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ABSTRACT
When comparing 2D shapes, a key issue is their normalization.
Translation and scale are easily taken care of by removing the mean
and normalizing the energy. However, defining and computing the
orientation of a 2D shape is not so simple. In fact, although for
elongated shapes the principal axis can be used to define one of two
possible orientations, there is not such a tool for general shapes.
As we show in the paper, previous approaches fail to compute the
orientation of even noiseless observations of simple shapes. We
address this problem. In the paper, we show how to uniquely define
the orientation of an arbitrary 2D shape, in terms of what we call its
principal moments. We further propose a new method to efficiently
compute the shape orientation: Principal Moments Analysis. Be-
sides the theoretical proof of correctness, we describe experiments
demonstrating robustness to noise and illustrating with real images.

Index Terms— Image shape analysis, Moment methods

1. INTRODUCTION
Having to deal with unknown orientation in shape-based image anal-
ysis has proved to be very challenging. Consider two instances of a
2D shape described by an arbitrary set of 2D points obtained, e.g.,
from edges or corners, of differently oriented images. The challenge
when comparing these two sets is that they are related by an un-
known transformation that includes, simultaneously, a 2D rotation,
due to different orientations, and a permutation, due to the absence
of labels for the points. Iterative methods have been used to com-
pute, in alternate steps, rotation and permutation: the Iterative Clos-
est Point (ICP) algorithm [1], or its probabilistic versions based on
Expectation-Maximization (EM), see, e.g., [2]. However, due to the
non-convex nature of the problem, these approaches suffer from sen-
sitivity to the initialization, exhibiting uncertain convergence.

Recently, researchers have proposed permutation-invariant rep-
resentations for point sets. For example, [3] factors out unknown
labels, by solving a convex optimization problem over the set of per-
mutation matrices, and [4] proposes a permutation-invariant repre-
sentation based on analytic functions. These approaches do not cope
adequately with arbitrary orientations: [3] assumes the shape ori-
entation is known and the representation in [4] is not invariant to
rotation, requiring pairwise alignment. In this paper, we show how
to obtain orientation-invariance in shape analysis, by rotating each
shape of an angle that unambiguously defines its orientation.

The most straightforward method to define orientation uses the
principal axis of the shape, obtained, e.g., through Principal Com-
ponent Analysis (PCA). Although unable to provide a unique ori-
entation, this method defines two possible orientations for elongated
shapes. However, for shapes that do not have a well defined principal
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axis (rotationally symmetric shapes are an extreme example), PCA-
based orientation is completely ambiguous. To deal with these am-
biguities, researchers attempted to work with concepts like mirror-
symmetry axes [5], universal principal axis [6], and generalized prin-
cipal axis [7]. In general, the motivation for these works is more on
the definition of a “reasonable geometric orientation” than on the ro-
bust computation of a unique orientation angle for arbitrary shapes.
Since rotationally symmetric shapes are particularly challenging, the
detection of symmetry and fold number, by itself a relevant problem,
has also received attention [8, 9].

The more theoretically sustained methods to compute orienta-
tion are based on the geometric moments of the points defining the
shape. In particular, the so-called Complex Moments (CMs) were in-
troduced in the eighties [10, 11]. The elegance of these approaches
comes from defining the orientation through the phase of a single
CM of a particular order. In the late nineties, more general moments
were proposed to deal with degenerate shapes [8], at a cost of deal-
ing with several moments, chosen by tuning a free parameter index
through search, and detecting rotational symmetry as an intermedi-
ate step. However, as we detail in Sec. 3, these methods do not cope
with several shapes that lead to singular moments. In practice, this
means the phase of these moments is sensitive to noise, leading to
unstable estimates of orientation.

Other approaches require the exhaustive search for the angle
maximizing a given orientation measure, e.g., [12], without any
guarantee of uniqueness of the solution. Due to these difficulties,
the search for 2D geometric invariance in image classification is still
ongoing, see, e.g., [4, 13]. In this paper, we present a new method
to define and compute the unique orientation of any 2D shape. We
use what we call the principal moments, which have the distin-
guishing feature of uniquely describing the 2D shape. We show
that the phases of two of these moments unambiguously define the
orientation of an arbitrary 2D shape (including rotationally symmet-
ric ones). We propose an algorithm, Principal Moments Analysis
(PMA), that computes 2D shape orientation by integrating the con-
tributions of all (pairs of) moments. Besides theoretically sound,
PMA results are robust to noise, as our experiments illustrate.

2. PROBLEM DEFINITION
Consider an arbitrary 2D shape described by N points, thus by an
N -dimensional complex vector z, containing their coordinates:

z =
[
z1 z2 · · · zN

]T
. (1)

It is straightforward to obtain invariance with respect to translation
and scale, by removing the mean and normalizing the energy of z.

A natural and the most common way to attempt to obtain orien-
tation invariance consists in finding an angle θ(z) such that, through
rotation, any shape z is brought to its “normalized” version

w(z) = ze−j θ(z) . (2)



In fact, if the desired invariance is satisfied, i.e., if,

∀φ , w
(
zejφ

)
= w(z) , (3)

the normalization in (2) produces a complete (a.k.a maximal) invari-
ant, in the sense that two shape vectors lead to the same normalized
version if and only if they contain (differently oriented versions of)
the same shape. However, current methods to compute the shape ori-
entation θ(z) either fail to process particular shapes (see examples
in the following section) or do not guarantee (3).

The success of the normalization in (2) hinges then on finding an
appropriate function θ : Cn → (−π, π] that unambiguously defines
θ(z), the orientation of the shape z. We now show that, to guarantee
the desired invariance, it suffices that this function satisfies a natural
condition: that the orientation of a rotated shape is the sum of the
orientation of the original shape with the rotation angle. Formally,

∀φ , θ
(
zejφ

)
= θ(z) + φ . (4)

Simple manipulations show that (4) suffices to guarantee (3):

w
(
zejφ

)
= zejφ exp

(
−j θ

(
zejφ

))
(5)

= zejφe−j(θ(z)+φ) (6)

= ze−j θ(z) = w(z) , (7)

where (5) and (7) use the definition (2) and (6) uses (4).

3. SHAPE MOMENTS
To obtain an orientation function θ(·) satisfying (4), we will use
moments of the points describing the shape. Since image mo-
ments have been used in the past, we first overview moment-
based estimation of orientation and motivate the need to revisit
the problem. The usage of Complex Moments (CMs) to define
orientation was proposed in [10]. CMs stand for compact repre-
sentations of linear combination of ordinary (i.e., real) geometric
moments. The CM of order (p, q) of an image g(x, y) is defined by
Cpq =

∫ +∞
−∞

∫ +∞
−∞ (x+ jy)p (x− jy)q g(x, y) dx dy. In [10], the

orientation is defined and computed by imposing the phase of one
of the moments Cq+1,q to be zero. When applying this method to a
shape z, i.e., to an image composed by N mass points, the integral
becomes a sum and the corresponding CMs are given by

Cq+1,q(z) =

N∑
n=1

|zn|2q+1 ej arg zn . (8)

Although the method just described is adequate to deal with
shapes z that lead to a moment Cq+1,q(z) with large magnitude,
there are shapes for which this does not happen for any q. It was
known that this is the case of rotationally symmetric shapes [10],
but we now show it may also happen with general shapes. Consider
z = [1, j,−j, exp(j2π/3), exp(−j2π/3)]T , as represented in the
left plot of Fig. 1. For this shape, from (8), we obtain Cq+1,q(z) =

ej0 + ejπ/2 + e−jπ/2 + ej2π/3 + e−j2π/3 = 0, regardless of q.
For S-fold rotationally symmetric shapes, [10] proposes to use the
phase of one of the moments Cq+S,q . However, again, there are
S-fold rotationally symmetric shapes for which these are all zero.
For example, the 2-fold rotationally symmetric shape in the right
plot of Fig. 1, z = [±1,± exp(±jπ/3),± exp(±jπ/4)]T , leads to
Cq+2,q(z) = 0, ∀q . Although these examples serve as mere illus-
trations of extreme cases, they also make clear that in practice it is

Fig. 1. Examples illustrating limitations of other methods (see text).

not adequate to rely on the angle of those moments to robustly com-
pute shape orientation, since when the magnitude of those moments
is small, their phase is very sensitive to noise.

Moment-based orientation was later addressed by using Gen-
eralized Complex (GC) moments [8]. The GC moment of order
(p, q) of a polar-coordinate expressed image f(r, θ) is of the form
GCpq =

∫ 2π

0

∫∞
0
rpejqθf(r, θ) r dr dθ, where p ∈ {0, 1, 2, . . .}

and q ∈ {1, 2, 3, . . .}. GC moments, simply termed rotational mo-
ments in a previous review (including Legendre, Zernike, and CMs)
[11], can be seen as the coefficients of the Fourier series of radial
projections of the image. For a shape z, the GC moments collapse
into more general sums than the ones in (8):

GCpq(z) =

M∑
n=1

|zn|p ejq arg zn . (9)

To deal with ambiguities that arise when attempting to define
and compute shape orientation from a single moment of a particular
order, reference [8] uses three non-zero GC moments, with a fixed
index p. The method is not simple: fromGCpq1 andGCpq2 , it is in-
ferred the possibility that the shape is rotationally symmetric; in case
there is that possibility, the unambiguous detection of symmetry re-
quires an exhaustive search; if the shape is classified as rotationally
symmetric, a third momentGCpq3 is also used to compute the orien-
tation. A simple example shows that this method may fail: consider
z1 = [1,−1/4,−3/4]T and z2 its reflection, i.e., z1 rotated by π,
z2 = −z1, and the choice of GC index p = 1. Using (9), we get
GC1q(z1) = 1+ 1

4
ejqπ+ 3

4
ejqπ = 1+(−1)q = GC1q(z2), show-

ing that it is impossible to distinguish between the orientations of z1

and z2 from the moments GC1q (note that the shape in z1 and z2

is not rotationally symmetric, thus different orientation angles θ(z1)
and θ(z1) must be computed). Although reference [8] proposes to
tune the index p by maximizing a so-called alternating energy of
the radial projection (which also requires exhaustive search), this
method fails to exclude p = 1 for the example above.

4. PRINCIPAL MOMENTS ANALYSIS (PMA)
We define and compute θ(z) using what we call the Principal Mo-
ments (PMs) [14] of z. The kth-order PM is defined by

Mk(z) = zk1 + zk2 + · · ·+ zkN =

N∑
n=1

zkn , (10)

where k ∈ {1, 2, 3, . . .}. PMs are easily related to CMs and GC
moments, through Mk(z) = Ck0(z) = GCkk(z) and the first N of
them suffice to describe univocally the underlying shape [15].

The choice θ(z) = argM1(z) (equivalent to the simplest form
of the method in [10], using C10 = M1) satisfies (4). In fact,
M1(ze

jφ) = M1(z)e
jφ, thus argM1(ze

jφ) = argM1(z) + φ.
Nevertheless, since M1(z) =

∑
n zn is proportional to the shape



center, its angle is not a characteristic of the shape format, but only
of its localization. In practice, to obtain translation invariance, it is
common to center the shapes by subtracting the mean

∑
n zn/N ,

thus M1 becomes zero and useless to determine shape orientation.
The choice θ(z) = argM1(z) is equivalent to imposing the

argument of the first-order PM of the rotationally normalized shape
(2) to be zero, i.e., argM1(ze

−j θ(z)) = 0. Our approach is to
generalize this method by doing the same to the kth-order PM:

argMk

(
ze−j θ(z)

)
= 0 . (11)

To solve for θ(z), use (10) to rewrite (11), arg
∑
n z

k
n e
−jkθ(z) =0.

Since complex arguments are defined modulo (mod) 2π, we then get

arg

N∑
n=1

zkn − kθ(z) + 2πl = 0 , (12)

where l is an integer. The solution for the normalization angle is then

θ(z) =
argMk(z)

k
+

2π

k
l , l ∈ {0, 1, . . . , k − 1} , (13)

where we used (10) again and noted that only k values of l lead
to distinct solutions for θ(z). Expression (13) makes an ambiguity
clear, which arises when attempting to define the normalization an-
gle using the kth-order PM alone (for k 6= 1): there are k distinct val-
ues (mod 2π) of θ(z) that annihilate the argument ofMk(ze

−j θ(z)).
Nevertheless, the normalization angle θ(z) needs to satisfy (4).

We derive what this condition imposes to the solution for θ(z) that
must be picked from the set in (13). By proceeding as in (11)–(12),
we express the argument of the kth-order PM of a rotated shape as

argMk(ze
jφ) = argMk(z) + kφ+ 2πl̂ , (14)

where l̂ is an integer that guarantees that the arguments ofMk(ze
jφ)

and Mk(z) fall within the desired interval, e.g., (−π, π]. Using (14)
and (13), we obtain the normalization angle of the rotated shape:

θ(zejφ) =
argMk(z)

k
+ φ+

2π

k
(l + l̂) . (15)

The verification of (4) hinges on the choice of l in (13). If one simply
chooses the same l for all shapes, (15) becomes θ(zejφ) = θ(z) +

φ+(2π/k)l̂, showing that (4) is satisfied if and only if l̂ = 0 (mod k).
However, this can not be guaranteed, since in general (14) requires
distinct values of l̂ for distinct φ: just imagine φ ranging from 0
to 2π and note that argMk(ze

jφ) would exhibit jumps (in order to
maintain its value within (−π, π]), at values of φ spaced by intervals
of length 2π/k (corresponding to changing the value of l̂).

The crux of our approach is to define the normalization angle
in (13) by selecting a value for l that depends on the shape z, l(z).
To achieve this, we use a supplementary PM, Mm, with k and m
coprime, i.e., gcd(k,m) = 1. Our choice for l(z) is based on the
arguments of Mk(z) and Mm(z). For simplicity, denote the argu-
ment of themth-order PM of the normalized shape byA(z, l), where
l stands for the particular integer used in (13). Then,

A(z, l)
def
= argMm

(
ze−j θ(z)

)
= arg

N∑
n=1

zmn −mθ(z)

= argMm(z)− m

k
argMk(z)−

m

k
2πl , (16)

where we just used (10) and (13). Since k and m are coprime, it
is easy to verify that the set {−(m/k)2πl : l ∈ {0, 1, . . . , k − 1}}

is the same as {(2π/k)l : l ∈ {0, 1, . . . , k − 1}} (mod 2π). Thus,
the set {A(z, l) : l ∈ {0, 1, . . . , k − 1}} contains k different ele-
ments (mod 2π) spaced by intervals of length 2π/k. We propose
to unambiguously choose l(z) such that A(z, l(z)) falls within an
arbitrary but fixed interval I of length 2π/k: I =

⋃+∞
n=−∞ In, with

In = {λ : λ0 + 2πn < λ ≤ λ0 + 2πn+ 2π/k}, λ0 ∈ R,

A (z, l(z)) ∈ I , (17)

The ambiguity in the definition of θ(z) in (13) is now solved,
through the choice of l(z) in (17), but we still have to check that this
solution satisfies (4). As derived above, θ(zejφ) is given by (15),
now with l dependent on the shape, i.e., with l(zejφ), the solution
of (17) for the rotated shape zejφ. To express the right side of (15)
in terms of θ(z), we must relate l(zejφ) with l(z). This is done
by expressing the argument of the mth-order PM of the normalized
rotated shape in terms of the one of the original shape:

A
(
ze
jφ
, l(ze

jφ
)
)

= (18)

= argMm(ze
jφ

)−
m

k
2πl(ze

jφ
)−

m

k
argMk(ze

jφ
) (19)

= argMm(z) +mφ−
m

k
2πl(ze

jφ
)−

m

k

(
argMk(z) + kφ+ 2πl̂

)
(20)

= argMm(z)−
m

k
argMk(z)−

m

k
2π

(
l(ze

jφ
) + l̂

)
(21)

= A
(
z, l(ze

jφ
) + l̂

)
, (22)

where (19) uses (16), (20) uses (14), (21) are simple manipulations,
and (22) uses (16) again. From (22), we see that l(zejφ) + l̂ = l(z),
since only this way A(zejφ, l(zejφ)) = A (z, l(z)) ∈ I (remember
that I does not depend on the shape). Replacing this equality into
(15) and using the definition (13), (4) is immediately obtained.

We call our method Principal Moments Analysis (PMA).
The reader may wonder if there are shapes for which all but

one PM are zero. However, its easily shown that those shapes do
not exist1. What may happen is the case when there are not co-
prime k and m such that Mk 6= 0 and Mm 6= 0, i.e., letting
γ = gcd(K), K = {k ∈ Z+ : Mk 6= 0}, the case when γ > 1.
Using results from [14], where PMs are seen as coefficients of a
Fourier series, it is simple to conclude that this situation is equiv-
alent to the existence of a γ-fold rotational symmetry, i.e., that the
shape is invariant to rotations of 2π/γ. In this case, all normaliza-
tion angles of the form θ + k̂ 2π/γ, k̂ ∈ Z lead to the same result.
Hence, it suffices to compute an angle θγ by using PMA with θγ/γ
instead of θ in the derivations of this section and then inverting the
scaling effect through the contraction of θγ : θ = θγ/γ. In terms of
the vector z, this procedure is simply equivalent to using the PMs of
orders γk and γm instead of the original ones of orders k and m.

PMA can be used with any pair of coprime indexes (k,m), pro-
vided that Mk 6=0 and Mm 6=0. To improve robustness, we integrate
the contributions of several pairs {(ki,mi)} by computing pairwise
estimates θi(z), and defining a robust normalization angle θ(z) as
the (angular) weighted average of them, θ(z) = arg

∑
i pi e

j θi(z).
The reason for the angular average is its ability to deal with angles
close to the region of circular discontinuity (we want the average of
0.1◦ and 359.9◦ to be arg(exp(j 0.1◦) + exp(j 359.9◦)) = 0◦, in-
stead of (0.1◦+ 359.9◦)/2 = 180◦). The proof that property (4)
holds for the averaged normalization angle is trivial and omitted.

1Hint: Consider that all but one of first N PMs are zero. Compute the
shape these PMs specify and, from the shape, compute the remaining (higher
order) PMs. It will be clear from the result that they cannot be all zero.



5. EXPERIMENTS
To illustrate robustness to noise, we focus on the most challenging
scenario of rotational symmetry. We use noisy versions of a three-
fold rotationally symmetric shape, see the top row of Fig. 2, and
normalized their orientations using PMA, obtaining the visually cor-
rect results on the bottom. To illustrate robustness to shape sampling
density, we used Japanese characters. We synthesized corrupted ver-
sions of those characters by removing up to 95% of the shape points,
obtaining shape vectors z in (1) of very distinct cardinality that were
then processed using PMA. In Fig. 3, we single out instances of a
specific character to illustrate the consistent orientations obtained.

Fig. 2. PMA results. Top: input; bottom: normalized shapes.

Fig. 3. Using PMA with corrupted Japanese characters.

We also tested PMA with greylevel images, using photos of
trademark logos, see examples in Fig. 4 (PMA copes with contin-
uous images through the usual definition of complex moments for
this case). In spite of geometric distortions (e.g., perspective, radial)
and intensity disturbances, we got consistent results, as illustrated
by the examples in Fig. 4. Since we detailed in Sec. 3 several situa-
tions where current methods fail, we do not report here experiments
with those algorithms. In fact, it would be easy to produce examples
where PMA outperforms other methods (just imagine using shapes
similar to the ones in Fig. 1). However, we found it would be much
more informative to present the discussion in Sec. 3 regarding the
core limitations of those methods, i.e., to show how they attempt to
use information that is not available in general, than to blindly report
sample experiments to support our approach.

6. CONCLUSION
We presented a method to compute a unique orientation for arbitrary
2D shapes. This enables performing rotational normalization. Our
method is based on the analysis of particular complex moments of
the shape, thus we call it PMA – Principal Moments Analysis. Be-
sides theoretically sound, PMA results robust to disturbances.
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