
1

The Detection and Segmentation of the Left

Ventricle of the Heart from Ultrasound Data

using Deep Learning Architectures and

Efficient Search Methods

Gustavo Carneiro∗, Jacinto C. Nascimento, Member, IEEE, António Freitas, Ph.D.

This work was supported by project the FCT (ISR/IST plurianual funding) through the PIDDAC Program funds and by project

PTDC/EEA-CRO/098550/2008. This work was also supported by project ’HEARTRACK’ - PTDC/EEA-CRO/103462/2008.
∗This work was partially funded by EU Project IMASEG3D (PIIF-GA-2009-236173).

Gustavo Carneiro (corresponding author) and Jacinto C. Nascimento are with the Instituto de Sistemas e Robótica, Instituto

Superior Técnico, 1049-001 Lisboa, Portugal. Email: gcarneiro@isr.ist.utl.pt and jan@isr.ist.utl.pt. Phone:

+351-218418270, Fax: +351-218418291.

January 6, 2011 DRAFT

2

Abstract

We present a new pattern recognition model based on deep learning architectures for the automatic

segmentation of the left ventricle of the heart in ultrasound images. Our model addresses the following

problems inherent to pattern recognition approaches: 1) the need of a large set of training images, 2)

robustness to imaging conditions not present in the training data, and 3) complex search process. We

present extensive quantitative evaluation which shows that our method produces state-of-the-art results

in a public database using two orders of magnitude less training data than current pattern recognition

approaches. This is relevant given the difficulty in acquiring training data for medical image analysis

applications. We also show that our method correlates well with user annotations (r = 0.98, p < 10−5)

and that the results produced by the system are within inter-user variations. Finally, we also show that

efficient search methods reduce up to ten-fold the complexity of the method while it still produces

state-of-the-art results.

I. INTRODUCTION

The structure and motion analysis of the left ventricle (LV) of the heart is of particular importance

in the diagnosis of cardiovascular diseases [1]. Arguably, echocardiography has become the preferred

medical imaging modality to visualize the LV of the heart due to the low cost and portability of the

ultrasound imaging devices [2]. Typically, the ultrasound imaging of the LV is analyzed by an expert

(e.g., a cardiologist), who segments the endocardial border of the LV at the end systole and end diastole

phases which are then used to provide a quantitative functional analysis of the heart, such as the Ejection

Fraction (EF) estimation. The automation of the LV segmentation (Fig. 1) is desirable in a clinical setting

due to the following reasons: 1) it can improve the work flow by increasing the patient throughput; and 2)

it can decrease the variability between user measurements. However, automatic LV segmentation systems

have to handle several problems present in ultrasound imaging, such as: low signal-to-noise ratio, edge

dropout, presence of shadows, no simple relation between pixel intensity and physical property of the

tissue [3], and anisotropy of the ultrasonic image formation [3].

The solution for the automatic LV segmentation from ultrasound images has traditionally followed three

approaches: 1) bottom-up, 2) model-based, and 3) pattern recognition. Bottom-up approaches [4,5] are

usually based on morphological operators and standard image analysis techniques (e.g., edge detection,

edge linking, Hough transform, etc.), but in general, they cannot deal with all the issues presented above.

Model-based methods [6,7] focus on building a prior model of the LV shape and appearance. The shape

model involves the assumption that the LV shape is smooth and can be represented by a pre-defined

January 6, 2011 DRAFT

3

Fig. 1. The method proposed in this paper is a fully automatic system that takes an LV image (apical two or four-chamber

views), such as the one on the left and produces an LV segmentation using a set of control points (or key points) and an

interpolation method that fills the gaps between the control points (represented in red on the right).

template. In terms of appearance, it is assumed that the gray-value distributions inside and outside the

LV are different from each other and that a strong edge is present in the LV border. Though successful,

it is still unclear whether the priors developed in model-based methods can cover all possible variations

of LV appearance and shape. Pattern recognition methods involve the use of a database of annotated

LV images (i.e., a training set) to automatically build a statistical model of the LV appearance and

shape [8]–[10]. In general, these methods do not assume any prior model of the LV and rely on a

manually annotated training set to automatically determine the parameters of the statistical appearance

and shape models. Pattern recognition approaches are robust to all imaging conditions present in the

training set, which means that the success of such approaches relies on the size and richness of the

training set. Moreover, the optimization process to detect and segment the LV consists of a non-convex

problem, which increases the complexity of the search process. In summary, pattern recognition methods

face the following challenges: 1) the need of a large and rich training set, 2) robustness to imaging

conditions unseen in the training set, and 3) the run-time complexity of the search process. Lately, there

has been a significant effort to reduce the search complexity [11,12], but the other two challenges are

still open.

In this paper, we propose a new pattern recognition model for automatic LV segmentation that addresses

the three problems listed above. In order to handle the robustness to imaging conditions and the need of

large training sets, we rely on the use of deep learning architectures [13]. The new learning paradigm

introduced by deep learning architectures has shown promising results in the sense of reducing the

need for large and rich training sets. The complexity issue is addressed with the use of optimization

algorithms of first (gradient descent) and second (Newton’s method) orders [14]. The proposed method

January 6, 2011 DRAFT

4

for segmenting the LV works according to the following two stages: 1) a rigid classifier detects the

rigid transform parameters of the LV in the image, 2) a non-rigid classifier adjusts the LV contour using

boundary detection and a learned shape model. Note that both classifiers are learned with deep learning

architectures.

Extensive quantitative evaluations show that our method achieves state-of-the-art performance with two

orders of magnitude less training data than current pattern recognition approaches. We also show that

our method correlates well with user annotations (r = 0.98, p < 10−5) and that the segmentation results

produced by our system are within inter-user variations using several statistical measures [15]. Finally,

we also show that efficient search methods reduce up to ten-fold the complexity of the method while

still producing state-of-the-art results 1.

A. Paper Organization

This paper is organized as follows. Sec. I introduces and motivates the work. We provide a literature

review in Sec. II. The LV segmentation problem is formally defined in Sec. III. We explain in detail the

training and segmentation tasks in Sec. IV. The experiments are shown in Sec. V, and we conclude the

work in Sec. VI.

II. LITERATURE REVIEW

In this section, we provide a brief discussion on current solutions for the automatic LV segmentation

approaches using ultrasound images. We first cover bottom-up methods, then we review model-based

approaches, followed by a discussion on pattern recognition approaches.

A. Bottom-up Methods

The first LV segmentation methods were heavily based on bottom-up techniques [4,5]. In essence, these

methods consist of a series of standard image processing techniques to detect the border of the LV. The

techniques used include edge detection and linking, morphological operators (e.g., dilation or erosion),

and Hough transform. Depending on the quality of the image, these methods can work satisfactorily,

but they tend to fail in more challenging image conditions. Given the lack of robustness to imaging

1A preliminary version of this paper has been published before [16], but in this journal version, we extend considerably the

literature review and explanation of the method. The experiments have been improved with the extension of the comparison

with the state-of-the-art algorithms using more error measures and the box plots showing the performance of the algorithm with

small training sets. Finally, the statistical comparisons with inter-user variations is completely new.

January 6, 2011 DRAFT

5

conditions, the field has explored model-based and pattern recognition methods, which are discussed

below.

B. Model-based Methods

Model-based approaches use prior shape and appearance models of the LV. This type of approach

has gained significant attention with the introduction of active contour models by Kass et al. [6]. The

segmentation produced by such method consists of a contour generated by an optimization method that

minimizes a cost function with two energy terms. The internal energy is minimized when the contour

is smooth, while the external energy is minimized when the contour is located close to a border. The

heavy dependence on the presence of edges motivated researchers to study more robust cost functions.

For instance, current deformable models usually include a term that maximizes the difference between

the texture and/or intensity values between the foreground (interior of LV) and background (exterior of

LV) regions, and another term that is minimized when the final shape is close to a prior shape of the

structure of interest [7,17]–[19]. It is interesting to note that these methods are usually based on level

sets, which is known to work more effectively in magnetic resonance imaging (MRI) than ultrasound

data [20].

The underlying prior model of the LV present in these cost functions is based on the following assump-

tions: the texture/intensity present in the imaging of the myocardium is different from texture/intensity of

the blood pool [21]–[23], the LV border is smooth and well represented with edges, and the LV contour

can be denoted with a pre-designed prior shape. The main problem with these models is that the violation

of any of these assumptions may lead to an incorrect segmentation [24]. For instance, the presence or

absence of edges may not correlate with the presence or absence of LV borders [3]. Also, the probabilistic

models used to represent the distribution of texture/intensity values of the blood pool or the myocardium

are usually too simple (e.g. Rayleigh distribution) and cannot capture all possible appearance variations.

Another weakness present in this appearance term is the lack of a spatial distribution of the image

features. Finally, the initialization of all these methods is critical because these optimization functions

are usually non-convex, which means that the initial guess has to be close to a “good” local minimum

to produce satisfactory results and converge sufficiently fast.

Lately, researchers studying model-based approaches have worked on reducing the dependence on

good initial guesses (note that the initial guess is usually provided manually). Zagrodsky et al. [25]

propose an automatic segmentation of the LV in 3-D ultrasound data. Specifically, a global alignment

of the LV is obtained via mutual information, and this initial shape is used to initialize the deformable

January 6, 2011 DRAFT

6

model. Nevertheless, note that this deformable model uses the same assumptions above and as a result

is susceptible to the same weaknesses. Jacob et al. [26] demonstrated empirically how it is possible

to achieve a certain degree of robustness against the issues of deformable models with the use of a

relatively simple statistical learning of a shape model. The problem is that to automatically learn the

model parameters, the method requires a few user annotations on the test images every time a new

sequence is presented. It is interesting to see the use of a learning procedure for the shape model, but

this approach would be more interesting if the authors have used a separate set of images for training the

model “off-line”. In addition, the authors use quite weak appearance models (based only on the presence

of image transitions that explain the epi/endocardium) for the LV, which is compensated with robust

shape and motion models.

C. Pattern Recognition Methods

In pattern recognition methods, the shape and appearance models are represented by statistical models

which are automatically learned from a manually annotated training set. In general, pattern recognition

methods can be divided into generative and discriminative models [27]. Assume that the observed data

can be denoted as x, and the classification of the data is represented by the label y. The generative model

learns the joint probability p(x, y) and in order to calculate p(y|x) one has to use the Bayes rule, where

the likelihood p(x|y) is necessary. On the other hand the discriminative model learns the posterior p(y|x)

directly. Ng and Jordan [27] compared these two models and reached the conclusion that discriminative

models have a lower asymptotic error than generative models, but the convergence (as a function of the

size of training data) of generative models is faster.

The most notable generative models designed for the problem of LV segmentation are the active shape

model (ASM) [28,29] and the active appearance model (AAM) [30,31]. These models use manually

annotated training data to build a shape model (ASM) or a joint model of shape and appearance (AAM).

The lack of a prior LV model made this approach quite successful, but the need of relatively large

collections of training data has been an issue because the effectiveness of the method is correlated

with the size and richness of the training data. The AAM and ASM have been widely studied [9],

and it has been noted that ASM is faster and achieves more accurate segmentation, but AAM can be

more robust [32]. Given the advantages of AAM and ASM, there have been works that advocate the

combination of the two models in the problem of LV segmentation from ultrasound and MRI data [24,33].

Finally, a common issue with ASM and AAM is that both approaches need a relatively good initial guess

to work properly [34]. As mentioned before, generative models, such as AAM and ASM, should be used

January 6, 2011 DRAFT

7

whenever the training set is relatively small (at the expense of relatively higher asymptotic errors). For

larger training sets, one should focus on the use of discriminative models.

Discriminative models for the LV segmentation have been intensively exploited by Comaniciu and

colleagues [8,10], who have a quite large set of annotated LV images (in the order of thousands) and

take advantage of the lower asymptotic errors described above. Essentially, their discriminative model is

based on boosting classifiers [35] and the process of segmenting the LV is broken into two stages. The

first stage searches for the rigid transformation of the LV and the second stage estimates the non-rigid

deformation by finely adjusting the result from the first stage. This approach holds quite competitive

segmentation results [36].

In general, methods based on pattern recognition methods rarely address the training set size issue,

which is a limiting factor to the widespread study of such models. Furthermore, the solutions to handle the

robustness to imaging conditions have been limited to artificially enlarge the training set by introducing

slight variations (i.e., noise) to the annotated images [37,38]. On the other hand, there has been a

significant effort to reduce the search complexity of pattern recognition models. Recall that the complexity

of the search process resides in the non-convexity of the optimization function used during the detection

process. For instance, the marginal space learning (MSL) [11] partitions the search space into sub-spaces

of increasing complexity and achieves a significant complexity reduction. Zhou and Comaniciu [12] also

propose a method to reduce the search complexity consisting of a statistical method which outputs a

gradient vector given a search region. This vector optimizes the LV segmentation function by indicating

the preferred direction for the search. This approach is likely to work as long as the search region is

sufficiently close to a local optimum of the objective function. In addition, the training procedure is likely

to need a larger training set due to the much higher number of parameters to be learned in the gradient

vector.

III. PROBLEM DEFINITION

The main problem we wish to solve in this paper is the delineation of the left ventricle in an ultrasound

image I . This delineation is denoted by a vector of points s = [x>i]i=1..N , with xi ∈ <2. Note that this set

of points is formed by a parametric B-spline curve with uniform parametrization [39], which guarantees

the same number of points for each delineation, and the same geodesic distance between points. We

assume that D = {(I, θ, s)i}i=1..M is the training set containing training images Ii of the imaging of LV

using ultrasound, a respective manual annotation si and the parameters of a rigid transformation θi ∈ <5

(position p ∈ <2, orientation ϑ ∈ [−π, π], and scale σ ∈ <2) that aligns the two base points and apical

January 6, 2011 DRAFT

8

ANNOTATION:

POSITIVES:

NEGATIVES:

Fig. 2. Original training image (top left) with the manual LV segmentation in yellow line and star markers (top middle) with

the rectangular patch representing the canonical coordinate system for the segmentation markers. The top-right image shows

the reference patch with the base and apical points highlighted and located at their canonical locations within the patch. The

images on the second row display several patches extracted from the annotated training images (i.e., the positive set), and the

third row shows examples of negative patches extracted from places outside the annotation parameters. Note that both positive

and negative patches will be used to train the rigid classifier.

point to a canonical coordinate system (see Fig. 2). Our objective is to find the LV contour with the

following decision function:

s = E[s|I, y = 1,D] =
∫

s
sp(s|I, y = 1,D)ds, (1)

where y = 1 is a labeling variable indicating the presence of LV in image I . Notice that the usual

goal in pattern recognition methods is to find the parameter s that maximizes the probability function

p(s|I, y = 1,D), but the use of expectation E[.] in (1) provides a more robust decision process. Equation

1 can be expanded in order to decouple the rigid and non-rigid detections,

p(s|I, y = 1,D) =
∫

θ
p(s|θ, I, y = 1,D)p(θ|I, y = 1,D)dθ. (2)

The first term in (2), representing the non-rigid part of the detection, is defined as follows:

p(s|θ, I, y = 1,D) =
N∏

i=1

p(xi|θ, I, y = 1,D), (3)

where p(xi|θ, I, y = 1,D) represents the probability that the point xi ∈ <2 is located at the LV contour.

Assuming that ψ denotes the parameter vector of the classifier for the non-rigid contour, we compute

p(xi|θ, I, y = 1,D) =
∫

ψ
p(xi|θ, I, y = 1,D, ψ)p(ψ|D)dψ. (4)

In practice, we made a few simplifications in (3-4). First, as explained later in Sec. IV-A, we run a

maximum a posteriori learning procedure of the classifier parameters, which produces ψMAP, meaning

January 6, 2011 DRAFT

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

in
te

ns
ity

 ∈
 [

0,
25

5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

s
i
 index ∈ [0,1]

(a) (b)

Fig. 3. Lines drawn perpendicularly to the annotation points (a) and their typical profile (b). Notice that each line is divided

into 41 equidistant points (see text for details).

that in the integral (4) we have p(ψ|D) = δ(ψ − ψMAP). Second, instead of computing the probability

p(xi|θ, I, y = 1,D, ψ), we train a regressor that, given a set of 41 inputs zi(j) for j = {1, 2, .., 41}, it

indicates the index j of the most likely input where the edge is located (see Fig.3). These 41 points are

located on the lines perpendicular to the contour s at each of the xi points. This roughly means that

p(xi|θ, I, y = 1,D, ψ) = 1 for only the most likely candidate of inputs [36].

The second term in (2) represents the rigid detection, which is denoted by

p(θ|I, y = 1,D) = Zp(y = 1|θ, I,D)p(θ|I,D), (5)

with

p(y = 1|θ, I,D) =
∫

γ
p(y = 1|θ, I,D, γ)p(γ|D)dγ, (6)

where γ is the vector containing the classifier parameters, and Z is a normalization constant. We make the

same approximation as in (4), where we run a maximum a posteriori learning procedure of the classifier

parameters, producing γMAP, which means that in the integral (6) we have p(γ|D) = δ(γ−γMAP). Finally,

in (5) the term p(θ|I,D) ∼ N (µθ, Σθ), with µθ = 1
M

∑M
i=1 θi and Σθ = 1

M

∑M
i=1(θi − µθ)(θi − µθ)>,

and N (µθ,Σθ) denotes the multivariate normal distribution.

IV. TRAINING AND SEGMENTATION PROCEDURES

In this section, we first discuss the deep learning architecture used to build our classifiers, then we

examine how the training and testing data sets have been set up. We also explain the training and detection

procedures with the efficient search procedures.

January 6, 2011 DRAFT

10

(a) RBM (b) RBM training

Fig. 4. Restricted Boltzmann machine (RBM) model (a) and the training procedure (b) [40]. Notice that the bias is not

represented, but it is an extra node in each layer with a unidirectional connection with the other layer.

A. Deep Learning Architectures

One of the goals in the development of artificial neural networks (ANN) was to emulate central nervous

system with several layers of neurons. The implementation of such ANN with several layers is known as

deep learning architectures. However, it has been noticed that the training of such deep ANN is difficult

because of two limitations: 1) slow convergence and 2) failure to reach “good” local optima. The main

culprit for both issues is the back-propagation algorithm [41] used to find the values for the network

parameters by maximizing the posterior probability. Nevertheless, researchers have also noticed that if the

initial guess for the network parameters is sufficiently close to a local optimum, then back-propagation

manages to converge relatively fast to this local optimum even in deep learning architectures. Hinton and

colleagues [13,42] studied a method to produce such initial guess close to a local optimum with the use

of multiple layers of restricted Boltzmann machines (RBM).

An RBM is represented with a hidden and a visible layer of stochastic binary units with the energy

configuration [13] (Fig. 4):

E(v,h) = −
∑

i∈visible

bivi −
∑

j∈hidden

bjhj −
∑

i,j

vihjwij , (7)

where vi and hj are the visible and hidden binary states of units i and j, wij are the weights and bi and

bj are the bias terms. The probability of a configuration in the visible units is then defined as [43]

p(v) =
∑

h

e−E(v,h)

∑
ṽ e−E(ṽ,h)

. (8)

Due to the lack of connections within layers, the conditional distributions p(h|v) and p(v|h) are reduced

to simple Bernoulli distributions with the following properties [43]:

p(h|v) =
∏

j

p(hj = 1|v) =
∏

j

1
1 + e−bj−

P
i wijvi

, (9)

p(v|h) =
∏

i

p(vi = 1|h) =
∏

i

1
1 + e−bi−

P
j wijhj

. (10)

January 6, 2011 DRAFT

11

The learning of parameters bi, bj , and wij is based on the contrastive divergence [44], which is

an efficient approximation of the log-likelihood gradient used as an update rule for training RBMs.

Specifically, the training of RBMs involves maximizing p(v) in (8) by following the gradient ∂p(v)
∂η ,

where η are the parameters bi,bj , and wij . Essentially, as depicted in Fig. 4, the training of an RBM can

be summarized in Algorithm 1, where the operator < . > denotes the expected value using a distribution

of samples from running a Gibbs sampler, ε = 0.1, and maxt = 50. Hence, this training only finds

parameter values for the network that are effective at reconstructing input data in the visible layer, thus

forming a generative model trained with unlabeled data (i.e., unsupervised training). Note that the RBM

described above works with binary inputs in the visible layer, which has to be adapted to real-valued

inputs (our input images are real-valued), as follows:

E(v,h) =
∑

i

(vi − bi)
2σ2

i

−
∑

j

bjhj −
∑

i

vi

σi


∑

j

hjwij


 , (11)

where σ2
i is the variance of the visible unit i.

Algorithm 1 RBM training [43].

1: input: set t = 0 and randomly generate b
(t)
i , b

(t)
j , and w

(t)
ij for all nodes i in visible layer and nodes

j in hidden layer.

2: repeat

3: t = t + 1

4: for each input image {v(1)
k }k∈1..K applied in the visible layer compute p(h(1)

k |v(1)
k) (9), which

represents the probability of firing each hj given the input v(1)
k

5: update stochastically the binary hidden units h(2)
k ∼ p(h(1)

k |v(1)
k) ∈ {0, 1}#hidden nodes, and generate

a reconstruction of the data using p(v(2)
k |h(2)

k) (10)

6: update stochastically the binary visible units v(3)
k ∼ p(v(2)

k |h(2)
k) ∈ {0, 1}#visible nodes, and generate

the new probabilities of firing each hj as in p(h(3)
k |v(3)

k) (9)

7: update weights and biases for the nodes i of visible layer and j of the hidden layer as follows:

8: wij = wij + ∆w
(t)
ij , with ∆w

(t)
ij = ε(< vi, hj >(1) − < vi, hj >(3)),

9: bi = bi + ∆b
(t)
i , with ∆b

(t)
i = ε(< vi >(1) − < vi >(3)),

10: bj = bj + ∆b
(t)
j , with ∆b

(t)
j = ε(< hj >(1) − < hj >(3))

11: until t > maxt

January 6, 2011 DRAFT

12

(a) (b) (c)

Fig. 5. Training of deep belief network consists of unsupervised learning of several layers of RBMs (a-b) followed by a

supervised learning of the whole network (c).

By stacking several layers of RBMs, and training them in sequence (i.e., the hidden layer values of

the trained layer is used as an input of the next visible layer), one can create a deep belief network

(DBN) with, in principle, no limit in the number of hidden layers (see Fig. 5). The number of layers is

related to the representation capability of the classifier [45]. After several RBMs have been trained as

described above, we add a top layer representing the posterior probability to be learned. For the problem

of non-rigid detection, the top layer has only one node that outputs p(xi|θ, I, y = 1,D, ψ) in (4). In

practice, we have:

p(xi|θ, I, y = 1,D, ψ) =





1, xi = zi[1 + bri × 40c]
0, otherwise

, (12)

where ri = min{1, max{0, b +
∑

j wjvj}} from the last layer, and 41 is the number of points dividing

the line perpendicular to the contour (4). Therefore, we train a regressor that outputs ri ∈ [0, 1], which

translates into indices as (1 + bri × 40c]) ∈ {1, 2, ..., 41}. For the rigid detection, the top layer has two

nodes, representing the posterior probability p(y|θ, I,D, γ) (6), where node one denotes y = 1 and node

two means y = 0. Therefore, we have:

p(y = 1|θ, I,D, γ) =
exp(b1 +

∑
i wi1vi)∑2

j=1 exp(bj +
∑

i wijvi)
, (13)

and p(y = 0|θ, I,D, γ) = 1 − p(y = 1|θ, I,D, γ). For both cases, after adding the top layer, the whole

network is trained using a supervised learning process based on backpropagation [41]. This training

procedure finds the maximum posterior as follows: ψMAP = arg maxψ p({si}i=1..N |{Ii}i=1..N , ψ) in (4),

and γMAP = arg maxγ p(y = 1|{(I, θ)i}i=1..N , γ) in (6), where (I, θ, s)i ∈ D.

1) Discussion: Notice that deep learning architectures introduce a new training paradigm, as shown

in Fig. 6. In this figure, the concept of “stuff” is introduced as anything that can be represented with an

image. For instance, the LV is the “stuff” that can be imaged through an ultrasonic device, and the label

January 6, 2011 DRAFT

13

Fig. 6. New learning paradigm explored in deep learning architectures. On the left, it is displayed the current paradigm of

machine learning, where it is assumed that all labeling information to an image (e.g., the LV segmentation) is independent of

the original cause (the imaging of the left ventricle of the heart) given the image. On the right, it is shown the deep learning

paradigm, where an unsupervised generative model learns image generation process, and then a discriminative model is trained

based on this generative model [40].

Training set Test set

Fig. 7. First images of a subset of the sequences used as training and test sets.

is the LV segmentation. Note that the link between “stuff” and image has a high bandwidth, which means

that there are too many ways that the “stuff” can be imaged. Current learning paradigm assumes that

label is independent of “stuff” given the image. Therefore, current learning models need to collect a large

training set in order to confidently learn the parameters of the statistical model representing the probability

of label given image. On the other hand, as explained in this section, deep learning architectures first

learn a generative model (trained with unlabeled data) representing the probability of image given “stuff”,

followed by a discriminative learning (trained with labeled data) of label given “stuff” using the induced

LV model obtained during the training process of the first stage. Leveraging the generative model in the

learning of the discriminative model is the key that makes deep learning architectures less dependent on

large training sets.

B. Training and Testing Data sets and Manual Annotation Protocol

We have two sets of annotated data. The first set contains 400 ultrasound images of left ventricle,

which have been taken from 12 sequences (12 sequences from 12 healthy subjects with no overlap),

where each sequence contains an average of 34 annotated frames. Let us denote this set as T1, and

each sequence is represented by a letter from A to L. This set contains images using the apical two

and four-chamber views. The second set, used exclusively for testing (i.e., it is never used for training),

January 6, 2011 DRAFT

14

contains two sequences of 80 images, where each sequence has 40 annotated images (2 sequences from

2 healthy subjects with no overlap). This set is denoted by T2 with sequences A and B. Note that there

is no overlap between subjects in sets T1 and T2. We worked with two cardiologists, where the first one

annotated all images in the database (i.e., sets T1 and T2). The other cardiologist annotated the sequences

T1,{A,B,C}. This additional annotation will help us verify whether the system segmentations are within

inter-user variations. The first image of four sequences from T1 and two sequences from T2 are shown

in Fig. 7.

For the manual annotation, the experts could use any number of points to delineate the LV, but they

had to explicitly identify the base and apical points in order for us to determine the rigid transformation

between each annotation and the canonical location of such points in the reference patch (see Fig. 2).

This vector of points was then interpolated and the final contour has a fixed number of points N with

the same distance between points [39].

C. Training Procedure

For the rigid classifier, we follow the multi-scale implementation of Carneiro et al. [37] and build an

image scale space L(x, σ) produced from the convolution of the the Gaussian kernel G(x, σ) with the

input image I(x), as follows:

L(x, σ) = G(x, σ) ∗ I(x), (14)

where σ is the scale parameter, x is the image coordinate, ∗ is the convolution operation, and G(x, σ) =
1

2πσ2 e
− x2

2σ2 . We train three separate classifiers (6) for the following image scales σ = {4, 8, 16}, where

the images L(.) are down-sampled by a factor of two after each octave. The values for these scales have

been empirically determined using a validation set, from which we observe that larger values for σ in

the coarser scale prevents the detection process to converge, and lower values for σ in finer scales did

not improve the accuracy of the method. In practice, the original patches (see Fig. 2) have size 56× 56

pixels, but the sizes used for scales σ = {4, 8, 16} were 14× 14, 7× 7, and 4× 4 pixels, respectively.

In order to form the positive and negative training sets (Fig. 1), we define a vector denoting a margin

variable for each scale mσ ∈ <5, which increases by a factor of two after each octave [37]. Specifically,

considering an interval variable, computed as (the value 400 has been empirically determined based on

the trade off between run time detection and training efficacy):

tθ =
max({θi}i=1..M)−min({θi}i=1..M)

400
∈ <5, (15)

January 6, 2011 DRAFT

15

Fig. 8. Multi-scale training. The graphs represent the first two dimensions of the rigid parameter space θ, and the gray square

represent the region where negatives are sampled for training, the square represented with vertical lines represent the margin

and the square with horizontal lines denotes the region where positives are sampled for training. The ground truth is located at

the center of the square represented with horizontal lines.

we set

mσ = 2× σ × tθ. (16)

This means that coarser scales will have larger margins than finer scales resulting in a trading of robustness

for accuracy (see Fig. 8). Positives for each training image I at scale σ are randomly generated within

the parameter range [θ − mσ/2, θ + mσ/2], and negatives are randomly generated outside the range

[θ − mσ, θ + mσ], where θ is the parameter vector representing the rigid transformation of the LV

annotation. In total we produce 100 positive and 500 negative patches per training image using the

margins defined above. This unbalance on the number of positive and negative samples can be explained

by the much larger volume covered by the negative region explained above [46].

For each scale, we train a DBN using 80% of the data set available for training and 20% for validation.

These two sets are mutually exclusive and are selected randomly from the training set. The validation set

is necessary to select the following two parameters of the DBN: a) number of nodes per hidden layer,

and b) number of hidden layers. The number of nodes per hidden layer varies from 50 to 500 in intervals

of 50. The number of hidden layers varies from 1 to 4 (we did not notice any boost in performance

with more than 4 layers). Finally the output layer contains only two nodes representing the posterior

probabilities of presence/absence of LV given input data. Using the 400 annotated images from training

set, we achieved the configurations displayed in Table I (notice that for σ = {8, 16}, only two hidden

layers have been selected using the cross validation procedure explained above).

It is worth verifying the types of features learned for the rigid detector. Let Wi for i = 1..4 represent

the matrices of weights for each of the four layers of the DBN learned at σ = 4. From Tab. I, we see that

January 6, 2011 DRAFT

16

TABLE I

LEARNED CONFIGURATION FOR THE DEEP BELIEF NETWORKS.

σ Visible Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Hidden Layer 4 Output Layer

4 196 (14× 14 pix.) 100 100 200 200 2

8 49 (7× 7 pix.) 50 100 - - 2

16 16 (4× 4 pix.) 100 50 - - 2

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Fig. 9. First 100 features for each layer of the rigid classifier at σ = 4. From left to right the features learned for each one of

the four layers are shown, and as expected, the features tend to be more global for higher layers.

W1 ∈ <196×100, W2 ∈ <100×100,W3 ∈ <100×200,W4 ∈ <200×200. The features shown in Fig. 9 depicts

the first 100 columns of the following matrices (notice that each 196 dimensional vector is reshaped to

a 14× 14 matrix): (a) W1, (b) W1W2, (c) W1W2W3, and (d) W1W2W3W4. It is interesting to see

that the features in higher layers tend to be more global than features in lower layers (resembling wavelet

features), which demonstrates intuitively the abstraction capabilities of the DBN (similar observations

have been noticed by Hinton et al. [43] in other types of experiments). Finally, the DBN can also be

used as a generative model by setting the output of LV accordingly (that is, in order to generate positive

samples, set the probability of LV to 1, and to generate negative samples, set the probability of LV to

0). Inverting the direction of the weights, one can stochastically generate positive and negative samples.

We show a few positive and negative samples generated by the DBN trained at σ = 4 in Fig. 10. Notice

that the positive samples resembles a blurry version of trained LV while the negative samples show

significantly less structure.

The non-rigid regressor (12) is trained only at σ = 4 because it is run only at the finest scale, as

explained below in Sec. IV-D.1. In order to increase the robustness of the regressor, we also included

January 6, 2011 DRAFT

17

(a) Positive samples (b) Negative samples

Fig. 10. Positive and negative samples generated from the deep belief network trained. Note that the two numbers in the top

layer represents the probability of LV (positive sample) given data and the probability of background (negative sample) given

data, respectively.

in the training set 100 detections (per training image) within the margin [θ −m4/2, θ + m4/2], which

means that the output contour from the rigid classifier might not be correctly aligned (in terms of the rigid

transformation) with the LV. Using 80% for training and 20% for validation, the following configuration

has been selected: 1) visible layer with 41 nodes, 2) two hidden layers, each with 50 nodes, and 3) output

layer with one node.

We also build a shape model based on principal component analysis (PCA) [47,48] that is used to

project the final result from the non-rigid regressor. The goal of this last stage is to suppress noisy

results from the regressor. Assuming that X = [s1, ..., sM] ∈ <2N×M is a matrix that contains in its

columns all the annotations in the training set D, where the mean shape µs = 1
|D|

∑
i∈D si has been

subtracted from each column. Then we can decompose X using eigenvalue decomposition, as follows:

XX> = WΣW>. Given a new annotation, say s̃, we obtain its new value by first projecting it onto the

PCA space y> = (s̃>−µs
>)W̃Σ̃−0.5, where W̃ contains the first L eigenvectors (we cross validated L

with the validation set, and selected L = 10), and Σ̃ is a diagonal matrix containing the first L eigenvalues

in the diagonal. Then the final shape s∗ is obtained by re-projecting y onto the original shape space and

adding back the mean shape, as in s∗ = y>Σ̃0.5W̃> + µs.

D. Detection Procedure

The detection procedure (see Alg. 2) consists of running the rigid classifier at scale σ = 16 on

the Kcoarse initial hypotheses. These initial hypotheses are determined by sampling from the function

Dist({θi}i=1..N ∈ D) which describes the distribution of the θ parameters in the training set. Given the

January 6, 2011 DRAFT

18

Kcoarse samples of the function described by the DBN at σ = 16, we build a new distribution function

Dist({p(θi|I, y = 1,D)}θi∈hypothesis from DBN at σ=16), which will be sampled Kfine times. These samples are

used to initialize a search procedure (explained later in this section) based on the DBN trained at σ = 8.

The output of this search is a new set of samples {θi}i=1..Kfine . The same procedure is repeated at σ = 4

and the final Kfine samples from Dist({p(θi|I, y = 1,D)}θi∈hypothesis from DBN at σ=4) are used to produce

the final contour (1), which is projected onto the PCA space explained in Sec. IV-C. Note that we set

Kcoarse = 1000 and Kfine = 10 empirically based on the performance of the detection algorithm on the

validation set.

We propose three ways to build such distribution from the Kfine points, and they are based on the

following three different search approaches, which are explained below: 1) full search, 2) gradient descent,

and 3) Newton’s method [14].

Algorithm 2 Detection Procedure.
1: sample {θj}j=1..Kcoarse ∼ Dist({θi}i=1..M ∈ D)

2: compute {p(θj |I, y = 1,D)}j=1..Kcoarse using DBN at σ = 16

3: sample {θj}j=1..Kfine ∼ Dist({p(θi|I, y = 1,D)})i=1..Kcoarse using DBN at σ = 16

4: run one of the following search procedures: full, gradient descent, or Newton’s method using DBN

at σ = 8

5: sample {θj}j=1..Kfine ∼ Dist({p(θi|I, y = 1,D)}) using DBN at σ = 8

6: run one of the following search procedures: full, gradient descent, or Newton’s method using DBN

at σ = 4

7: sample {θj}j=1..Kfine ∼ Dist({p(θi|I, y = 1,D)}) using DBN at σ = 4

8: run the non-rigid classifier at σ = 4, and for each rigid parameter θ ∈ {θj}j=1..Kfine produced in the

step above, generate a respective contour s ∈ {sj}j=1..Kfine

9: s̃ = 1PKfine
i=1 p(si|I,y=1,D)

∑Kfine
j=1 sj × p(sj |I, y = 1,D)

10: y> = (s̃> − µs
>)W̃Σ̃−0.5

11: s∗ = y>Σ̃0.5W̃> + µs.

For the full search, we run the DBN classifier at σ ∈ {8, 4} at all the 243 points in θi+[−mσ, 0, +mσ]

for i = 1..Kfine (note that 243 = 35, that is the five dimensional parameter space of the rigid classifier with

three points per dimension). The gradient descent algorithm for each scale in the pyramid is explained

in Alg. 3. The gradient ∇p(y = 1|θi, I,D, γMAP) is computed numerically using central difference, with

January 6, 2011 DRAFT

19

Algorithm 3 Gradient Descent.
1: input: given sample points Θ = {θi}i=1..K in the search space

2: repeat

3: for each θi ∈ Θ

4: 4θi = −∇p(y = 1|θi, I,D, γMAP)

5: line search: t = arg maxt>0 p(y = 1|θi + t×4θi, I,D, γMAP)

6: update θi = θi + t×4θi

7: until ‖∇p(y = 1|θi, I,D, γMAP)‖2 ≤ ε

the step size mσ (16). A better precision can be achieved with the Newton’s method, where the price is

the computation of the Hessian matrix and its inversion (see Algorithm 4).

Algorithm 4 Newton’s Method.
1: input: given sample points Θ = {θi}i=1..K in the search space

2: repeat

3: for each θi ∈ Θ

4: Compute Newton step and decrement

5: 4θi = −(∇2p(y = 1|θi, I,D, γMAP))−1∇p(y = 1|θi, I,D, γMAP)

6: λ2 = ∇p(y = 1|θi, I,D, γMAP)>(∇2p(y = 1|θi, I,D, γMAP))−1∇p(y = 1|θi, I,D, γMAP)

7: line search: t = arg maxt>0 p(y = 1|θi + t×4θi, I,D, γMAP)

8: update θi = θi + t×4θi

9: until λ2

2 < ε

The prior distribution to be used by the coarse classifier at σ = 16 can be sampled using Monte-

Carlo sampling techniques, but if this distribution is poorly represented because of limited number of

annotations in the training set, then we can partition the parameter space into a grid with the limits

given by the training set, and use these Kcoarse grid points to run the classifier. Specifically in our search

approach, we have not noticed much improvement with the use of Monte-Carlo sampling, so we use

the computationally simpler grid sampling. Finally, the Kfine points are determined from the distribution

produced by the classification results of the previous coarser scale through a k-means procedure with

Kfine clusters. The points to be searched in the finer scale consists of the Kfine means of these clusters.

January 6, 2011 DRAFT

20

1) Complexity of Search Approaches: The bottleneck of our method in terms of run-time complexity

is the execution of the DBN classifier, so it is important to reduce as much as possible the number

of times the classifier has to run during a detection procedure. For the run-time complexity presented

below, we show the figures in the number of times the classifier is run for each of the search approaches

considered.

The full search approach explained above has a search complexity of Kcoarse + (#scales− 1)×Kfine ×
35 + Kfine ×N , where Kcoarse is O(103), Kfine is O(10), and for the non-rigid classifier, we assume that

the detection of each contour point is independent of the detection of other contour points (see Eq. 3),

but the dependence between points is restored with the projection of the final result onto the PCA shape

model space (Sec. IV-C). From Table I, we notice that the complexity of the classifier at σ = 16 is

O(16× 100× 50× 2) = O(8× 104), at σ = 8 is O(49× 50× 100× 2) = O(2.45× 105), at σ = 4 is

O(196×100×100×200×200×2) = O(1.56×1011), and the regressor is O(42×50×50×1) = O(1×105).

This means that the full search method (using 243 samples in fine scale for each of the Kfine samples)

needs roughly the following number of multiplications: 1000× 8× 104 + 10× 35 × 2.45× 105 + 10×
35 × 1.56× 1011 + 10× 21× 1× 105 ≈ 3.8× 1014.

For the gradient descent search procedure, each iteration above (at σ ∈ {8, 4}) represents a computation

of the classifier in 10 points of the search space (five parameters times two points) plus the line

search in around 10 points as well. The gradient descent search needs roughly the following number of

multiplications: 1000×8×104+10×[20, 100]×2.45×105+10×[20, 100]×1.56×1011+10×21×1×105 ∈
[3.0× 1013, 1.5× 1014]. Notice above that we can limit the number of iterations between one and five,

meaning that the complexity of this specific step for one hypothesis θi is between 20 to 100, which is

smaller than 35 = 243, representing a reduction of the search space between 2 and 10 times.

For the Newton’s method, the computation of the Hessian, gradient and line search requires 25+10

runs of the classifier. The Newton step search needs roughly the following number of multiplications:

1000 × 8 × 104 + 10 × [35, 175] × 2.45 × 105 + 10 × [35, 175] × 1.56 × 1011 + 10 × 21 × 1 × 105 ∈
[5.4×1013, 2.7×1014]. Limiting the number of iterations between one and five means that the complexity

of this step for one hypothesis θi is between 35 to 175, which is smaller than 35 = 243, representing a

reduction of the search space between around 1.5 and 7 times.

A criticism for the use of the more efficient search procedures of gradient descent and Newton’s method

is the fact that the function p(y = 1|θ, I,D, γMAP) in (6) has no guarantee to be convex. However, recall

that we sample the initial coarse search space using either a grid or a Monte-Carlo sampling procedure,

and then we follow each of the initial hypotheses. It is possible to show that as this initial number of

January 6, 2011 DRAFT

21

hypotheses increases, the likelihood of following the path for a “good” local optimum also increases, but

this is out of the scope of this paper.

V. EXPERIMENTS

In this section, we first explain the error measures used to assess the performance of our algorithm.

Then we present comparisons with state-of-the-art model-based and pattern recognition methods. We also

show that our method produces results that agree reasonably well with respect to inter-user variations.

Finally, we also discuss the run-time complexity of the method.

A. Error Measures

In this section we describe the following six error measures used for the evaluation of our algorithm:

Hammoude distance (HMD) (also known as Jaccard distance) [49], average error (AV) [36], Hausdorff

distance (HDF) [50], mean sum of square distances (MSSD) [51], mean absolute distance (MAD) [51],

and average perpendicular error (AVP) between the estimated and ground truth contours.

Let s1 = [x>i]i=1..N , and s2 = [y>i]i=1..N , with xi,yi ∈ <2 be two vectors of points representing the

estimated and reference LV contours, respectively. The smallest distance from a point xi to the curve s2

is

d(xi, s2) = min
j
||yj − xi||2, (17)

which is known as the distance to the closest point (DCP). The average error between the vectors s1, s2

is

dAV(s1, s2) =
1
N

N∑

i=1

d(xi, s2). (18)

The Hausdorff distance between both sets is defined as the maximum of the DCPs between the two

curves

dHDF(s1, s2) = max
(
max

i
{d(xi, s2)}, max

j
{d(yj , s1)}

)
. (19)

The Hammoude distance is defined as follows [49]:

dHMD(s1, s2) =
#((Rs1 ∪Rs2)− (Rs1 ∩Rs2))

#(Rs1 ∪Rs2)
, (20)

where Rs1 represents the image region delimited by the contour s1 (similarly for Rs2), and #(.) denotes

the number of pixels within the region described by the expression in parenthesis. The error measures

MSSD [52] and MAD [53] are defined as follows:

dMSSD(s1, s2) =
1
N

N∑

i=1

‖xi − yi‖2
2, (21)

January 6, 2011 DRAFT

22

and

dMAD(s1, s2) =
1
N

N∑

i=1

‖xi − yi‖2. (22)

Note here that MSSD and MAD are defined between corresponding points (i.e., we do not use the DCP

in this case).

Finally, the average perpendicular error (AVP) between estimated (say s2) and reference (s1) contours is

the minimum distance between yi ∈ s2 and xi? ∈ s1 using a line perpendicular to the contour at yi ∈ s2.

Let us represent the line tangent to the curve at the point yi ∈ s2 as L = {yi−1+t(yi+1−yi−1)|t ∈ <} =

{y|a>y + b = 0} with a>(yi+1−yi−1) = 0 and b = −a>yi−1. Let us also denote the curve sampled at

points s1 = [x>i]i=1..N with the following implicit representation: f(x, θs1) = 0, where θs1 denotes the

parameters of this representation. Hence, we can find the point xi? = arg minx∈s1(‖x − (s∗a + yi)‖2,

where s∗ = arg min s subject to f(sa + yi, θs1) = 0. The AVP error measure is defined as

dAVP(s1, s2) =
1
N

N∑

i=1

‖xi? − yi‖, (23)

B. Comparison with the State of the Art

The performance of our system is compared against the performance of two state-of-the-art approaches

on the test set described in Sec. IV-B with respect to the error measures defined in (18)-(23). The method

proposed by Nascimento and Marques [36] is a model-based approach that uses common assumptions

on the LV segmentation, such as that the borders are well represented with edge information, the contour

is smooth and the LV has a prior shape. The method proposed by Comaniciu and colleagues [8,10] is

a pattern recognition approach relying on a quite large annotated training set (they have in the order of

thousands of annotated images), using discriminative classifier based on boosting techniques. Note that

the original algorithms from both authors have been run on the test set.

The objectives of our comparison against these two methods is threefold. The first goal is to show that

our method achieves competitive results in this quite challenging test set (displayed in Fig. 7), especially

when compared with the training images, which present rather different image statistics (in terms of

texture, views, etc.). Recall that we have 400 annotated images for training our system, which is an order

of magnitude smaller than what is available for Comaniciu’s method [8,10], but in spite of that, our

system presents comparable or better results with respect to most of error measures. The second goal is

to demonstrate the ability of deep belief networks to generalize well with quite small data sets; that is,

the performance of the method is quite stable with small training sets. For instance we randomly used

only a subset of the 400 training images to train the DBN classifier, where the subset size varies from

January 6, 2011 DRAFT

23

T2,A T2,B T2,A T2,B

0.15

0.2

0.25

0.3

H
M

D

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

0.1

0.15

0.2

0.25

0.3

H
M

D

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

2

3

4

5

6

A
V

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

2

3

4

5

6

A
V

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

18

19

20

21

22

23

24

25

H
D

F

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

15

20

25

H
D

F

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

50

100

150

200

250

300

350

400

M
S

S
D

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

200

400

600

800

1000

1200

M
S

S
D

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

6

8

10

12

14

16

18

M
A

D

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

10

15

20

25

30

M
A

D

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

2

3

4

5

6

7

A
V

P

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

1

2

3

4

5

6

A
V

P

20 tra
in im

g−F

50 tra
in im

g−F

100 tra
in im

g−F

400 tra
in im

g−F

400 tra
in im

g−G

400 tra
in im

g−N

MMDA
COM

Fig. 11. Box plot results for all error measures explained in Sec. V-A (the measures are denoted in the vertical axis of

each graph). Using the test sequences T2,A (columns 1 and 3) and T2,B (columns 2 and 4), we compare the results of our

method with varying training set sizes (’{20, 50, 100, 400} train img-F’) using the full search method, and with efficient search

methods (’400 train img-G’ for gradient descent and ’400 train img-N’ for Newton’s method), Nascimento and Marques’

approach [36](’MMDA’), and Comaniciu and colleagues’ method (’COM’) [8,10].

{20, 50, 100, 400}, which means one to two orders of magnitude less training images than Comaniciu’s

method [8,10]. The last goal is to verify the performance of the gradient descent and Newton’s method

when compared with the full search approach. For this last experiment, we use the DBN classifier trained

with 400 images.

Figure 11 shows the error measures (18)-(23) in sequences T2,{A,B} using box plot graphs of Comani-

ciu’s method [8,10] (see label ’COM’), Nascimento’s approach [36] (label ’MMDA’), and our approach

with different training set sizes (labels ’{20, 50, 100, 400} train img’) and the three different search

approaches (labels ’F’ for the full search, ’G’ for the gradient descent search and ’N’ for the Newton’s

method search). Figure 12 displays two results for each sequence produced by our method (using the ’400

train img-F’). For all error measures, we can see that the method ’400 train img-F’ is either comparable or

January 6, 2011 DRAFT

24

T2,A

T2,B

Fig. 12. Examples of detection on test sequences. The yellow, solid annotation denotes the manual annotations, while the

magenta dashed line shows the results from our system.

better than the best of ’COM’ and ’MMDA’. For the ’{20, 50, 100} train img-F’ methods, the results are

always comparable to best results of ’400 train img-F’, ’COM, and ’MMDA’. Finally, the more efficient

search methods of ’400 train img-G’ and ’400 train img-N’ show slightly worse results than ’400 train

img-F’, but they are still comparable to the best results in the experiment.

C. Comparison with Inter-user Statistics

For the quantitative comparison we follow the methodology proposed by Chalana and Kim [15], and

revised by Lopez et al. [54]. We briefly show how the gold standard is calculated based on the manual

segmentations, then we describe the modified Williams index and the Percent statistics. We show additional

results with scatter plots and the Bland-Altman graph [55]. These evaluations compare the computer

generated segmentation to the multiple users’ segmentations. Note that in all these comparisons we used

the DBN classifier ’400 train img-F’ classifier from Fig. 11.

1) Averaging Curves: The gold standard contour is based on the average curve as proposed by Chalana

and Kim [15]. Let {s1, ..., sU} be the annotations from U users. The averaging process is as follows:

i) Set t = 0, and compute the average curve s(t) in the set {s1, ..., sU}
ii) From each point xi ∈ s(t), a normal to the curve at that point is drawn. The intersection of this

normal with each of the U input curves is determined.

iii) The points of intersection define a new set of correspondences between the U curves.

January 6, 2011 DRAFT

25

iv) Set t = t + 1.

v) The new correspondences are averaged again to give another averaged curve, say s(t).

vi) Repeat steps 2-4 until ‖s(t) − s(t−1)‖2 is below a certain threshold.

2) Training and testing for Inter-user Statistics: Recall from Sec. IV-B that for sequences T1,{A,B,C}

we have two LV manual annotations produced by two different Cardiologists. In this experiment, we

have an average of 17 images annotated for each sequence, so in total we have 50 images annotated

by two experts. We then train three separate DBN classifiers using the following training set for each

one: 1) T1 \ T1,A, 2) T1 \ T1,B , 3) T1 \ T1,C , where \ represents the set difference operator. These three

classifiers are necessary because when testing any image inside each one of these three sequences, we

cannot use any image of that same sequence in the training process.

3) Williams index: Let M be a collection of images, for which there are U manual annotations

available. Assume that we have a set {si,j}, where i ∈ {1..M} and j ∈ {0..U} indexes the image and

the manual annotations, respectively. The index j = 0 denotes the computer-generated contour.

The function Dj,j′ measures the disagreement between users j and j′, and it is defined as

Dj,j′ =
1
M

M∑

i=1

d−(si,j , si,j′), (24)

where d−(., .) is an error measure between two annotations si,j , si,j′ , which can be any of the measures

defined previously in (18)-(23). The modified Williams index is defined as

I
′
=

1
U

∑U
j=1

1
D0,j

2
U(U−1)

∑
j

∑
j′:j′ 6=j

1
Dj,j′

. (25)

A confidence interval (CI) is estimated using a jackknife (leave one out) non-parametric sampling

technique [15] as follows:

I
′
(.) ± z0.95se, (26)

where z0.95 = 1.96, representing 95th percentile of the standard normal distribution,

se =

{
1

M − 1

M∑

i=1

[I
′
(i) − I

′
(.)]

}
(27)

with I
′
(.) = 1

M

∑M
i=1 I

′
(i), and I

′
(i) is the Williams index (25) calculated by leaving image i out of

computation of Dj,j′ . A successful measurement for the Williams index is to have the average and

confidence interval (26) close to one. Table II shows the average and confidence intervals for all ultrasound

sequences considered in this section.

January 6, 2011 DRAFT

26

TABLE II

COMPARISON OF THE COMPUTER GENERATED CURVES TO THE USERS’ CURVES WITH RESPECT TO ALL THE ERROR

MEASURES FOR THREE SEQUENCES USING THE AVERAGE AND 0.95% CONFIDENCE INTERVAL (IN PARENTHESIS) OF THE

WILLIAMS INDEX.

measure dHMD dAV dHDF dMSSD dMAD dAVP

Average 0.80 0.94 0.91 0.70 0.86 0.95

(CI) (0.78, 0.81) (0.93, 0.95) (0.90, 0.92) (0.68, 0.72) (0.85, 0.88) (0.94, 0.97)

Fig. 13. (Left) Three contours drawn in an ultrasound image, where the yellow (square) and cyan (triangle) are the manual

contours, and the red (circle) contour represents the computer-generated segmentation. (Right) The convex hull formed by the

manual contours is shown, and the computer generated points are shown in either red (darker markers) or yellow (lighter

markers), representing the cases where the points lie outside or inside the convex hull, respectively.

4) Percent statistics: The second statistical technique computes the percentage of cases for which the

computer-generated measurement lies within the inter-user range (see Fig. 13). The expected value for

the percent statistics depends on the number of manual curves. Following Lopez et al. [54], who revised

this value from Chalana and Kim [15], the successful expected value for the percent statistic should at

least U−1
U+1 , where U is the number of manual curves. In our case, U = 2, so the expected value for the

percent statistic should be at least 33%, and the confidence interval must contain 33%. For the images

considered in this section, we obtained a percent statistics of average 35.2% and confidence interval

(2.6%, 67.8%).

5) Bland-Altman and Scatter plots: We also present quantitative results using the Bland-Altman [55]

and scatter plots (from which it is possible to compute a linear regression, the correlation coefficient and

the p-value). To accomplish this we have: (i) the gold standard LV volume (computed from the curve

average of Sec. V-C.1); (ii) the Cardiologists’ LV volumes, and (iii) the computer generated LV volume.

January 6, 2011 DRAFT

27

Scatter plot Bland Altman plot

Inter-user Gold vs. Computer Inter-user Gold vs. Computer

0.5 1 1.5 2 2.5 3 3.5

x 10
6

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

n = 50
r = 0.96
y = 1x + 1.7e+005
p value= 1.3e−028

s1

s
2

1 1.5 2 2.5 3

x 10
6

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

n = 50
r = 0.98
y = 1.4x + −5.8e+005
p value= 1.9e−033

s0
s
g
o
l
d

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

−1

−0.5

0

0.5

1
x 10

6

(s1 + s2)/2

s
1
−

s
2

1.96 STD

−1.96 STD

Bias=1.914e+005

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

−1

−0.5

0

0.5

1
x 10

6

(s0 + sgold)/2

s
0
−

s
g
o
l
d

1.96 STD

−1.96 STD

Bias=−1.619e+005

Fig. 14. Scatter plots with linear regression and Bland-Altman bias plots

To estimate the LV volume from 2-D contour annotation we the Area Length method [56].

Volumes are calculated using the area-length equation introduced by Sandler and Dodge [57] (see also

[58]), i.e., V = 8A2

3πL , where A denotes the projected surface area, L is the distance from upper aortic

valve point to apex, and V is expressed in pixels3.

Figure 14 shows the scatter and Bland-Altman plots for the three sequences considered in this section.

For the scatter plot, notice that the correlation coefficient between the users is 0.96 (p-value = 10−28)

and for the gold standard versus computer the correlation is 0.98 (p-value = 10−33). In the Bland-Altman

plots, our method shows similar bias (in absolute value) and standard deviation when compared with the

users’ inter-variation.

D. Run-time Complexity

Given the figures presented in Sec. IV-D.1, the full search average complexity is around 2 to 10

times bigger than the gradient descent search and 1.5 to 5 times bigger than the Newton step search. In

practice, using a non-optimized Matlab implementation, the full search takes around 20 seconds to run,

and gradient descent and Newton’s method search run in between 5 to 10 seconds on a typical laptop

computer with the following configuration: Intel Centrino Core Duo (32 bits) at 2.5GHz with 4GB of

memory. We expect that an efficient C implementation exploiting code parallelization can reduce the

running time of the all search methods to well under 1 second on a typical Quad core desktop computer

(64 bits) with 8 GB of memory.

VI. CONCLUSION AND FUTURE WORK

We presented a new pattern recognition approach for the problem of fully automatic LV detection and

segmentation using ultrasound data. Our main contribution is the use of deep learning architectures that

January 6, 2011 DRAFT

28

produces quite competitive segmentation results using up to two orders of magnitude less training data

than current state-of-the-art pattern recognition approaches. Another contribution is the use of efficient

search methods to speed up the segmentation process without causing significant negative impact on

the accuracy of the method. We present extensive quantitative evaluations that show that our system is

competitive and produces acceptable results in terms of inter-user variations. In the future we plan to

include a dynamical model to improve even more the performance of the algorithm.

Acknowledgments: We would like to thank G. Hinton and R. Salakhutdinov for making the deep belief network

code available on-line. We also would like to thank Dr. José Morais for providing the manual LV annotations.

REFERENCES

[1] J. K. Oh, J. B. Seward, and A. J. Tajik, The Echo Manual, 2nd ed. Philadelphia, PA: Lippincott-Raven, 1999.

[2] R. M. Lang and et al., “Recommendations for chamber quantification,” Eur. J. Echocardiography, Elsevier, vol. 24, no. 7,

pp. 79–108, 2006.

[3] J. G. Bosch, S. C. Mitchell, B. P. F. Lelieveldt, F. Nijland, O. Kamp, M. Sonka, and J. H. C. Reiber, “Automatic segmentation

of echocardiographic sequences by active appearance motion models,” IEEE Trans. Med. Imag., vol. 21, no. 11, pp. 1374–

1383, 2002.

[4] M. Sonka, X. Zhang, M. Siebes, M. Bissing, S. Dejong, S. Collins, and C. Mckay, “Segmentation of intravascular ultrasound

images: A knowledge-based approach,” IEEE Trans. Med. Imag., vol. 14, pp. 719–732, 1995.

[5] L. Zhang and E. Geiser, “An effective algorithm for extracting serial endocardial borders from 2-d echocardiograms,” IEEE

Trans. Biomed. Eng., vol. BME-31, pp. 441–447, 1984.

[6] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision,

vol. 4, no. 1, pp. 321–331, 1987.

[7] N. Paragios, “A level set approach for shape-driven segmentation and tracking of the left ventricle,” IEEE Trans. Med.

Imag., vol. 22, no. 6, pp. 773–776, 2003.

[8] D. Comaniciu, X. Zhou, and S. Krishnan, “Robust real-time myocardial border tracking for echocardiography: An

information fusion approach,” IEEE Trans. Med. Imag., vol. 23, no. 7, pp. 849–860, 2004.

[9] T. Cootes and C. Taylor, “Statistical models of appearance for computer vision,” Univ. Manchester, Div. Imag. Sci. Biomed.

Eng., Manchester, Tech. Rep., 2004.

[10] B. Georgescu, X. S. Zhou, D. Comaniciu, and A. Gupta, “Databased-guided segmentation of anatomical structures with

complex appearance,” in Conf. Computer Vision and Pattern Rec. (CVPR), 2005.

[11] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu, “Four-chamber heart modeling and automatic

segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features,” IEEE Trans. Med. Imaging,

vol. 27, no. 11, pp. 1668–1681, 2008.

[12] S. Zhou and D. Comaniciu, “Shape regression machine,” in IPMI, 2007, pp. 13–25.

[13] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786,

pp. 504–507, 2006.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, March 2004.

January 6, 2011 DRAFT

29

[15] V. Chalana and Y. Kim, “A methodology for evaluation of boundary detection algorithms on medical images,” IEEE Trans.

Med. Imag., vol. 16, no. 10, 1997.

[16] G. Carneiro, J. C. Nascimento, and A. Freitas, “Robust left ventricule segmentation from ultrasound data using deep neural

networks and efficient search methods,” in Int. Symp. Biomedical Imaging: from nano to macro (ISBI), 2010.

[17] T. Chen, J. Babb, P. Kellman, L. Axel, and D. Kim, “Semiautomated segmentation of myocardial contours for fast strain

analysis in cine displacement-encoded MRI,” IEEE Trans. Med. Imag., vol. 27, no. 8, pp. 1084–1094, 2008.

[18] C. Corsi, G. Saracino, A. Sarti, and C. Lamberti, “Left ventricular volume estimation for real-time three-dimensional

echocardiography,” IEEE Trans. Med. Imag., vol. 21, no. 9, pp. 1202–1208, 2002.

[19] E. Debreuve, M. Barlaud, G. Aubert, I. Laurette, and J. Darcourt, “Space-time segmentation using level set active contours

applied to myocardial gated SPECT,” IEEE Trans. Med. Imag., vol. 20, no. 7, pp. 643–659, 2001.

[20] M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation of the left ventricle of the heart in 3-D+t MRI data using an

optimized nonrigid temporal model,” IEEE Trans. Med. Imag., vol. 27, no. 2, pp. 195–203, 2008.

[21] O. Bernard, B. Touil, A. Gelas, R. Prost, and D. Friboulet, “A rbf-based multiphase level set method for segmentation in

echocardiography using the statistics of the radiofrequency signal,” in ICIP, 2007.

[22] N. Lin, W. Yu, and J. Duncan, “Combinativemulti-scale level set framework for echocardiographic image segmentation,”

Medical Image Analysis, vol. 7, no. 4, pp. 529–537, 2003.

[23] A. Sarti, C. Corsi, E. Mazzini, and C. Lamberti, “Maximum likelihood segmentation of ultrasound images with rayleigh

distribution,” IEEE T. on Ult., Fer. and F.C.,, vol. 52, no. 6, pp. 947–960, 2005.

[24] S. Mitchell, B. Lelieveldt, R. van der Geest, H. Bosch, J. Reiber, and M. Sonka, “Multistage hybrid active appearance

model matching: Segmentation of left and right ventricles in cardiac MR images,” IEEE Trans. Med. Imag., vol. 20, no. 5,

pp. 415–423, 2001.

[25] V. Zagrodsky, V. Walimbe, C. Castro-Pareja, J. X. Qin, J.-M. Song, and R. Shekhar, “Registration-assisted segmentation of

real-time 3-D echocardiographic data using deformable models,” IEEE Trans. Med. Imag., vol. 24, no. 9, pp. 1089–1099,

2005.

[26] G. Jacob, J. A. Noble, C. Behrenbruch, A. D. Kelion, and A. P. Banning, “A shape-space-based approach to tracking

myocardial borders and quantifying regional left-ventricular function applied in echocardiography,” IEEE Trans. Med.

Imag., vol. 21, no. 3, pp. 226–238, 2002.

[27] A. Ng and M.Jordan, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes,”

in NIPS, 2002.

[28] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models - their training and application,” Comput. Vis. Image

Understand., vol. 61, no. 1, pp. 38–59, 1995.

[29] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6,

pp. 681–685, 2001.

[30] ——, “Active appearance models,” in Eur. Conf. Comp. Vis., 1998, pp. 484–498.

[31] T. Cootes, C. Beeston, G. Edwards, and C. Taylor, “A unified framework for atlas matching using active appearance

models,” in Information Processing in Medical Imaging, 1999, pp. 322–333.

[32] R. Beichel, H. Bischof, F. Leberl, and M. Sonka, “Robust active appearance models and their application to medical image

analysis,” IEEE Trans. Med. Imag., vol. 24, no. 9, pp. 1151–1169, 2005.

[33] H. Zhang, A. Wahle, R. K. Johnson, T. D. Scholz, and M. Sonka, “4-D cardiac mr image analysis: Left and right ventricular

morphology and function,” IEEE Trans. Med. Imag., vol. 29, no. 2, pp. 350–364, 2010.

January 6, 2011 DRAFT

30

[34] E. Oost, G. Koning, M. Sonka, P. V. Oemrawsingh, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated contour detection

in X-ray left ventricular angiograms using multiview active appearance models and dynamic programming,” IEEE Trans.

Med. Imag., vol. 25, no. 9, pp. 1158–1171, 2006.

[35] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal

of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[36] J. C. Nascimento and J. S. Marques, “Robust shape tracking with multiple models in ultrasound images,” IEEE Trans.

Imag. Proc., vol. 17, no. 3, pp. 392–406, 2008.

[37] G. Carneiro, B. Georgescu, S. Good, and D. Comaniciu, “Detection and measurement of fetal anatomies from ultrasound

images using a constrained probabilistic boosting tree,” IEEE Trans. Med. Imaging, vol. 27, no. 9, pp. 1342–1355, 2008.

[38] J. Koikkalainen, T. Tölli, K. Lauerma, K. Antila, E. Mattila, M. Lilja, and J. Lötjönen, “Methods of artificial enlargement

of the training set for statistical shape models,” IEEE Trans. Med. Imag., vol. 27, no. 11, pp. 1643–1654, 2008.

[39] R. Bartels, J. Beatty, and B. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling.

Morgan Kaufmann, 1987.

[40] G. Hinton. http://videolectures.net/nips09−hinton−dlmi/.

[41] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,” Nature, no. 323, pp.

533–536, 1986.

[42] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, vol. 18, pp.

1527–1554, 2006.

[43] R. Salakhutdinov and G. Hinton, “Learning a non-linear embedding by preserving class neighbourhood structure,” in AI

and Statistics, 2007.

[44] M. Carreira-Perpinan and G. Hinton, “On contrastive divergence learning,” in Workshop on Artificial Intelligence and

Statistics, 2005.

[45] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1–127,

2009.

[46] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Conf. Computer Vision and

Pattern Rec. (CVPR), 2001, pp. 511–518.

[47] R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley and Sons, 2001.

[48] K. Fukunaga, Introduction to Statistical Pattern Recognition. Elsevier, 1990.

[49] A. Hammoude, “Computer-assited endocardial border identification from a sequence of two-dimensional echocardiographic

images,” Ph.D. dissertation, University Washington, 1988.

[50] D. Huttenlocher, G. Klanderman, and W. Rucklidge, “Comparing images using hausdorff distance,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 15, no. 9, pp. 850–863, 1993.

[51] X. S. Zhou, D. Comaniciu, and A. Gupta, “An information fusion framework for robust shape tracking,” IEEE Trans.

Pattern Anal. Machine Intell., vol. 27, no. 1, pp. 115–129, 2005.

[52] Y. Akgul and C. Kambhamettu., “A coarse-to-fine deformable contour optimization framework,” IEEE Trans. Pattern Anal.

Machine Intell., vol. 25, no. 2, pp. 174–186, 2003.

[53] I. Mikić, S. Krucinki, and J. D. Thomas, “Segmentation and tracking in echocardiographic sequences: Active contours

guided by optical flow estimates,” IEEE Trans. Med. Imag., vol. 17, no. 2, pp. 274–284, 1998.

[54] C. Alberola-Lopez, M. Martin-Fernandez, and J. Ruiz-Alzola, “Comments on: A methodology for evaluation of boundary

detection algorithms on medical images,” IEEE Trans. Med. Imag., vol. 23, no. 5, pp. 658–660, 2004.

January 6, 2011 DRAFT

31

[55] J. Bland and A. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,”

Lancet, vol. 1, no. 8476, pp. 307–310, 1986.

[56] A. Parisi, P. Moynithan, C. Feldman, and E. Folland, “Approaches to determination of left ventricular volume and ejection

fraction by real-time two-dimensional echocardiography,” Clin. Cardiology, vol. 12, no. 2, pp. 855–867, 1979, g. Witzstrock

Publishing House Inc.

[57] H. Sandler and H. T. Dodge, “The use of single plane angiocardiograms for the calculation of left ventricular volume in

man,” Amer. Heart J., vol. 75, no. 3, pp. 325–334, 1968.

[58] J. C. Reiber, A. R. Viddeleer, G. Koning, M. J. Schalij, and P. E. Lange, “Left ventricular regression equations from

single plane cine and digital X-ray ventriculograms revisited,” Clin. Cardiology, vol. 12, no. 2, pp. 69–78, 1996, kluwer

Academic Publishers.

January 6, 2011 DRAFT

