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Abstract

The perception of rigid-bodies from affine views of mov-
ing 3D point clouds, boils down to clustering the rigid mo-
tion subspaces supported by the image trajectories. For
a physically meaningful interpretation, clusters must be
consistent with the geometry of the underlying subspaces.
We find that proper subspace clustering requires invari-
ance both to the orthogonal and the inclusion relation-
ship between subspaces. Most of the existing measures
for subspace comparison do not comply with this obser-
vation. A practical consequence is that methods based
on such (dis)similarities are unstable when the number of
rigid bodies increase. This paper introduces the Normal-
ized Subspace Inclusion (NSI) criterion to resolve these is-
sues. Combining it with a robust segmentation method, we
propose a robust methodology for rigid motion segmenta-
tion, and test it, extensively, on the Hopkins155 database.
The geometric consistency of theNSI assures the method’s
accuracy when the number of rigid bodies increases, while
robustness proves to be suitable for dealing with challeng-
ing imaging conditions.

1 Introduction
Extending the structure from motion framework from

one rigid object to multiple moving objects appearing in
the field of view (Costeira and Kanade [1],Yan and Polle-
feys [8]), requires the primary task of identifying the rigid
bodies in the scene, wether they are independent rigid ob-
jects, or rigid parts of articulated objects (Fig. 1).

In the finite sample scenario, rigid bodies are clouds of
3D points moving rigidly. Assuming affine projections and
given their correspondences along the sequence, segment-
ing the rigid motions is framed as the robust clustering of
their imaged trajectories (Fig. 2). The clustering relies on
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(a) Articulated object (b) Multiple rigid objects

Figure 1. Rigid-body segmentation: our re-
sult of segmenting (a) the articulated and
(b) cars10 sequences, from the Hopkins155
database (Tron and Vidal [6]) (red ∗ are points
classified outliers). Section 3 presents re-
sults over the entire data set.

subspace comparison, because the2D trajectories of rigid
motion support linear subspaces.

Extensive validation on the Hopkins155 database (Tron
and Vidal [6]) shows that our approach can leverage the seg-
mentation results given by state-of-the-art methods (e.g. ,
ALC from Rao et al. [3] and LSA from Yan and Polle-
feys [8]), particularly in challenging settings presenting
more than two rigid bodies and outdoor scenes.

2 Robust Subspace Clustering
A key issue in any clustering algorithm is to determine

the groups’ (dis)similarity. We find that proper subspace
clustering requires invariance both to the orthogonal and
the inclusion relationship between subspaces. Most of the
existing measures for subspace comparison do not comply
with this observation, thus being inappropriate for a unified
treatment of the problem and unstable when the number of
motions increase.

For example, letL1 andL2 be two motion subspaces:
(i) the least principal angle criterion [8] cannot distinguish
their intersectionL1 ∩ L2 6= ∅ from their inclusionL1 ⊆
L2 ; (ii ) the subspace distance, developed by Sunet al. [5]



(a) The first, second and last frame from the Kanatani3 sequence (Hopkins155 database) with the points classified as outliers superimposed.

(b) MSL and ALC (c) our result

Figure 2. Outlier detection: (a) Feature points in the chin a re outliers: their image positions slide
along the sequence in a non-rigid way. (b) The segmentation g iven by the MSL (Sugaya and
Kanatani [4]) and ALC (Rao et al. [3]) fails to detect them. Our approach (c) recognizes the o ut-
lying trajectories, though admitting one false negative (t he forehead point).

and Wanget al. [7], is inconsistent with their inclusion,
i.e. it does not reflect that all features supportingL1 also
supportL2 ; or (iii ) with features from a third independent
object supportingL3 , if L1 andL2 intersect, each is orthog-
onal toL3 , and the sum of the squared sines of the principal
angles criterion [8] is unable to recognize it. Simple exam-
ples may be constructed proving these facts.

A geometric consistent criterion cannot be a distance
function, because it violates the identity of the indis-
cernibles (i.e. , any distance functionD must satisfy
D(x, y) = 0 ⇔ x = y) by being consistent with the in-
clusion of subspaces: ifL1 ⊆ L2 , whereL1 andL2 are
motion subspaces, the criterion must reflect that all features
supportingL1 also supportL2 , as the trajectories of the
points on theL1 lines also lie on theL2 boxes in Fig. 1(a).

Our main contribution is thenormalized subspace inclu-
sion (NSI), a criterion for subspace clustering consistent
with the geometry of the underlying subspaces. LetL1 and
L2 be linear subspaces ofRn , such thatdim(L1 ) = d1 and
dim(L2 ) = d2. Define theNSI as

NSI(L1 ,L2 ) =
tr{UT

1
U2U

T

2
U1}

min(d1, d2)
, (1)

wheretr{·} is the trace function and,U1 andU2 are or-
thonormal bases forL1 andL2 , respectively.

3 Robust Rigid Motion Segmentation
We perceive rigid bodies by robustly segmenting the ob-

servations into geometrically meaningful clusters (usingthe
Grassmannian Maximum Consensus [2]), and agglomerate
them, under theNSI criterion, thus providing the adequate
interpretation (segmentation), given the total number of mo-
tions.

Tables 1–3 compares the results of the state-of-the-art
algorithms LSA (Yan and Pollefeys [8]) and ALC (Raoet
al. [3]) with our approach.

Table 1 presents the results by class. Our approach
achieves the highest accuracy in the traffic class, which
contains sequences taken by handheld camera, often with
degenerate motions [6], pointing out its robustness to real-
world imaging conditions (and theGMC correct dimension
estimation, since theNSI criterion depends on this infor-
mation). Also, the misclassification rate decreases as the
number of motions increases, being our approach the most
accurate for all classes withM = 3 motions, thus showing
theNSI’s immunity to the higher complexity of the agglom-



Method avg [%] std [%]

LSA 4.86 10.29
ALC 3.37 7.97
our result 3.44 7.34

(a) 155 (all) sequences

Method avg [%] std [%]

LSA 9.71 14.71
ALC 6.69 11.48
our result 2.87 5.28

(b) 35 sequences withM = 3 rigid motions

Method avg [%] std [%]

LSA 3.45 8.14
ALC 2.40 6.35
our result 3.61 7.84

(c) 120 sequences withM = 2 rigid motions

Table 2. Average (avg) and standard deviation (std) of miscl assification rates for all classes of se-
quences.

method checkboard articulated traffic
avg [%] | std [%] avg [%] | std [%] avg [%] | std [%]

LSA 3.35|8.06 4.58|6.59 9.09|14.86
ALC 2.37|6.18 12.30|16.50 3.06|6.21
our result 3.54|7.39 7.79|8.22 1.69|6.33

(a) 155 (all) sequences

method checkboard articulated traffic
avg [%] | std [%] avg [%] | std [%] avg [%] | std [%]

LSA 5.70|10.89 7.25|9.30 25.30|19.05
ALC 5.00|9.14 21.08|28.87 8.86|13.16
our result 2.92|5.73 6.38|9.03 1.67|1.51

(b) 35 sequences withM = 3 rigid motions

method checkboard articulated traffic
avg [%] | std [%] avg [%] | std [%] avg [%] | std [%]

LSA 2.57|6.79 4.10|6.47 5.43|11.17
ALC 1.49|4.58 10.70|15.00 1.75|1.83
our result 3.75|7.89 8.05|8.51 1.69|7.00

(c) 120 sequences withM = 2 rigid motions

Table 1. Average (avg) and standard deviation
(std) of misclassification rates by class of se-
quences.

Method checkboard articulated traffic all

LSA 5.13 1.93 3.96 4.58

ALC
1213.55
(∼20m)

558.36
(∼9m)

962.52
(∼16m)

1097.06
(∼18m)

our result 14.75 4.16 11.02 12.85

Table 3. Computational burden (average cpu
time [s]). These times are essentially indica-
tive (order of magnitude), because they de-
pend on particular implementations. All code
was written in Matlabr.

erative task.
This is confirmed by table 2, where it can be seen that our

approach achieves an average misclassification rate1.42%
better than the LSA, but0.07% higher than the ALC, while
being slightly more stable. Also, the difference between
all methods is much higher for sequences with 3 groups
than for sequences with 2 groups (the vast majority of the
sequences in the database). Note that for sequences with
M = 3 rigid motions, lower error rates are expected if the
number of misclassified points remains fairly the same, be-
cause the total of features is often higher in theM = 3
group sequences than in sequences withM = 2 groups,
since most of the latter were constructed by splitting each 3
motion sequences into its respective clusters.

In table 3, note that our segmentation is, on average, only
8 seconds (3 times) slower than the LSA and 85 times faster
than the ALC, balancing accuracy with computational bur-
den.
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