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Av. Rovisco Pais, Torre Norte 7.22

1049-001 Lisboa, Portugal
Email: jpg@isr.ist.utl.pt
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Abstract—This work proposes methods for estimating the
responses of time-varying underwater acoustic channels using
`2 − `1 basis pursuit and quantifying their similarity. This is
motivated by problems where environmental information is to be
extracted from communications signals through high-frequency
ocean acoustic tomographic techniques. We view underwater
channels as time-varying linear systems and characterize them
by their Delay-Doppler Spread Functions (DDSF), which have
many adjustable parameters but are often very sparse. Basis
pursuit estimation of DDSF coefficients is achieved with either
the SpaRSA or TwIST algorithms, which can efficiently handle
sparse unconstrained `2 − `1 minimization even for very large
problem sizes, and directly operate on the complex signals of
baseband communication models. We show that these algorithms
offer better performance than matching pursuit methods, in
terms of DDSF estimation accuracy and computational complex-
ity, using both simulated and real data. We examine criteria
based on Euclidean distance, correlation, and Kullback-Leibler
divergence for quantifying the similarity of DDSFs, as needed
in the envisaged tomographic systems for matching observations
and model predictions. Their performance is found to be similar,
with the correlation metric showing somewhat less consistent
performance than the other two in simulation. Our matching
approach also enables a simplification of DDSF estimation
algorithms by tolerating the inherent biasing in `2− `1 solutions,
and thereby avoiding the need for further postprocessing.

I. INTRODUCTION

Many underwater acoustic channels exhibit extensive time
dispersion, on the order of tens of milliseconds or more,
due to multipath propagation, requiring powerful algorithms
at the receiver and transmitter to properly convey digital
messages. The relatively slow propagation speed of acoustic
waves in the ocean induces challenging time variations, as
even relatively slow motions of the transmitter/receiver or
surface waves can cause waveform compression/expansion and
broadband Doppler spreading [1]. Characterizing the statistics
of fluctuating multipath arrivals in a way that is useful for
communication systems designers remains a topic of great
relevance today.

Underwater channel responses are often sparse, a property
that has been successfully exploited to improve the perfor-

mance of adaptive receivers by zeroing small and jitter-prone
estimated coefficients, e.g., in single-carrier [2] or OFDM
systems [3]. In the presence of time variations a linear channel
may be characterized by its Delay-Doppler Spread Functions
(DDSF), which is conceptually obtained by computing the
instantaneous impulse response as a function of delay and
time, and then Fourier transforming along the time variable [4].
These 2D functions, defined in the delay-Doppler plane, pro-
vide physical insight, as the effect of a slowly moving scatterer
in the underwater environment (over a sufficiently small time
interval) that creates a delayed and Doppler-shifted replica of
the transmitted signal at the receiver can be mathematically
described by a single coefficient in the delay-Doppler plane,
or a set of coefficients in a confined region. This makes DDSFs
of typical underwater channels particularly sparse, with most
of the energy concentrated on a few regions where there are
contributions from multipath arrivals. These regions become
broader as the medium becomes more dynamic, e.g., due to
increased wave activity.

Switching from static impulse responses to DDSFs intro-
duces an additional Doppler dimension and typically leads to
a harder channel identification problem as, in the absence of
prior information, there are many more coefficients to estimate.
Exploiting the sparsity of DDSFs is key to computing them
with moderate complexity, as shown in early work by Li
and Preisig [5] using matching pursuit (MP) and orthogonal
matching pursuit (OMP) methods. In this work we focus on
alternative basis pursuit (BP) methods developed for com-
pressive sensing [6], [7], particularly on recent algorithms
for `2 − `1 pursuit, where the (unconstrained) cost function
to be minimized is a weighted sum of a least-squares term
that measures goodness of fit and an `1 term that acts as
a regularizer to induce solutions where many coefficients
become zero. The algorithms for handling these dictionaries
can be highly efficient, and for large problem sizes their
computational complexity compares favorably with search-
based methods like MP/OMP [8]. We specifically examine
SpaRSA [9] and TwIST [10], two algorithms that seamlessly



Fig. 1. Block diagram of the envisioned high-frequency tomographic approach. DDSFs are obtained from the observed response to a known transmission
(top) or an acoustic propagation model (bottom). Model parameters (such as water depth or transmitter/receiver positions and relative speeds) are updated
based on the matching analysis performed by the “Comparing Block”.

handle complex data and are therefore well suited to baseband
communication models. We have found these algorithms to
be robust in the sense that their adjustable parameters were
set to values that provided suitable performance across our
experimental and simulation data sets.

BP methods for wireless communications over sparse chan-
nels have been studied, e.g., in [11]–[13]. In [11] the emphasis
is on deriving performance bounds for the channel estimates,
whereas [12] focuses on designing the dictionary signals to
maximize the sparsity of the estimated channel coefficients. In
[13] the authors estimate time-varying channels in underwater
OFDM systems using subspace, BP, and other methods, and
then design frequency-domain equalizers to compensate for
the intercarrier interference. BP methods in [13] were found to
offer the most consistent performance over time and in several
data sets.

Our work adopts a different viewpoint from those referenced
above by emphasizing applications where environmental in-
formation is estimated from communications signals through
tomographic techniques. Ocean acoustic tomography (OAT)
is based on the principle that environmental properties such
as sound speed profile, water depth, or bottom composition
imprint a specific signature on acoustic signals, such that
some of these properties can be recovered by solving an in-
verse problem. Conventional OAT uses acoustic signals whose
frequencies are much lower than those used in underwater
communications. However, the ability to infer environmental
properties through digital communications signals, which is
almost totally lacking in current underwater modems, is very
appealing for a number of reasons:

1) To provide a clearer picture of the difficulties involved
in a given spatial configuration of the acoustic link. This

could serve as a basis for tuning the receiver architecture
(e.g., the filters used in equalization) to a particular
ensemble of expected channel impulse responses.

2) To supply useful oceanographic information about the
environment at no extra cost.

3) To provide useful localization information to be incor-
porated into the navigation system of a vehicle in which
the receiver is installed.

Here, DDSFs are viewed as the link to assess how a given
model of the environment conforms to experimental data (Fig.
1).

Matching DDSFs is envisaged for estimating geometric
information such as source-receiver positions, velocities, and
water depth, as modeling uncertainties at high frequencies
seem too large to recover more subtle properties such as
bottom composition. The framework is reminiscent of [14],
[15], where the delays between selected multipath arrivals
were used to invert for the source position through a model-
based approach. In our work sparse DDSF estimation for
single-carrier communications is used to obtain a “skeleton” of
the acoustic field, including dynamic information on relative
velocities from the Doppler shifts observed on different paths.
This is then matched to predictions based on a ray propagation
model, which provides sufficient accuracy at high acoustic fre-
quencies in the tens of kHz. This paper specifically discusses
criteria for measuring the discrepancy between DDSFs in
the “comparing block” of Fig. 1 using Euclidean differences,
correlation, and Kullback-Leibler divergence [16]. The actual
statistical process of inferring model properties from matched
DDSFs, denoted by the arrow from the “comparing block” to
“UWA channel model”, is the subject of ongoing work and
will be reported elsewhere.



Regarding DDSF estimation by BP methods, we assess
the computational complexity of SpaRSA and TwIST as a
function of problem size and compare it to MP and OMP,
which have been used previously for similar purposes. It
is found that BP methods have lower complexity than MP
methods for suitable choices of the parameters that control
the level of sparsity in the solution. Importantly, they also
provide more physically plausible estimates with improved
compact support in the delay-Doppler plane. Both SpaRSA
and TwIST use a two-step process where the support region of
the DDSF is first determined, as well as initial estimates of the
DDSF coefficients. The second step, known as the debiasing
phase, finds least-squares coefficient estimates restricted to
the support region determined in the first step. We assess
the relative computational complexity of these two steps and
examine the feasibility of computing DDSF discrepancy mea-
sures without debiasing. We find that, while debiasing would
likely be needed for receiver design purposes, it does not seem
to offer significant advantages for OAT. Eliminating debiasing
results in strong computational savings. The performance of
the various methods is evaluated in simulation and using data
from an at-sea experiment conducted in Norway, in September
2007.

The paper is organized as follows. Section II-A introduces
DDSFs and formulates the DDSF estimation problem. Section
II-B discusses criteria for matching DDSFs. Section III de-
scribes the BP framework for DDSF estimation and discusses
some specific aspects of SpaRSA and TwIST. Section IV
provides numerical results on DDSF estimation using both
simulated and real data, as well as on DDSF matching mea-
sures. Finally, Section V outlines the main conclusions and
provides directions for future research.

Notation: Superscripts (·)T , (·)H stand for transpose and
conjugate transpose (hermitian), respectively. `p norms are
denoted by

∥∥·∥∥
p
, and `2 is assumed when the argument p

is omitted.

II. IDENTIFICATION AND MATCHING OF SPARSE
DELAY-DOPPLER SPREAD FUNCTIONS

In this section we formulate the Delay-Doppler Spread
Function estimation problem and introduce discrepancy mea-
sures for matching DDSFs. All communication signals and
channel responses are represented by their complex baseband
envelopes.

A. Problem Formulation

In a noiseless time-varying linear channel in continuous
time the input signal, x(t), and the output, y(t), are related
through the input delay spread function g [4]

y(t) =

∫ ∞
−∞

x(t− τ)g(t, τ) dτ . (1)

The channel is represented as a continuum of scatterers, where
g(t, τ) is the contribution at time t from a scatterer providing
delays in the range [τ, τ + dτ ]. Variations in g along the time
dimension are structured when caused by a small number of

Doppler shifts for a given delay, and Fourier transforming
along the t variable yields a more compact representation of
the system response through the DDSF U

y(t) =

∫∫
R2

U(τ, ν)x(t− τ)ej2πν(t−τ) dτdν , (2)

U(τ, ν) = Ft {g(t, τ)} ej2πντ . (3)

The argument in the complex exponential of (2) differs from
the one appearing in [4], resulting in a DDSF definition that is
different from the usual one, namely, Ft {g(t, τ)}. This is more
convenient for efficiently handling inner products between
observed signals and multiple related dictionary waveforms
through convolution in BP methods. The phase difference
between (3) and the standard definition is of no consequence
for the purposes of our work, which concentrates on the
magnitude of U for tomographic inversion.

In an ideal discrete path model, which approximates the
characteristics of many real underwater acoustic channels, the
DDSF is represented as a set of impulses in the delay-Doppler
plane

U(τ, ν) =

Np∑
p=1

αpδ(τ − τp)δ(ν − νp) . (4)

Practical systems have an essentially finite number of de-
grees of freedom that enables a sampled representation of (2),
where the coarseness of the delay and Doppler grids, ∆τ and
∆ν, is dictated by the reciprocal of the input signal bandwidth,
and the reciprocal of its duration, respectively [4], [11], [17].
We thus adopt the discrete-time input-output model

y(n) =
∑
k,l

uk,lxl(n− k) , xl(n) = x(n)ej2πνln , (5)

where the sampling frequency, fs, is a multiple of the input
signal bandwidth and νl = l

Tfs
for an input block of duration

T . Our practical Doppler grids are usually coarser than this,
and suitable ranges for the delay and Doppler indices in (5)
are chosen from an empirical analysis of each data set. With
correct delay and Doppler sampling the discrete-time DDSF
u will remain sparse.

The channel model (5) is linear in the DDSF coefficients,
and may be written in matrix form as y = Xu, where y
denotes a vector of M observed samples, u holds the stacked
DDSF coefficients to be determined, and X is the known
dictionary matrix. The p-th column of X is a vector, xp,
of M consecutive input samples, delayed relative to y and
Doppler shifted as required for the p-th element of u according
to (5). As in [5] we assume that the observed block is
sufficiently short, on the order of 1 second, so that the channel
coefficients in u can be considered constant. The problem of
DDSF estimation is to obtain the coefficient vector given the
dictionary matrix and a noisy version of the observation vector
y.

This simple model is best suited for single-carrier trans-
missions, where a block of consecutive input symbols can be
assumed known. In multicarrier communications the channel
response would be estimated from a set of pilot symbols



Fig. 2. Sparse DDSF estimation for real channel. (a) MP (b) OMP (c) SpaRSA (d) TwIST. Although all methods detect some nonzero taps, SpaRSA and
TwIST provide a better coverage in the delay-Doppler plane and a clearer picture of the DDSF.

spread across the signal bandwidth, in which case the problem
formulation would be different. A linear system of equations
for the DDSF coefficients would still be obtained, though [11],
[13].

For realistic choices of the delay and Doppler grids under
the assumed signal bandwidth the dictionary matrix will be
very large, making it inconvenient and slow to operate on it
explicitly. However, the sparse identification methods under
consideration only require that matrix products of the form Xu
or XHy be calculated and for blocks of contiguous observed
samples this can be done very efficiently due to the special
structure of X, which is the (column-wise) concatenation of
convolution matrices for the signals xl(n) in (5). Specifically,
in forward mapping we generate Xu through (FFT-based)
time-invariant filtering of xl(n) with the subset of elements of
u pertaining to Doppler frequency νl, then adding over l. In
adjoint mapping we generate the vector XHy by crosscorre-
lating the sequences y(n) and xl(n), for all l, restricted to the
samples contained in y and X. Each element of the desired
vector, xHp y, is given by the crosscorrelation for a specific
Doppler index and lag. Usually this is also most efficiently
done using the FFT.

The modified DDSF definition adopted in (2)–(3) directly
supports the above procedures for forward and adjoint map-
ping with no need for further postprocessing. Fast algorithms
for FFT-based forward and adjoint mapping can also be used
for DDSF estimation in OFDM systems [13].

B. DDSF Discrepancy Measures

Propagation modeling at frequencies of tens of kHz,
used in underwater modems, is inherently unreliable be-
cause uncertainties in bottom bathymetry, surface altimetry,
or source/receiver positioning, among others, are of the same
order of magnitude, or even much larger, than the acoustic
wavelengths of communication signals. Under such condi-
tions model mismatch induces significant errors in acoustic
field computations, hence also in DDSF prediction, and it
is generally believed that phase errors in the coefficients, in
particular, are too large to justify meaningful comparisons
between complex values in modeled and observed DDSFs.
This contrasts with OAT at low frequencies, where prediction
of the magnitude and phase of acoustic fields has been

successful with accurate propagation models and reasonably
detailed environmental data.

In spite of large uncertainties in coefficient values, other
properties of DDSFs or impulse responses of underwater chan-
nels, such as the arrival times of multipath components, are
considered reasonably reliable. In fact, ray tracing is routinely
used to get a basic understanding of the observed structure
of arrivals in experimental data sets containing communica-
tions signals. This suggests that matching the locations with
significant contributions in the delay-Doppler plane may be a
reasonable criterion for quantifying the discrepancy between
DDSFs, even at high frequencies. The approach proposed in
[14], [15] for simple and robust inversion by matching the time
difference between selected arrivals seems to be directly in-
spired by this. In our work we adopt an intermediate approach,
discarding the phase information in DDSFs when evaluating
discrepancies, but keeping the relative magnitudes of arrivals.
The rationale for doing this is that absolute magnitudes are too
dependent on uncertain environmental and technical factors
(such as filter gains at the transmitter and receiver), but the
relative strengths of arrivals still carry information that is
usually considered useful in practice. For example, observed
bottom-interacting arrivals are typically weaker than the direct
arrival or the first surface-reflected arrival. Given a vector u
with DDSF coefficients, we first preprocess it by retaining
only the magnitudes of coefficients and normalizing for unit
`1 norm, yielding

ui ←
∣∣ui∣∣∑
j

∣∣u∣∣
j

. (6)

The preprocessed coefficients are therefore real, non-negative,
and sum to one:

ui ≥ 0 ,
∑
i

ui =
∥∥u∥∥

1
= 1 . (7)

We then evaluate different real-valued metrics ϕ(u,v) ≥ 0 to
quantify the discrepancy between two (normalized) DDSFs u
and v:

a) Euclidean distance: We simply take the Euclidean
distance between the vectors u and v:

ϕE(u,v) =
∥∥u− v

∥∥
2
. (8)



Fig. 3. Running time for DDSF estimation methods. (a) Variable sparsity, with fixed problem size. (b) Variable problem size, with fixed regularization
parameters/stopping criteria.

b) Correlation:

ϕC(u,v) = uTv . (9)

Note that this metric is approximately zero when u, v are
very dissimilar, and it takes on higher values when u ≈ v.
The converse happens for ϕE and ϕKL below.

c) Kullback-Leibler divergence: In light of (7), nor-
malized DDSF vectors can be viewed as probability mass
functions (PMF), and their similarity quantified through the
Kullback-Leibler (KL) divergence. For PMFs p and q, defined
over a discrete set I, the KL divergence is defined as [16]

D(p ‖ q) =
∑
i∈I

pi log
pi
qi
, (10)

with the convention that 0 log 0
0 = 0, 0 log 0

q = 0, p log p
0 =

∞. The KL divergence is always nonnegative and is zero only
if p = q, but unlike a true distance it is not symmetric in its
arguments. As a discrepancy metric we adopt the symmetrized
KL divergence

ϕKL(u,v) =
D(u ‖ v) +D(v ‖ u)

2
. (11)

Due to the nature of our sparse estimation methods, DDSF co-
efficient vectors typically have many zero entries. Conceivably,
the vectors u, v for two relatively close propagation scenarios
might end up having little or no intersection in the subset of
indices of their nonzero entries, in which case discrepancy
measures as proposed above would provide misleading results
of high DDSF disparity. To avoid this potentially erratic
behavior we propose to lowpass filter the DDSF estimates
prior to calculating the metrics, thus artificially broadening the
nonzero support region of coefficient vectors to improve the
continuity of ϕ. In this work we use a truncated Gaussian FIR
filter to smooth DDSFs along the delay dimension. This was
found to be unnecessary along the Doppler dimension, as BP
methods yield solutions that are already sufficiently smooth
with the chosen grids for Doppler shifts.

III. BASIS PURSUIT METHODS

Recent achievements in compressive sensing (CS) have
sparked enormous interest in such techniques for solving
various linear, but ill-posed, inverse problems, where sparsity
acts as a regularization criterion to stabilize the solution [7].
We are mainly concerned with solving unconstrained `2-`1
optimization problems of the form

min
u

1

2

∥∥y −Xu
∥∥2
2

+ τ
∥∥u∥∥

1
, (12)

where the first term measures how well the candidate solution
fits the observed data, in the least-squares (LS) sense, while
the second one is a regularizer which acts as a surrogate for
the intractable `0 norm, and tends to penalize more heavily
vectors u with many nonzero components. The so-called
regularization parameter τ controls the relative weight of the
two terms [10]. Many variants of (12) exist in the literature,
e.g., keeping only one of the terms in the cost function and
including the other one as a constraint under a prescribed
bound [7].

In most reported applications of (12) the data matrix X
is fat, i.e., there are fewer observations than unknowns,
and the regularizer is essential for obtaining a well-posed
optimization problem. This is not necessarily the case in
DDSF estimation, where data blocks may be large enough
to enable even conventional LS estimation. The `1 regularizer
then acts simply as a device for automatically setting to zero
small coefficients, whose contribution to improve the fit to
observations is marginal, but which would nonetheless be
retained by a pure LS estimator.

1) Sparse Reconstruction by Separable Approximation
(SpaRSA): SpaRSA is a general framework for numerically
solving an unconstrained optimization problem of the form
[9]

min
u
f(u) + τc(u) , (13)

where f is a smooth function and c is the sparsity-inducing
regularizer which, in state of the art CS methods, is non-



Fig. 4. Running times for DDSF estimation with (dashed) and without (solid) a debiasing postprocessing phase as a function of the number of nonzero taps.
(a) TwIST (b) SpaRSA.

quadratic and nonsmooth (typically the `1 norm appearing in
(12)). It is an iterative method that at each step solves an
optimization subproblem with an approximation for f that is
separable in the unknowns, interpolating the gradient infor-
mation and using a diagonal approximation to the Hessian.
Simple and efficient algorithms result when the regularizer is
also separable, i.e., it is a sum of functions of the individual
components of its argument, c(u) =

∑
i ci(ui), as is the case

for the `1 norm. For the `1 regularizer SpaRSA repeatedly
evaluates simple so-called soft threshold functions that trans-
parently clip small entries in u to exactly zero. In the complex
case required for working with basedband communication
signals the soft threshold function is given by

soft(u, a) =
max{

∣∣u∣∣− a, 0}
max{

∣∣u∣∣− a, 0}+ a
u , (14)

where the parameter a depends on the current step and reg-
ularization parameters. Experiments with CS problems show
that SpaRSA is competitive with the fastest known methods
for the standard `2− `1 problem, as well as being efficient on
problems with other separable regularization terms.

The regularization parameter τ , which is usually set by trial
and error, provides an adjustable control to specify the desired
level of sparsity in the solution. As a rule of thumb τ should
approximately equal the maximum squared `2 norm of the
dictionary matrix columns.

Both SpaRSA and TwIST, described below, only operate
on the dictionary matrix through the forward and adjoint
mappings introduced at the end of Sec. II-A. These mappings
can be computed in a very efficient way for several types
of dictionary, including the ones considered here for DDSF
estimation (FFT-based). These BP methods therefore have the
ability to handle very large estimation problems with reason-
able computational complexity, which is extremely relevant
for the proposed application in underwater communications.
More specific issues related to real-time implementation will
not be considered here.

2) Two-step Iterative Shrinkage/ Thresholding Algorithm
(TwIST): Iterative shrinkage/thresholding (IST) algorithms
attempt to minimize the cost function (13) for f(u) =
1
2

∥∥y −Xu
∥∥2 through the recursion

ut+1 = (1− β)ut + βΨτ

(
ut + XH(y −Xut)

)
, (15)

where Ψτ is the shrinkage function, a componentwise nonlin-
earity that reduces the range of the elements of u and thus
induces sparsity by setting small coefficients to zero [18].
When c(u) =

∥∥u∥∥
1

in (13), Ψτ coincides with the soft
threshold function defined in Section III-1. In (15) 0 < β ≤ 1
is a parameter which changes the convergence rate of the IST
method. Setting β = 1 defines the original IST algorithm.

The convergence rate of IST algorithms depends on the
linear observation operator Xu, becoming very slow when
it is ill-conditioned or ill-posed. Two-step iterative shrink-
age/thresholding algorithms overcome this by implementing
a modified version of IST where ut+1 depends explicitly on
ut and ut−1. The resulting algorithms exhibit a much faster
convergence rate than IST for ill conditioned and ill-posed
problems [10]. The TwIST recursion is given by

ut+1 = (1−α)ut−1+(α−β)ut+βΨτ

(
ut+XH(y−Xut)

)
,

(16)
where α and β are algorithm parameters that determine the
convergence rate and should be adjusted for each specific
optimization problem. Like SpaRSA, this algorithm readily
operates on complex data.

3) Debiasing: Solving (12) does not lead to a LS solution
for u over the set of identified nonzero taps. The practical
implementations of SpaRSA and TwIST therefore provide an
optional postprocessing step known as debiasing, where a true
LS solution is calculated, restricted to the set of dictionary
entries where nonzero coefficients were identified during the
main processing phase. Debiasing solves a linear system of
equations using the conjugate gradient method, which also



Fig. 5. Estimation and matching of sparse DDSFs. In this experiment the communication range is 400 m and the depth of the transmitter changes from 5
m to 45 m in 2 m steps. The depth of the transmitter for the reference configuration is 25 m. (a) Filtered DDSF, using a Gaussian filter along the delay axis,
for the reference point (b) Channel impulse response (c) Channel impulse response after filtering by Gaussian filter (d) Difference between unfiltered DDSFs
(e) Correlation between DDSFs (f) Kullback-Leibler distance between DDSFs (g)–(i) Discrepancy metrics for filtered DDSFs (j)-(o) Simplified discrepancy
metrics for projection of unfiltered (top) and filtered (bottom) DDSFs onto the delay axis.

operates on the dictionary matrix only through the forward
and adjoint mappings, thus retaining the ability to handle large
problem sizes.

In spite of its efficiency, debiasing can account for a large
fraction of the processing time in the current implementations
of SpaRSA and TwIST. In this work we therefore investi-
gate the possibility of comparing estimated DDSFs when the
debiasing step is omitted. The rationale for doing so is the
empirical observation that, in terms of magnitude, debiased
solutions usually resemble slightly scaled-up versions of the
solutions of (12), in which case the `1 normalization that

precedes the computation of disparity measures (Sec. II-B) will
produce almost identical normalized DDSF coefficient vectors,
and hence disparities will also be very similar in both cases.
Note that debiasing would likely be needed if DDSFs were
being used to design equalization filters at the receiver, where
accurate knowledge of the coefficients is important.

IV. PERFORMANCE ASSESSMENT

In this section we compare the performances of sparse
DDSF estimation and matching methods in QPSK transmis-
sions over simulated and real underwater channels.



Fig. 6. Estimation and matching of sparse DDSFs. In this experiment the communication range changes from 300 m to 400 m in 5 m steps. The range is
350 m for the reference configuration. (a) Filtered DDSF, using a Gaussian filter, for the reference point (b) Channel impulse response (c) Channel impulse
response after filtering by Gaussian filter (d) Difference between filtered DDSFs (e) Correlation between filtered DDSFs (f) Kullback-Leibler distance between
filtered DDSFs (g)–(i) Discrepancy metrics using debiased and filtered DDSF estimates.

A. Experimental Results

The UAB’07 sea trial was carried out in Norway, in
September 2007. In the particular experiment analyzed below
the transmitter was suspended 10 m from shore, at a depth
of about 5 m. The receiver (hydrophone #8 of a 16-element
vertical array) was suspended from a drifting buoy at 35 m
depth. The communication range was approximately 800 m,
the bottom sloping from 10 m depth at the transmitter to
about 100 m at the receiver. We focus on QPSK packets (type
Q1) at 1 kbaud, with 1.5 kHz bandwidth, RRC pulse shapes
(50% rolloff), 5.5 kHz carrier frequency, and total duration 3
s. Each packet is flanked by a pair of start/stop LFM markers
for packet synchronization and coarse Doppler compensation
through resampling. The Doppler axis in DDSF plots already
accounts for this pre-processing. DDSFs are estimated based
on a time window of 1 s centered on each received signal.
The baseband sampling frequency is fs = 4 kHz.

Experimental results are presented in Figure 2. We use sub-
symbol delay resolution ∆τ = 1/fs = 2.5 × 10−4 s and
Doppler step ∆ν = 0.1 Hz, for a total of 244 × 41 DDSF
coefficients. Results demonstrate a case with strong Doppler
spread, where MP and OMP identify many scattered points
that make it difficult to grasp the shape of the DDSF, while
BP methods provide a clearer picture.

The run times for the four methods as a function of the

number of nonzero taps1 for estimating a fixed-size DDSF are
shown in Figure 3a. The debiasing tolerance parameter, which
defines the desired accuracy for the debiasing phase discussed
in Section III-3, is set to 10−3 for SpaRSA and TwIST. Since
MP methods search for the highest projection for each new
selected tap, the run time for MP and OMP is directly depen-
dent on the number of nonzero taps. BP methods estimate the
sparse vector jointly by solving a single optimization problem,
which makes them less dependent on the number of nonzero
taps. It is clear that BP algorithms are significantly faster than
MP methods with no sacrifice in accuracy. Figure 3b shows the
dependency of elapsed time for variable-size DDSF estimation
as the Doppler resolution increases. Although getting higher
DDSF resolution obviously implies greater computational cost
in all algorithms, the elapsed time for MP and OMP grows
significantly faster than for SpaRSA and TwIST.

Figures 4a and 4b respectively show the running times of
TwIST and SpaRSA with and without debiasing as a function
of the number of nonzero taps. The debiasing tolerance is set
to 10−5 for both algorithms. These results demonstrate that,
depending on the debiasing tolerance and number of non-zero
taps, debiasing may account for a large fraction of the running
time in both algorithms.

1These were obtained by varying the number of iterations in MP/OMP or
the value of the regularization parameter τ in BP methods.



Fig. 7. Estimation and matching of sparse DDSFs. In this experiment the communication range is 400 m. The source is moving towards the receiver with
changing speed from 2 m/s to -2 m/s in 0.2 m/s steps. The speed is 0 m/s for the reference configuration. (a) Filtered DDSF, using a Gaussian filter, for
the reference point (b) Channel impulse response (c) Channel impulse response after filtering by Gaussian filter (d) Difference between filtered DDSFs (e)
Correlation between filtered DDSFs (f) Kullback-Leibler distance between filtered DDSFs.

B. Simulation Results for DDSF Discrepancy Metrics

Simulation results were obtained using an online underwater
acoustic simulator developed by the University of Algarve2.
The transmitted signal is a QPSK packet at 2.4 kbaud, with
5.5 kHz carrier frequency, 4.5 kHz bandwidth, root-raised-
cosine (RRC) pulse shape (88% rolloff), and total duration
1 s. The baseband received signal is sampled at 4 times the
symbol rate, fs = 9.6 kHz. The bottom is sandy (1600 m/s,
2 g/cm3, 0.8 dB/λ). DDSFs are estimated using TwIST.

Figures 5, 6, and 7 show results for the discrepancy metrics
as the transmitter depth, range to receiver, and speed are
changed from a nominal configuration (depth 25 m, range 350
m, and speed 0 m/s). The receiver is stationary, at a depth of
50 m. Figure 5 shows metrics computed for raw DDSFs, and
also for lowpass filtered versions with smoother behavior, as
discussed in Section II-B (see the figure caption for details).
In this experiment all metrics have similar performance. In
addition to the discrepancy metrics calculated for the full 2D
DDSF, the bottom two rows in the figure show the same
metrics calculated on the projection of the DDSF along the
delay axis. The price to be paid for this projection method is
a moderate decrease in resolution, particularly when operating
on filtered DDSFs.

Figures 6 and 7 only present metrics calculated on 2D
filtered DDSFs. The shapes of the three metrics are similar
in all cases, except for the correlation in Figure 6 that shows
a more erratic evolution. Comparable results were observed in
other simulations that are not reported here.

All the discrepancy metrics in Figures 5, 6, and 7 are
obtained without debiasing of DDSF estimates, except for
those in the bottom row of Figure 6. The similarity between
the latter and their biased counterparts suggests that debiasing

2http://www.ua-net.eu/projects/simulator/

does not play a major role in evaluating those metrics.

V. CONCLUSION

This paper examined issues related to the estimation of
time-varying underwater channel responses using basis pur-
suit methods and quantification of their disparity. The work
is intended as a contribution to the development of high-
frequency tomographic methods that can be used to extract
useful environmental information from communication sig-
nals, in addition to the digital messages themselves. The DDSF
is envisaged here as the core (time-varying) channel charac-
terization on which environmental inference is performed.

We present experimental results for DDSF estimation using
the SpaRSA and TwIST algorithms for efficient `2 − `1 basis
pursuit of sparse systems in the complex domain. These BP
methods achieved more compact support in the delay-Doppler
plane and an overall clearer picture of the DDSF than popular
matching pursuit algorithms. Accuracy improvements over
MP and OMP were attained with both significantly lower
computational effort and more favorable scaling of complexity
as a function of the problem size and degree of sparsity of the
solution. Our focus is not on real-time implementation, but for
run times of plain Matlab code usually under 10 seconds using
1-second data blocks this seems a reasonable goal. SpaRSA
and TwIST attained essentially identical accuracy, the latter
having slightly lower computational complexity.

Regarding DDSF discrepancies, we assessed metrics based
on Euclidean distance, correlation, and KL distance. DDSF co-
efficient vectors were normalized to magnitude-only and unit
`1 norm prior to applying those metrics to build tolerance to
intrinsic environmental and modeling uncertainties in tomog-
raphy, particularly at high frequencies. Simulation results for
Euclidean and KL distances were very similar, with correlation
performing less consistently than these two in some of the



scenarios. Discrepancies calculated in the full delay-Doppler
plane provided the best sensitivity to mismatches in range,
depth, or speed. Not surprisingly, alternative simplified metrics
operating on the 1D delay or Doppler projections of DDSFs
exhibited lower resolution to changes in the environment.
Our discrepancy metrics depend only weakly on the optional
debiasing step after the main `2 − `1 execution of SpaRSA
and TwIST, and eliminating it when matching observations
to a large number of candidate environments could result in
substantial computational savings.

Future work will improve the strategy for DDSF matching,
integrating it more tightly with ray tracing results to obtain
more useful criteria for adjusting the environmental parameters
when closing the tomographic loop. Another relevant topic is
to improve the efficiency of the debiasing step for our specific
basis pursuit problem, rather than simply eliminating it.
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