Bayesian optimization of perfusion and transit time estimationin
PASL-MRI
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Abstract— Pulsed Arterial Spin Labeling (PASL) techniques
potentially allow the absolute, non-invasive quantification of
brain perfusion and arterial transit time. This can be achieved
by fitting a kinetic model to the data acquired at a number of
inversion time points (T1). The intrinsically low SNR of PASL
data, together with the uncertainty in the model parameters,
can hinder the estimation of the parameters of interest. Here,
a two-compartment kinetic model is used to estimate perfusion
and transit time, based on aMaximum a Posteriori (MAP)
criterion. A priori information concerning the physiological
variation of the multiple model parameters is used to guide the
solution. Monte Carlo simulations are performed to compare
the accuracy of our proposed Bayesian estimation method with
a conventional Least Squares (LS) approach, using four differ-
ent sets ofTl points. Each set is obtained either with a uniform
distribution or an optimal sampling strategy designed based on
the same MAP criterion. We show that the estimation errors
are minimized when our proposed Bayesian estimation method
is employed in combination with an optimal set of sampling
points. In conclusion, our results indicate that PASL perfusion
and transit time measurements would benefit from a Bayesian
approach for the optimization of both the sampling strategy
and the estimation algorithm, whereby prior information on
the parameters is used.

. INTRODUCTION

Perfusion measures the rate at which nutrients are del
ered by the blood to the tissues in the capillary bed and its
accurate measurement is important in the diagnosis and mon- 2

itoring of different pathological conditions. Pulsed Arte
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Fig. 1. PASL signalA M as a function of the inversion timEI, according
to the two compartment kinetic PASL model.

well as in the brain tissueli;;ssqe [2]
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[fy At, T, Tex, The, T1p) IS the vector of parameterg: is the
perfusion,At is the arterial transit time (ATT); is the label
bolus time width;r,. is the brain-blood water exchange time,
T1. is the tissue longitudinal relaxation timg,, is the blood
longitudinal relaxation timeq is the labeling efficiency)\
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Spin Labeling Magnetic Resonance Imaging (PASL-MRIwith TQ(;‘) and Tz(t*) being the blood and tissue transverse
techniques offer a non-invasive way of measuring perfysiomelaxation times andl'E the acquisition echo time. The
by magnetically labeling the water protons in the arteriahM/ curve as a function offl is illustrated in Fig. 1. In
blood through magnetization inversion and then measuringrinciple, if the values of the other model parameters are

the magnetization of the tissues after a certain periochtd fi
the inversion time Tl). The magnetization differencA M

available, then the acquisition of data at a singlepoint
is sufficient for the estimation of perfusion. However, ther

between a labeled image and a control image, as a functi@n considerable uncertainty regarding the values of variou
of Tl, can be described by a general kinetic model [1]. Herenodel parameters, particularly in respect to the artendaisit
we use an extension of this single-compartment model totane and in some pathological conditions. Therefore, ireord
two-compartment model, by accounting for the contribugionto correctly estimate, At should also be estimated by fitting

of labeled water molecules in the capillary blod@,;,.q, as
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the PASL model toA M data sampled at multipl€l points

[3]. On the other hand, the acquisition of more sampling
points can lead to undesirably long scanning times. This
is especially critical because PASL measurements require
substantial signal averaging as a consequence of their low
‘Signal to Noise Ratio (SNR). Therefore, a compromise
between the number dfl points and scanning time has to
be made. Previous studies have shown that the distribution
of the Tl sampling points along time has a strong effect on
the accuracy of the estimation of the parameters. Optimal



sampling strategies were designed based on the Fisher in-Once again, to find the optimal parameters with the

formation matrix criterion , in order to minimize scanningBayesian approach we need to determineflidgat minimize

time while maximizing estimation accuracy [4]. A Bayesiarthe energy function (equivalently given by (4)).

extension of this criterion has also been proposed to take in In both estimation methods (LS and Bayesian), the opti-

account the variability of multiple model parameters [5]. mization is accomplished by using the Levenberg-Marquardt
In this paper, we implement a Bayesian algorithm based qbM) algorithm [6]

the Maximum a posterior{MAP) criterion for the estimation , _ ,

of perfusion, f, and transit timeAt, from PASL data. A 0" = 6"+ D™ . VoE(Y,t,6") (®)

priori assumptions about the physiological variation of th  where Vo E(Y,t,0) is the gradient ofE(Y ,t,0) with

model parameters are incorporated in the framework tohettgspect tod and D is given as

guide the algorithm to a more accurate solution. We then N ] "

test whether the proposed Bayesian estimation approach, D=H(Y,t0") + p.diag(H(Y,t,0")) , (9)

in combination with an optimal sampling strategy, provides whereH (Y, t,0) = azge(gétﬂ) is the Hessian matrix and

the most accurate measurements of pgrfu;mn and AT;[,iS a damping factor of the LM algorithm.

relative to the standard Least Squares estimation methdd an \yhen the iterative optimization LM algorithm does not

uniformly distributed sampling points. converge, a Continuous Variation Method [7] is used to en-

[I. PROBLEM FORMULATION force a priori information about the parameters and regaéar
the solution. In this strategy, a fudge factor greater than 1
is introduced in (7), multiplying the prior term. This facto

yi = AM(t;,0) +m; , i=1..N , 3) converges to 1 along the iterative process, guarantying the
wheren; ~ N(0,02) is assumed to be Additive White Noise cOnvergence of (8) in the initial iterations. However thghti
(AWGN) and AM(t;,8) is the magnetization difference SOlution is reached at the end when the factor becomes 1.
predicted by the PASL model (1) at tinie(both o, A and N this work, using synthetic data, the parametays-—
DS are assumed constant). Because this model is highfiy/?: @ré computed and used in the estimationofvith
non-linear, it is necessary to use appropriate techniqoes {'¢ Bayesian approach. When using real data, an accurate
solve this ill-posed problem. A common approach to estimafeStimation of the amount of noise corrupting the datg,is
the parameter vectdd is the Least Squares (LS) method,US€d- The uncertainty associated with the parametgsis
formulated as the following optimization task assumed to be known.

LetY = [y1, 9, ..., yn]| be a set of observations

0 = argminE (Y, ,0) | (4) [1l. MONTE CARLO SIMULATIONS
) 0 _ ) Monte Carlo simulations [8] were performed in order
where E(Y', t,0) is the following energy function to test the performance of the proposed algorithm in the
E(Y,t,0) = HY—AM<t,0)H§ ) (5) estimation of the parameters and At. For each noise

_level, 1000 synthetic datasets were generated using the two

In this work, a second method is also considered. A Bayes'%mpartment PASL kinetic model in Eq.(1) . Six different
framework is proposed to estimate the parameters using thgjse |evels were obtained as a fraction of the maximum
MAP criterion which is equivalent to minimize the following signal

energy function oy = 0 x max [AM(t,0)] , (10)

E(Y,t,6) = —log[p(Y[t,0)p(0)] , ©)  wheres = {10, 50, 75,100, 125, 150} [%].

where p(Y'|t,0) represents the acquisition process (the For each set oTl points, the process of estimation of the
observations are assumed to be statistically independrdt) parameters was then performed using both a standard LS
p(@) models the a priori knowledge of the parameters tonethod and our proposed Bayesian approach.
be estimated. All the parameters 6f are assumed to be The a priori knowledge of the parameters was obtained
independent and Gaussian distributed around a mean vafoem the literature [4][9][10][11] where the parameters ar
with different standard deviations according to the leviel odescribed with a Normal distribution. Typical gray matter
uncertainty associated with each one. Then, the distdbuti values at 3T drawn from their physiological variations were
of @ is a multivariate Normal distributionV(8,C) with  considered (see Table I). This information was also used
a diagonal covariance matri€ = diag({0?,03,...,0%}) to randomly generate the true values of the parameters for
(where P is the number of parameters), and the energgach estimation. The remaining variables used in the two

function (6) may be written as follows compartment model were considered constant where
1 ) 0.9, A = 0.9 ml of blood per g of tissueTQ(;‘) =0.1sand
E(Y.t,0) =llY —AM(t0)|; T4 = 0.05 s [2].

The simulations were performed with four different sets
of 100 inversion time pointsT(), shown in Fig. 2:
(i) Uniform; TI points uniformly distributed in the interval
[100, 3000]ms;

1Data Fidelity term (7)
+ 503((9 -0)TCct6-6)

Prior term



TABLE |
PRIOR INFORMATION. THE PARAMETERS ARE RULED BYNORMAL
DISTRIBUTIONS WITH DIFFERENT MEANS AND VARIANCES

Parameter|| Mean || Standard Deviation
fihH 0.012 0.004

At (S) 0.7 0.3

T (S) 0.7 0.1

Tex (S) 0.7 0.35

Tyt (S) 1.3 0.1

Ty (S) 1.6 0.1
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Fig. 2. Accumulation curves for the different setsTdfpoints considered
in the simulations (with 125% of noise level): @niform (purple), (ii)
Uniform Sets (green), (iii) Optimal (red) and (iv) Clustered Optimal
(black).

(i) Uniform Sets, 12 Sets of Tl points uniformly dis-
tributed in the interval200, 2400)ms, which was ob-
tained from the literature [12];

(i) Optimal; Tl points optimally distributed in the interval
[100, 3000]ms [5];

(iv) Clustered Optimal; Tl points optimally organized in

data ONRinitia) and estimated curvesS(V Ryinq) Were
calculated as follows

oo

true

€pti) = P10
rue 2
SN Rinitiar = 10 log {%} (11)
N |aM|?
SNsznal =10 lOg { ||Y7AM||2 )

whereet(,’;)w and Hég)t are the true and estimated parameter
values, respectively, whillAM is the theoretical curve
obtained with (1) for6,,.., Y is the noisy data obtained
with (3) andY is the estimated curve. An improved SNR
(ISN R) was determined as the difference between the final
and the initial mean values of the SNR.

A repeated measures Analysis of Variance (ANOVA) was
performed in order to test for any significant effects on ¢hes
measures of the factors estimation algorithrs, (Bayesia,
sampling strategy Wniform, Uniform Sets Optimal Clus-
tered Optimal and noise. A significant main effect of the
three factors was observed for all measurgs<( 0.001).
Moreover, the interactions between noise and both sampling
strategy and estimation algorithm were also significant (
0.001).

Specifically, the two optimal sampling strategies are more
accurate than the two uniform strategies, as expected. In
terms of the estimation algorithm, the Bayesian method
generally provides more accurate results than the LS. We
observe that the two uniform strategies were not signifigant
different from each other, nor were the two optimal strate-
gies. In particular, it is interesting to notice that clustg
the optimal set off'I points around 5 values only does not
impair the accuracy of the results. Therefore, in order to
better understand the main effects of the estimation alari
and the sampling strategy, the results are shown only for the
data obtained with thelustered optimaland theuniform
sets strategies. The mean and the standard error (SE) of

5 clusters in the intervdll00, 3000]ms. _
The optimal sampling strategy (OSS) was obtained adl® absolute values of the errorg and ea; are shown in
Fig. 3(a) and Fig. 4(a) and those of ti®NRare shown in

cording to the algorithm proposed in [5], using the two-_ .
compartment model described here, the parameter distrigiid- 3(°) and Fig. 4(b).
tions shown in Table | and the corresponding noise level. AS expected, the absolute values of the eregrand e,

A clustered optimal sampling strategy was designed iff both pqr_ameters increase with thg level of noise in the
order to fulfill the experimental requirements of ASL datslata. Additionally, the improvement in accuracy observed

acquisition, imposed by the minimum temporal resolutiof®’ Bayesianvs LS methods and for optimals uniform
feasible and the minimum number of repetitions férto strategies also increases with the noise level. For thedowe
achieve a reasonable SNR. A k-means clustering procedd"r@ise level, the absolute values of the estimation errags ar

was applied to distribute the points in the optimal set amorfgatively high. This is a consequence of the variabilityfuf
a fixed number of mutually exclusive clusters [13][14]. Fo ixed model parameters, which is evident for low noise levels

comparison, a uniform sampling strategy based on the sarfut bgcomes dominated by the noise in the data.as the noise
interval as the OSS was tested, as well as a slightly differeffVe! increases. For the same reason]#Ris considerably
uniform sampling strategy according to the literature [i2] smaller for the lowest noise level relative to higher noise
which approximately the same number of inversion times alEVels as a consequence of the decredsdd? inq-

divided in sets of 12 points in the intervgl00, 2400]ms. V. CONCLUSION

IV. RESULTS A Bayesian estimation algorithm was implemented and
For each Monte Carlo simulation, the parameter estimaalidated for the measurement of perfusion and arterial
tion errors, ¢y, and the Signal to Noise Ratio of bothtransit time, based on a two-compartment kinetic model of
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Fig. 3. (a) Absolute estimation errors (%) of (top) and At (bottom)
(mean+ SE) and(b) Improved SNR (meant SE), for Uniform Sets
(left/blue columns) and Clustered Optimal sets (right/redurtms) of
Tl sampling points, considering the LS (left) and the Bayesiaghi)
estimation algorithms and for each level of noise.
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Fig. 4. (a) Absolute estimation errors (%) of (top) and At (bottom)
(mean+ SE) and(b) Improved SNR (meant SE), for Uniform Sets
(left) and Clustered Optimal sets (right) ®f sampling points, considering
the LS (left/blue columns) and the Bayesian (right/red colsjrestimation
algorithms and for each level of noise.

PASL data and incorporating a priori knowledge about thel4] J. Xie, D. Gallichan, R.N. Gunn, and P. Jezzard, Optimadigie of

physiological variation of the parameters. Monte Carlo-sim

Pulsed Arterial Spin Labeling MRI experimentdagnetic Resonance
in Medicine vol. 59, no. 4, 2008, pp. 826-834.

ulations were performed to compare the estimation accuracy] J. sanches, I. Sousa, and P. Figueiredo, Bayesian Fisfemation
obtained with the Bayesian algorithm relative to a standard  Criterion for Sampling Optimization in ASL-MRIin ISBI, 2010.

LS method, using four different sets ®f points. We showed

] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.affhery,
Modeling of Data - Nonlinear Modeldsn Numerical Recipes in C:

that both the estimation algorithm and the sampling stgateg  The Art of Scientific Computingambridge University Press, 1988-
used have an effect on the results, particularly for high 1992, pp. 45-58.

noise levels. Most importantly, we found that the estinratio

7] S.Z. Li, Markov random field modeling in image analys&pringer-
Verlag New York, Inc., 2001.

errors are minimized when optimization with a Bayesian(g] R.Y. Rubenstein and D.P. Kroes§jmulation and the Monte Carlo
approach is used both in the estimation algorithm and in  Method John Wiley & Sons, New York, 2007.

the design of the sampling strategy. Interestingly, we alsé®

] W.M. Luh, E.C. Wong, P.A. Bandettini, and J.S. Hyde, QB®II with
thin-slice TI1 periodic saturation: a method for improvingca@cy

showed that clustering the optimal sampling points around a of quantitative perfusion imaging using pulsed arteriahsibeling,

limited number of distincf| values can be used in practice[10

without impairing the accuracy of the results.
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