order to detect
the prediction error increase due to a sudden change in the dynamics
of the system.
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Figure 2. Simulated scenario, where β1 = β3 = π/12.

6. Experimental results

As a proof of concept of the proposed architecture, a simple scenario
was simulated: a ball rolling with the eɼect of gravity over a series of
inclined planes, with diɼerent slopes, is observed by a robot with a
camera seeking to follow the ball in order to center it on the camera
image (Figure 2). The robot camera moves parallel to the plane, for the
sake of simplicity.

Denoting the ball coordinates by v = [v1 v2]T and the camera coordi-
nates by c = [c1 c2]T , the ball projection x = [x1 x2]T in the image
plane is thus: x = v − c (apart from a constant factor, here assumed
unitary). Assuming frictionless motion, the dynamics of the ball can be
described by a double integrator:

v̈1 = −g sin β cos β

v̈2 = −g sin2 β
(16)

Considering that the robot movement is also frictionless and that its
movement is controlled in acceleration (i.e., force control, assuming
unitary mass), the resulting drive system is given by

ẍ1 = −g sin β cos β − c̈1

ẍ2 = −g sin2 β − c̈2
(17)

Considering the state vector x = [ẋ1 ẋ2 x1 x2]T , this system can be put
in the form of (9) once

f (x) =





0
0
ẋ1

ẋ2





θ =
[

−g sin β cos β
−g sin2 β

]

F (x) =





1 0
0 1
0 0
0 0





u =





−c̈1

−c̈2

0
0





(18)

In this setup we set the response system to be structurally identical,
thus employing the same functions f and F , and control input u. The

vector α = [α1 α2]T is the parameter vector to be adapted according
to Chen's learning rule (6).

When the anticipating response is synchronized with the drive, we have
x = y, and thus the dynamics of the anticipating response becomes

ÿ = α − c̈. (19)

The camera motion controller considered has the form

c̈ = kpy + kdẏ + α (20)

where kp and kd are the proportional and the derivative gains of the
controller. Thus, the closed loop dynamics becomes

ÿ = −kpy − kdẏ (21)

The design of the controller gains kp and kd can be performed by pole
placement (in the experiments we set k2

d = 4kp, yielding a smooth
response with a double pole at −kd/2).
The experiments were conducted after discretizing the above equa-
tions using the finite diɼerence approximation ż(t) ≃ [z(t + T ) −
z(t)]/T . The sampling rate was 100Hz, kp = 1, kd = 2, k = 1,
and the Lyapunov function used was (8). The delay considered was
τ = 0.65s (65 samples). Event boundaries are detected using a 10-
second window and a bevent = 3. In the experiment the ball was re-
leased from the top left position in the scenario (Figure 2), and as the
ball transverses the scenario there are two events, corresponding to
the two changes of the ramp slope; the simulation ends when the ball
reaches the top right position. Each simulation takes 100s of simulated
time.

Figure 3 shows the performance of the adaptive response system
alone, in terms of the evolution of the parameters α (solid line), com-
pared with the ground truth (θ, the dashed line, that changes discretely
with the slope). The plot shows the parameter vector α converging to
the true parameters θ, after a short period, every time that there is a
change in slope (which is the same as a change in θ).
The value of the anticipating response was evaluated by comparing the
performance of the controller, with and without anticipation. Figure 4
shows the evolution of the ball position in the camera without anticipa-
tion, i.e., the camera motion controller is fed by y∗ instead of y: the
delay introduced by the latency of the perceptual channel jeopardizes
the performance of the controller. Also, the adaptive response follows
the drive with a delay of τ . Then, using anticipation, Figure 5 compares
the ball position in the camera with its anticipated response. In this
case, both are synchronized, since the ball coordinates in the image
converge to zero (except for a brief time after each slope change, dur-
ing which the adaptive system is learning the new parameters). Also,
the anticipating response allows for better performance of the controller
(in terms of following the ball).

Figure 6 depicts the evolution of the prediction error estimate V (e), for
the first 10s of simulation, encompassing the adaptation of the param-
eters to the initial slope. Its value approaches zero as the drive and
response systems become adapted, as well as synchronized. Finally,
Figure 7 shows the event segmentation results (vertical dashed lines)
obtained using the normalized metric (15), with a window of 10s. As
expected, each change of plane by the ball is detected as an event
boundary by the framework, corresponding to a failure in prediction.
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Figure 3. Parameters α evolution (solid line) in comparison with the true values
(dashed line).
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Figure 4. System response without anticipation: the solid plot corresponds to
the drive system, and the dashed one to the response system.

These results show that the proposed system is capable of correctly
(1) detecting event boundaries, corresponding to failures in predic-
tion (as proposed by EST [7]), (2) controlling the camera movement
smoothly using anticipation (and thus coping with the perceptual delay),
and (3) learning the correct model parameters for a correct anticipation
of the system evolution.

7. Conclusions and future work

This paper presents a novel event segmentation framework, targeting
cognitive, situated robots, based on the concept of strong anticipation
proposed by Stepp et al. in [14]. A dynamical systems synchroniza-
tion paradigm is used as the theoretical foundation of the proposed ar-
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Figure 5. System response using the full architecture: the solid plot corre-
sponds to the drive system, and the dashed one to the response
system.
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Figure 6. Prediction error V for the first 10 seconds of the simulation.

chitecture, where the robot-world coupled system is identified using a
parametric method for adaptation proposed by Chen et al. in [1], and
the control is performed using anticipation. This anticipation accom-
modates for the delay of the perceptual channel. The capability of the
architecture to anticipate perception allows the robot to control its actu-
ation based on the prediction of the robot-world system state, instead
of relying on the delayed perceptual data. A proof of concept experi-
ment, in simulation, has illustrated the capabilities of the approach.

The proposed architecture targets physical robots. Thus, future work
aims primarily at the evaluation of this architecture in a humanoid robot.
One challenge posed by physical robots concerns the performance of
the architecture facing unmodeled dynamics. However, it is expected
that with a suɺciently complex response system, this eɼect can be
eɼectively mitigated.
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Figure 7. The ball v2 coordinate evolution along the experiment: top plot shows
the detected event boundaries as vertical dashed lines, while the bot-
tom plot zooms around the first detected event. The delay observed
in this second plot corresponds to the perceptual delay τ .

At the level of the architecture, future work includes scaling up this ap-
proach to more complex domains. This involves tackling the issues of
the learning rate, which is hidden in the proportionality constant of the
Lyapunov function, used in the Chen's learning rule, as well as the au-
tomatic design of the controller, given the adapted parameters. Other
open questions include dealing with hidden state variables, as well as
complex relations among objects (as in grasping, occlusion, and so on).
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