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Abstract

This work deals with a background subtraction algo-
rithm for a fish-eye lens camera having 3 degrees of free-
dom, 2 in translation and 1 in rotation. The core assump-
tion in this algorithm is that the background is considered
to be composed of a dominant static plane in the world
frame. The novelty lies in developing a rank-constraint
based background subtraction for equidistant projection
model, a property of the fish-eye lens. A detail simulation
result is presented to support the hypotheses explained in
this paper.

1. Introduction

One of the most crucial efficiency parameter for image
processing algorithms today, is computation time. Often a
major chunk of computation time is lost in processing un-
necessary pixels which usually are part of the background
in an image or frame. Background is usually defined as that
part of the world which is static for a long period of time
and cannot be labeled as an object of interest. Background
Subtraction(BS) is extensively dealt in literature with vary-
ing scenarios and conditions but the major constraint com-
mon to majority of such algorithms is that the camera is
assumed to be fixed with respect to world. Some of the
algorithms consider the minor movements caused in the
fixed camera due to vibrations. Quite recently, researchers
have started to explore the idea of having a BS algorithm
for roto-translating cameras. In [1] Yaseret al. present
a rank-constraint based BS method for cameras having or-
thographic projection model. The novelty in our work is
developing a rank constraint on image streams for equidis-
tant projection and then applying it for BS as Yaseret al. do
in [1]. Yaseret al. use the rank constraint for orthographic
projection developed by Tomasiet al. in [2]. The striking
difference between orthographic and equidistant projection
is that the former is affine while the later is a non-linear
transformation.
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Figure 1. Equidistant Projection

In Section 2, we explain the equidistant projection model
and camera & robot setup. In Section 3, the rank constraint
method is explained followed by simulation results in Sec-
tion 4. A comment on future work is made in Section 5.

2. Projection Model & Reference Frames

2.1 Equidistance Projection Model

In order to understand our approach it is essential to
overview equidistant projection model. We also explain the
frames of reference and the transformations among those
frames continuously used throughout the paper.

In equidistant projection model, a pointP (x, y, z) in a 3-
D world co-ordinate system is projected on the image plane
according to (1)

r = fΘ (1)

wherer is the distance of projected point from the image
center,f is the focal length of the fish eye lens andΘ (in ra-
dians) is the angle which the ray joining the pointP (x, y, z)



Figure 2. Reference Frame Transformations

in camera frame and the optical center makes with the op-
tical axis of the lens. In Figure 1, the angleθ is the angle
between ~PO and ~OYc

The pointP (x, y, z) ≡ (Px, Py, Pz) in camera frame
when projected asp′(x, y) ≡ (px, py) in camera’s image
frame according to the model equation (1), can be expressed
by (2) and (3). We assume that theX andY axes of image
frame coincide with theX andZ axes of camera frame as
illustrated in Figure 1.
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2.2 Reference Frames and Transforma-
tions

In our approach, the camera is mounted on top of an
omni directional robot which roto-translates on a fixed
ground planeZw = −k. The position of the camera is such
thatYc (Y axis of camera frame, which also coincides with
the optical axis of the lens) always makes a constant angle
Ψ (positional constraint) with theXY plane of the World
frame as shown in Figure 2. The center of the camera ref-
erence frame always lies on the fixed world planeZw = 0.
TheX axis of the camera frame, lying always on theXY

plane of the world frame makes a varying angleα with X

axis of world frame, corresponding to robot rotation about
theZ axis of robot which is always parallel toZw.

Points in world frameP (x, y, z)w when expressed in the
camera frameP ′(x, y, z)c, are obtained by a translation of
origin to camera co-ordinate’s originOc(x, y, 0) followed
by α rad rotation aboutZ axis and eventuallyΨ rad rota-
tion aboutX axis.

P ′(x, y, z)c = Rz(−α)·Rx(Ψ)·(P (x, y, z)w−Oc(x, y, 0))
(4)

3. Rank Constraint Method

A fixed set ofP points are randomly selected on the
ground planeZw = −k, the dominant background plane in
the world on which the robot roto-translates. The initial po-
sition of the robot and hence the camera is set by randomly
choosing the camera focal pointOc(x, y, 0) onX−Y plane
on world frame and the angleα. AngleΨ is fixed to a given
value (0.7853982 rad in our experiment). The points are
then expressed in the camera frame according to (4) and
subsequently projected in camera image frame according to
(2) and (3). The next robot position and hence the camera
position is obtained according to the trajectory it followsby
roto-translating on the ground plane giving rise to a new fo-
cal point position and the angleα. Hence the whole process
of co-ordinate transformation by (4) and projection by (2)
and (3) is repeated for the new camera frame. This is done
for a total of F consecutive frames, which eventually gives
rise to a set of 2-D trajectories in the moving image frame,
one for each point in the initial setP .

A trajectory formed by a pointi in the setP can be
represented aswi = [xT

1i...x
T
Fi] ∈ R1×2F , wherexfi =

[pxfi
pyfi

]T in each framef . The set of these trajectories
give rise to a2F x P trajectory matrix henceforth called
W2F×P .
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(5)
We show that the matrixW is highly rank deficient. Ex-

perimentally we find that the rank is 6 forF > 3 andP > 6.

4. Simulation Results

According to the setup explained in Section 2 we artifi-
cially generate trajectories for the robot and hence the cam-
era to construct the matrixW . In simulation 1, the camera
focal pointOc(x, y, 0) translates 2 units in each direction
(Xw andYw) per frame while the angleα increases1◦ per
frame. In simulation 2, the camera focal pointOc(x, y, 0)



# TM in Simulation 1 TM in Simulation 2
1 8561.343377 9139.599419
2 265.144898 273.098248
3 10.636111 6.259409
4 0.512902 0.315992
5 0.015853 0.007201
6 0.000932 0.001058

Table 1. Singular Values for Trajectory Matrix

translates 2 units inXw direction per frame while the angle
α increases1◦ per frame. Subsequently we applied singular
value decomposition(SVD) method to obtain the rank ofW

in simulation. Since the number of non-zero singular val-
ues ofΣ (diagonal matrix with non-negative real numbers
on the diagonal) obtained after SVD is the rank, we approx-
imate the singular values which fall below a set threshold
( SingularV alue

MaxSingularV alue
< 10−7 ) to 0. The extremely small

non-zero singular values result because of floating point ap-
proximation in simulation. After running a large number
of simulations for different sets of points and camera mo-
tion path, we conclude experimentally that the rank can be
safely approximated to 6. Singular values for the trajectory
matrices for two different camera roto-translation paths are
presented in table 1 and the world frame & camera frame
trajectories can be visualized in Figure 3.

5. Future Work

We are in process of applying this rank constraint
method to the Background Subtraction technique developed
in [1] to perform BS. We are also currently working on de-
veloping a mathematical proof for this rank constraint. We
further aim to apply this background subtraction for track-
ing balls in real time on soccer field by our RoboCup Middle
Sized League robots, which will eventually be the test bed
of our work. In this test bed the field plane is the dominant
ground plane.
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Figure 3. World frame and Image frame Tra-
jectories


