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Abstract

We present our efforts to deploy mobile robots in of-
fice environments, focusing in particular on the chal-
lenge of planning a schedule for a robot to accomplish
user-requested actions. We concretely aim to make our
CoBot mobile robots available to execute navigational-
based tasks requested by users, such as telepresence,
and picking up and delivering messages or objects
at different locations. We contribute an efficient web-
based approach in which users can request and schedule
the execution of specific tasks. The scheduling problem
is converted to a mixed integer programming problem.
The robot executes the scheduled tasks using a synthetic
speech and touch-screen interface to interact with users,
while allowing users to follow the task execution online.
Our robot uses a robust Kinect-based safe navigation al-
gorithm, moves fully autonomously without the need to
be chaperoned by anyone, and is robust to the presence
of moving humans, as well as non-trivial obstacles, such
as legged chairs and tables. Our robots have already per-
formed 15km of autonomous service tasks.

Introduction and Related Work
We envision a system in which autonomous mobile robots
robustly perform service tasks in indoor environments. The
robots perform tasks which are requested by building resi-
dents over the web, such as delivering mail, fetching coffee,
or guiding visitors. To fulfill the users’ requests, we must
plan a schedule of when the robot will execute each task in
accordance with the constraints specified by the users.

Many efforts have used the web to access robots, includ-
ing the early examples of the teleoperation of a robotic
arm (Goldberg et al. 1995; Taylor and Trevelyan 1995)
and interfacing with a mobile robot (e.g, (Simmons et al.
1997; Siegwart and Saucy 1999; Saucy and Mondada 2000;
Schulz et al. 2000)), among others. The robot Xavier (Sim-
mons et al. 1997; 2000) allowed users to make requests over
the web for the robot to go to specific places, and other
mobile robots soon followed (Siegwart and Saucy 1999;
Grange, Fong, and Baur 2000; Saucy and Mondada 2000;
Schulz et al. 2000). The RoboCup@Home initiative (Visser
and Burkhard 2007) provides competition setups for indoor
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Figure 1: CoBot-2, an omnidirectional mobile robot for in-
door users.

service autonomous robots, with an increasingly wide scope
of challenges focusing on robot autonomy and verbal inter-
action with users.

In this work, we present our architecture to effectively
make a fully autonomous indoor service robot available to
general users. We focus on the problem of planning a sched-
ule for the robot, and present a mixed integer linear program-
ming solution for planning a schedule. We ground our work
on the CoBot-2 platform 1, shown in Figure 1. CoBot-2 au-
tonomously localizes and navigates in a multi-floor office
environment while effectively avoiding obstacles (Biswas
and Veloso 2010). The robot carries a variety of sensing
and computing devices, including a camera, a Kinect depth-
camera, a Hokuyo LIDAR, a touch-screen tablet, micro-
phones, speakers, and wireless communication.

CoBot-2 executes tasks sent by users over the web, and we
have devised a user-friendly web interface that allows users
to specify tasks. Currently, the robot executes three types
of tasks: a GoToRoom task where the robot visits a loca-
tion, a Telepresence task where the robot goes to a location

1CoBot-2 was designed and built by Michael Licitra, mlici-
tra@cmu.edu, as a scaled-up version of the CMDragons small-size
soccer robots, also designed and built by him.
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Figure 2: Users to Mobile Robots (UMR) architecture.

and allows someone to control it remotely, and a Transport
task where the robot picks up an object at one location and
brings it to another. When placing a reservation for a task,
the user selects when the task should be completed. Tasks
are scheduled taking into account feasibility constraints in-
volving other previously scheduled tasks as well as the es-
timates of both the navigation time and of the interaction
time. If the task cannot be completed, the user may be asked
to loosen the constraints or is told that the task cannot be
completed.

Once tasks are scheduled, a behavior plan is executed on
the robot to interact with the users at the task locations and
to incidentally interact with other humans in the environ-
ment (Fong, Nourbakhsh, and Dautenhahn 2003). The plan
may need to be adjusted when tasks do not complete in the
expected time.

In the remainder of this paper, we will present our com-
plete users to mobile robots architecture. We will then dis-
cuss task scheduling and the behavior planner. We present
the web-based interface for users to interact with the robot,
and show illustrative examples of the effectiveness of the
system.

Users to Mobile Robots Architecture
Deploying a mobile robot to general users poses several
challenges: (1) the task-request interface must be easily ac-
cessible and user-friendly, (2) the scheduling algorithm must
plan feasible schedules, (3) navigation must be safe and re-
liable in office environments, and (4) the robot must interact
intuitively with humans.

To address these challenges, we contribute a Users to Mo-
bile Robots (UMR) architecture (see Figure 2), with differ-
ent modules to connect the user requests to the executor
robot, namely:

• interface agent — manages the interaction with users us-
ing the web interface, serving two main purposes: manag-
ing bookings, including placing new ones and canceling
previously booked tasks, and showing the robot’s location
in real-time;

• scheduling agent — receives booking requests from the
interface agent, checks whether they are feasible with re-
spect to previously scheduled tasks, stores them if feasi-
ble, or proposes an alternative otherwise;

• KBase — stores all scheduled tasks, including the ones
already executed, the one being executed, and the ones
scheduled in the future, as well as the robot’s state (such
as location and battery level);

• executing manager agent — handles the communication
with the robots, sending them tasks to be executed, and
receiving their current state;

• robot manager agent — handles the communication of
the robot with the server;

• behavior interaction planner — executes tasks by
breaking them down into sub-tasks (e.g., the Transport
tasks comprises a sequence of interleaved navigation and
interaction sub-tasks);

• navigation — handles the navigation of the robot to a
location given by the behavior interaction planner, using
the robot sensors for localization, navigation, and obstacle
avoidance (Biswas and Veloso 2011);

• onboard user interface — manages human-robot inter-
action, using synthetic speech and touch-screen display.

This architecture interacts with users in two distinct ways:
through the web interface, for managing bookings and fol-
lowing the robot’s state, and directly with the robot through
its onboard user interface.

The web-based booking interface addresses challenge (1),
to the extent that web-based booking systems are a
widespread and familiar scheme for reserving services, be-
ing found in numerous services such as in hotel reservations,
car rental, and more recently in ZipCar™. Challenge (2) is
addressed by the scheduling agent presented in section . This
agent plans a feasible schedule of when the robot can com-
plete all of the tasks, or informs the interface agent that it
cannot. A robust navigation method based on the Kinect
depth camera and capable of effectively navigating in an
office environment, while avoiding moving and fixed ob-
stacles addresses challenge (3) (Biswas and Veloso 2011).
The robot’s face-to-face interaction with its users is based
on a joint synthetic-voice and touch-screen onboard user in-
terface. Messages are both spoken by a synthetic voice and
displayed on the touch-screen, while the user can respond to
these messages using buttons displayed on the touch-screen.
This interface is simple and easy to use, thus addressing
challenge (4).
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Figure 3: Screenshots of the web interface, showing (a) the web interface to perform a booking, (b) the confirmation screen
containing the start and (estimated) end times, and (c) the list of current and past bookings performed by the user.

To illustrate the functionality of the UMR architecture, we
present next a running example of the booking and execution
of a task requested by a user:

1. At 6:35PM, Alice uses a web browser to request a robot to
transport a bottle of water, from room 7705 to room 7005,
as soon as possible (Figure 3a);

2. The web interface passes this new request to the schedul-
ing agent, which plans the robot’s arrival at the pick up
location (7705) at 6:38PM (Figure 3b);

3. After confirmation, CoBot-2 starts executing this task im-
mediately: it navigates to room 7705, while displaying
and speaking the message “Going to 7705 to pick up a
bottle of water and bring it to 7005” on the onboard user
interface;

4. Upon arrival to 7705, CoBot-2 displays and speaks the
message “Please place a bottle of water on me to deliver”,
and awaits someone to click the ‘Done’ button displayed
on the touch-screen;

5. Once this button is pressed, the robot starts navigating to
room 7005;

6. upon arrival to 7005, CoBot-2 displays and speaks the
message “Please press ‘Done’ to release me from my
task”, and awaits the user to press the ‘Done’ button;

7. Once this button is pressed, the task is marked as success-
fully executed, and the robot navigates back to its home
location.

After the task has been booked, Alice can check the booking
on the web (Figure 3c) and cancel it if necessary. During the
task execution, Alice could follow the progress of the robot
navigation, either on the map view (Figure 5a) or through
the camera view (Figure 5b).

Scheduling Agent
Once users have placed requests for the robot over the web, a
schedule of tasks must be formed with times for the robot to
complete them. Tasks that the robots could perform include

coming to a specific location for a demonstration, guiding
a visitor from one room in the building to another, fetching
coffee or printouts, delivering mail, or delivering a spoken
message. When the user makes a request, a time is specified
for when the task is to be carried out. This may either be
“as soon as possible”, an exact time, or a window of time
with a beginning and an ending time. Internally, all these
representations are converted to windows of time. The server
may choose to either accept, reject, or ask to refine a request.

We first look at the batch problem, where the scheduling
agent is given a list of n task requests, T , that the robots
must fulfill. The goal is to find a starting time, ti, for each
task such that the tasks do not overlap and the requests are
fulfilled as soon as possible. Each time ti must fall within
a window of times [si, ei], and the task has a duration di.
Furthermore, each task has a starting and ending location
lsi , l

e
i ∈ L (they will be different for the Transport task), and

there is a function dist : L × L → R giving an estimate of
the time to travel between two locations.

We solve this scheduling problem using mixed integer
programming. We solve for the variables ti, and also intro-
duce some helper indicator variables prei,j which indicate
whether task i precedes task j. Our first set of constraints is
that each time ti must fall within the start and end times of
the window.

∀i si ≤ ti ≤ ei

Then, we constrain the times so that they do not overlap.
First, we define the prei,j to be indicator variables.

∀i, j 0 ≤ prei,j ≤ 1 int
Then, we add constraints which ensure that the execution
times of two tasks do not overlap, handling both the case that
task i comes before task j or the reverse order depending on
the value of prei,j .

∀i, j ti + di + dist(lei , l
s
j)− tj ≤ |ej − si|(1− prei,j)

∀i, j tj + dj + dist(lej , l
s
i )− ti ≤ |ei − sj |prei,j



The objective that we choose to minimize is the total dif-
ference in time from the start of the scheduling window for
all the tasks. This objective ensures that user tasks are com-
pleted as soon as possible.

min
∑
i

(ti − si) = min
∑
i

ti

Alternatively, we could minimize the total distance travelled
by the robot to prolong battery life, or we could optimize
a constant to more quickly find any feasible schedule. So
we have

(
n
2

)
+ n variables, and a proportional number of

constraints.
However, we can reduce the problem further. Some pairs

i and j may never even have a possibility of overlap-
ping depending on their time windows. If either ei + di +
dist(li, lj) ≤ sj or ej + dj + dist(lj , li) ≤ si, then there is
no possibility of the two tasks conflicting and we can elimi-
nate the constraint entirely. In practice, we expect that many
constraints will not overlap at all.

Although solving the MIP is an NP-hard problem, we
have found that in practice it can be solved quickly for cer-
tain problems. We generated a thousand random problem in-
stances, each of 15 tasks with two minutes to half an hour
durations, with time windows over the course of four hours.
This is the type of input we expect the robot to receive. The
scheduler solved (either found a schedule or found that no
schedule existed) 99% of the problems in under two seconds.
In the cases where a schedule is not found quickly, rather
than waiting, we can declare that there is no valid schedule.

In practice, the task requests are not processed in a batch,
but come in an online fashion over the web. We reschedule
everything whenever a new request is made. If a schedule
cannot be found, the user’s request is rejected and the user
has an opportunity to relax the constraints.

Since the tasks are running on actual robots, the actual
time to complete a task will often differ from the expected
time. In these cases, a new schedule is built, and some of the
tasks may need to be abandoned.

After a task is scheduled, the executing manager agent
sends the robot-specific scheduled task set to the corre-
sponding robot manager agent to execute. The robot’s Be-
havior Interaction Planner plans the sequence of action to
complete each task.

Behavior Interaction Planner
Typically, task planners only plan the autonomous actions to
complete a task and a separate dialog manager interacts with
humans to receive the task requests. However, a robot cannot
always perform its actions autonomously and relies on hu-
mans in the environment to help it complete tasks. Addition-
ally, as a robot performs actions, humans in the environment
may want to know what the robot’s goals are. Our Behavior
Interaction Planner therefore reasons about a robot’s inca-
pabilities (Rosenthal, Biswas, and Veloso 2010) and human
interest in the robot and plans for human interactions in ad-
dition to the autonomous actions. As the robot executes the
plan, it reports a descriptive message back to the server for
online users to follow the robot’s progress in the web inter-
face.

Actions and Interactions
We define actions and interactions that are required to com-
plete a task along with their preconditions and effects. For
ask interactions, for example, there are no preconditions,
the robot speaks the defined text, and the effect is the re-
quired human response (e.g. clicking a ‘Done’ button on
CoBot’s user interface). For navigate actions, the pre-
condition is that the robot speak aloud its new goal to hu-
mans in the area, the robot then sends a desired location to
the navigation module, and the effect is that the robot is in
the location that it should navigate to. The separate naviga-
tion module controls the low level motor control and obsta-
cle avoidance for navigation. Any other actions needed for a
task can be defined similarly.

Autonomous Planning and Execution
Given a new task, the robot plans the sequence of
actions necessary to complete it. For example, in the
Transport(s, lp, ld,m) task, the Behavior Interaction Plan-
ner plans the following sequence of actions (illustrated in
Figure 4): navigate to location lp, ask for the object m,
navigate to ld, and ask for task completion confirma-
tion.

The Behavior Interaction Planner can also plan for a
robot’s incapabilities. For example, if CoBot (with no arms)
must navigate between different floors of the building, this
requires not only navigate actions, but also human inter-
action to ask for help with pressing buttons and recognizing
which floor the robot is on. In these cases, the Behavior In-
teraction Planner plans:

• navigate to elevator,

• ask for help pressing the up/down button,

• navigate into the elevators,

• ask for help pressing the floor number and recognizing
that floor,

• navigate out of the elevator,

• navigate to goal

Upon arriving at goal locations, the robot may also need help
picking up objects and plans for these additional ask inter-
actions accordingly.

Web-based User Interaction
The interface agent and the scheduling agent are imple-
mented as a web application, running the web-based user
interface, and connecting to the central scheduling database
and the robot. The web interface is used for scheduling new
tasks, examining and modifying existing tasks, and monitor-
ing or controlling the robot through telepresence.

Web Booking Interface
After successful authentication with a username and pass-
word, each user is presented with a web interface, composed
of four sections.

• Book a Robot. A user specifies the task to book together
with the desired time (Figure 3a). The booking interface
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Figure 4: (a,b,c) After CoBot-2 receives a Transport task request, it autonomously navigates to the location lp to pick up a bottle
of water. (d,e) Upon arriving to lp, CoBot-2 asks the user to place the bottle of water and press ‘Done’. (f,g) Then, CoBot-2
navigates to location ld to deliver the bottle of water. (h,i) When the user presses ‘Done’ CoBot-2 navigates back to its home
location. (The complete example sequence is submitted as a video with this paper.)

supports two ways of setting the start time of a task: users
can request the task to be executed as soon as possible, for
which the soonest feasible time slot is provided, or at a
specific time, in 10 minutes intervals. The actual booking
is preceded by a confirmation screen (Figure 3b).

• View Bookings. This section displays both the current
and the past bookings (Figure 3c). Current bookings can
be canceled at any time. If the robot is already execut-
ing a task, it is immediately aborted. The past bookings
list shows both the scheduled and the actual start and end
times for each task, as well as whether its execution was
successful or an unexpected event canceled it (e.g., low
battery).

• Monitor Robots. Users can follow the location of the
robot in real-time on a map. This interface also displays
the task currently being executed by the robot, as well as
its battery level.

• Telepresence. Users can view the state of the robot and
operate it remotely if they have scheduled a telepresence
task.

The web booking interface enables users to intuitively in-
teract with the robot.

Telepresence
In addition to performing tasks fully autonomously, one of
the tasks users may request a robot for is to control CoBot-2
in a semi-autonomous “telepresence” mode in the Telepres-
ence task. In telepresence mode, live sensory information
and camera images are streamed and displayed directly in
the user’s web browser on a page linked to from the web
scheduler.

The telepresence interface, shown in Figure 5, displays
the camera image, the text-to-speech interface, and the con-
trols for both the robot navigation and camera pan-tilt-zoom
settings. The telepresence interface provides three control
modalities with increasing levels of autonomy. In all modal-
ities, the robot autonomously avoids obstacles. In addition
to controlling the robot with the interface buttons, users may
click directly on the image to point the camera or to navigate
the robot to the point clicked. The interface map displays the
robot’s current location and orientation, and highlights de-
tected obstacles to help the user to navigate safely. The user
may click on the map to send the robot autonomously to a

(a) map view (b) telepresence view

Figure 5: Screenshots of the telepresence interface, show-
ing (a) the map view of CoBot-2 location with its navigation
path, and (b) the telepresence interface, showing the robot’s
camera view, together with camera and robot motion con-
trols.

location. We have found that users utilize all of these control
modalities depending on the situation.

Illustrative Results
In order to illustrate the effectiveness of our system we con-
ducted a set of experiments comprising 41 tasks requested
on the web interface (21 Transport, 20 Go-To-Room). The
locations used were all existing 88 offices at the 7th floor
of the Gate-Hillman Center in Carnegie Mellon University.
The execution of these tasks resulted in 138 minutes of au-
tonomous navigation, along a total distance of 4.9 km. The
location(s) used in each task was randomly chosen from all
of the 88 offices. Of the 41 tasks, 37 were successfully com-
pleted (> 90%), three were manually aborted due to blocked
paths, and one was automatically aborted due to a low bat-
tery condition.

Figure 6 shows all the trajectories traveled by CoBot-
2 during these experiments, spanning almost all navigable
space on the floor. The time taken by each navigation sub-
task as a function of traveled distance is plotted in Figure 7.
The relation between distance traveled and time is roughly
linear, except for a few outlier points. Some of these out-
liers correspond to cases when the task was aborted due to
a blocked path, while others can be explained by the robot
trying to navigate around people blocking its way, possibly



Figure 6: Union of all trajectories traveled by CoBot-2 on
the 7th floor of the Gates-Hillman Center (CMU).
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Figure 7: Time taken by each navigation sub-task.

driven by curiosity. This shows the robot safely navigates
around walls, chairs, and people throughout the entire office
environment.

Conclusion
This paper presented the Users to Mobile Robots (UMR) ar-
chitecture, addressing the goal to deploy mobile robots to
general users. This architecture allows users to request tasks
and monitor their execution, using an easy to use web inter-
face. Our scheduling agent finds a feasible schedule, taking
into account time constraints imposed by the mobile nature
of robots. The Behavioral Interaction Planner autonomously
plans and executes the scheduled tasks. We demonstrated
that the navigation method is robust; CoBot-2 has traveled
an accumulated distance of 15 kilometers without being
chaperoned. The onboard user interface is intuitive, as any
person was able to appropriately respond to it.
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