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Abstract— This paper presents the development of an attitude
complementary filter for an Attitude and Heading Reference
System (AHRS). Using strapdown inertial measurements and
vector observations, the proposed complementary filter pro-
vides attitude estimates in Euler angles representation, while
compensating for rate gyro bias. Stability and performance
properties of the proposed filter under operating conditions
usually found in oceanic applications are derived, and the
tuning of the filter parameters in the frequency domain is
emphasized. The proposed solution poses small computational
requirements, and is suitable for implementation on low-power
hardware using low-cost sensors. Experimental results obtained
with an implementation of the algorithm running on-board the
DELFIMx catamaran are presented and discussed.

I. INTRODUCTION

Complementary filters have been widely used in the past in

sensor fusion problems. The frequency domain formulation

and simple filter structure allow for straightforward imple-

mentation and testing in digital or analog hardware without

requiring high performance signal processing hardware, see

[1], and references therein. This paper presents the develop-

ment and experimental evaluation of an Attitude and Heading

Reference System (AHRS) using a complementary filter, by

exploiting information provided by the vehicle sensor suite

over distinct, yet complementary frequency regions. Merging

inertial measurements from rate gyros and accelerometers

with Earth’s magnetic field observations, the filter is required

to yield accurate attitude estimates that will be central to

stabilize the platform and support the implementation of re-

liable control strategies. The implementation of the proposed

architecture is straightforward and the performance results of

the navigation system are demonstrated using experimental

data obtained in tests at sea with the DELFIMx catamaran,

depicted in Fig. 1.

While a unified error analysis for Inertial Navigation Sys-

tem (INS) has been carried out in the literature [2], several

filtering architectures may be used in navigation systems.

The Extended Kalman Filter (EKF) is one of the most well

known and widely adopted filtering algorithms, see [3], [4],

[5] and references therein, however filter divergence due to

the linearization of the system and large state initialization
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Fig. 1. The DELFIMx autonomous surface craft

error is a frequent stumbling block to the implementation

of the filter. The Unscented Kalman Filter (UKF) has been

put forth as an alternative to the EKF [3], [6], [7], which

numerically approximates the mean and covariance of the

state estimate parameterized in Euclidean spaces. Also, there

has been an increasing interest in the design of nonlinear

attitude observers that are theoretically stable and yield

explicit regions of attraction [8], [9].

The attitude filter proposed in this work is based on

the complementary filtering theory, deeply rooted in the

work of Wiener [10]: an unknown signal can be estimated

using corrupted measurements from one or more sensors

whose information naturally stands in distinct and comple-

mentary frequency bands [11], [12]. The minimum mean-

square estimation (MMSE criteria) error was first solved by

Wiener [10], assuming that the unknown signal had noise-

like characteristics, which usually does not fit the signal

description. Complementary filtering explores the sensor

redundancy to successfully reject measurement disturbances

in complementary frequency regions without distorting the

signal. The loss of optimality in complementary filters due

to ignoring noise stochastic description is slight and can

even be beneficial for cases where it is better to consider

irregular measures that occur out of the expected variance,

as convincingly argued in [11].

The paper is organized as follows. The proposed com-

plementary filter for attitude estimation is presented in

Section II, where stability properties and conditions that

guarantee performance are also derived. Section III focuses

on the implementation of the attitude filter. Experimental

results obtained during DELFIMx catamaran sea trials are

presented in Section IV to illustrate the performance of the

proposed AHRS. Concluding remarks and future work are

pointed out in Section V.
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NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted as M(n,m). The

Gaussian distribution with mean µ and variance σ2 is denoted

as N (µ, σ2). The identity and zero matrices are respectively

denoted as I and 0. The dimensions of the vector and

matrices are clear from the context. In general, the vectors

are elements (or a concatenation of elements) of R
3.

II. ATTITUDE COMPLEMENTARY FILTER

In this section, a complementary filter for attitude estima-

tion is proposed, and its stability and performance properties

are derived. The design of the filter in the frequency domain

is justified by discussing the complementary characteristics

of the inertial and aiding sensors in the frequency domain.

Let λ̄ =
[

ψ̄ θ̄ φ̄
]′

denote the vector containing the yaw,

pitch and roll Euler angles, respectively [13]. The Euler angle

kinematics are described by

˙̄
λ = Q(λ̄)ω̄, Q(λ) =





0 sinφ sec θ cosφ sec θ
0 cosφ − sinφ
1 sinφ tan θ cosφ tan θ



 , (1)

where ω̄ is the body angular velocity expressed in body

frame coordinates. The discrete-time equivalent of the system

(1) considered here is obtained by the Euler method [14] with

the right-hand side subject to sample-and-hold, yielding

λ̄k+1 = λ̄k + TQ(λ̄k)ω̄k, (2)

where T is the sampling interval and the index k abbreviates

the time instant t = kT . In this work, the attitude is

estimated by exploiting the angular velocity and attitude

measurements provided by strapdown sensors. The angular

velocity is measured by a rate gyro affected by noise and

random-walk bias [15],

ωr k = ω̄k + b̄ω k + wωr k, b̄ω k+1 = b̄ω k + wb k, (3)

where wωr
∼ N (0,Ξω) is zero-mean, Gaussian white noise

and b̄ω is the sensor bias driven by the Gaussian white noise

wb ∼ N (0,Ξb). Rewriting the Euler angles kinematics (2-3)

in state space form gives
[

λ̄k+1

b̄k+1

]

=

[

I −TQ(λ̄k)
0 I

] [

λ̄k

b̄k

]

+

[

TQ(λ̄k)
0

]

ωr k

+

[

−TQ(λ̄k) 0

0 I

] [

wωr k

wb k

]

.

(4)

Consider the following nonlinear feedback system as the
proposed attitude filter
[

λ̂k+1

b̂k+1

]

=

[

I −TQ(λ̄k)
0 I

] [

λ̂k

b̂k

]

+

[

TQ(λ̄k)
0

]

ωr k

+

[

Q(λ̄k)(K1λ − I) + Q(λ̄k−1)
K2λ

]

(yλ k − ŷλ k),

(5a)

ŷλ k = Q
−1(λ̄k−1)λ̂k, yλ k = Q

−1(λ̄k−1)λ̄k + vλ k, (5b)

where yλ k is the vector of observed Euler angles trans-

formed to the space of angular rate and corrupted by the

Gaussian white observation noise vλ ∼ N (0,Θλ), and
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Fig. 2. Attitude complementary filter

K1λ,K2λ ∈ M(3, 3) are feedback gain matrices. The block

diagram of the proposed attitude filter is depicted in Fig. 2.

The attitude observation yλ may be determined from

vector observations, such as those obtained by magnetome-

ters, pendula, cameras, or star trackers. The problem of

determining attitude using vector measurements is known

in the literature as the orthogonal Procrustes problem [16]

or as Wahba’s problem [17] and several solutions have been

proposed along time-spread articles [3], [16]. In this work,

the pitch and roll angles in yλ are obtained from Earth’s

gravitational field, available from two on-board inclinometers

(pendula), and the yaw angle in yλ is computed from the

Earth’s magnetic field measurements provided by a magne-

tometer triad.

Consider the following auxiliary linear time invariant

system

[

xλ k+1

xb k+1

]

=

[

I −T I

0 I

] [

xλ k

xb k

]

+

[

−T I 0

0 I

] [

wωr k

wb k

]

,

yx k =
[

I 0
]

[

xλ k

xb k

]

+ vλ k, (6)

which will be used in the sequel as the frequency domain

design setup for the time-varying attitude filter (5). In the

proposed design technique, the feedback gains K1λ and K2λ

in (5) are identified with the steady-state Kalman gains for

the system (6), where the covariance matrices Ξω, Ξb and

Θλ act as ”tuning knobs” to shape the desired frequency

response of the attitude filter.

The time-invariant system (6) adopted for the determina-

tion of the feedback gains and associated frequency response

is similar to the attitude kinematics (4) for Q(λ) = Q(0).
Although this suggests at first glance that the properties

of the proposed filter could be limited to the specific case

of λk = 0, the filter is in fact asymptotically stable for

any attitude trajectory parametrized by nonsingular Euler

angle configurations. The stability properties are derived in

the following theorem for the specific case of Z-Y-X Euler

angles, however the extension of the results to other Euler

angle set conventions [13] is immediate.

Theorem 1: Let K1λ and K2λ be the steady-state Kalman

gains for the system (6) and assume that the pitch angle

described by the platform is bounded, |θ| ≤ θmax < π
2

.

Then the attitude complementary filter (5) is uniformly

asymptotically stable (UAS).

Proof: Let λ̃k = λ̄k−λ̂k, b̃ω k = b̄ω k−b̂ω k denote the
estimation errors. The associated estimation error dynamics
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are given by
[

λ̃k+1

b̃k+1

]

=

[

Q(λ̄k)(I−K1λ)Q−1(λ̄k−1) −TQ(λ̄k)
−K2λQ−1(λ̄k−1) I

] [

λ̃k

b̃k

]

+

[

−TQ(λ̄k) 0
0 I

] [

wωr k

wb k

]

+

[

Q(λ̄k)(I−K1λ) −Q(λ̄k−1)
−K2λ

]

vλ k. (7)

By definition, the filter is said to be UAS if the origin of the

system (7) is UAS in the absence of state and measurement

noises [18]. However, the state and measurement noises are

denoted in the proof for the sake of convenience. The system

(6) can be written in the compact state space formulation

xk+1 = Fxk + Gwk, yk = Hxk + vk, (8)

where xk =
[

x′
λ k x′

b k

]′
, wk =

[

w′
ωr k w′

b k

]′
, yk =

yx k, vk = vλ k, F =
[

I −T I

0 I

]

, G =
[

−T I 0

0 I

]

, and H =
[

I 0
]

. It is straightforward to show that [F,H] is detectable

and [F,G] is completely stabilizable, hence the closed-loop

system

x̃k+1 = (F − KH)x̃k + Gwk − Kvk, (9)

where x̃k = [x̃′
λ k, x̃

′
b k]′, K =

[

K ′
1λ K ′

2λ

]′
, is UAS [19].

Define the Lyapunov transformation of variables
[

λ̃x k

b̃x k

]

= Tk

[

x̃λ k

x̃b k

]

, Tk =

[

Q(λ̄k−1) 0

0 I

]

, (10)

that is well defined [20] because θ is bounded by assumption.
Applying the transformation of variables (10) to (9) yields
[

λ̃x k+1

b̃x k+1

]

=

[

Q(λ̄k)(I−K1λ)Q−1(λ̄k−1) −TQ(λ̄k)
−K2λQ−1(λ̄k−1) I

] [

λ̃x k

b̃x k

]

+

[

−TQ(λ̄k)wωr k

wb k

]

−

[

Q(λ̄k)K1λ

K2λ

]

vλ k. (11)

The origin of (9) is UAS and, by the properties of Lyapunov

transformations, the origin of (11) is UAS. Hence, the origin

of (7) is uniformly asymptotically stable, as desired.

The stability results of Theorem 1 can be easily ex-

tended for time-varying Kalman gains, however the proposed

complementary filter is designed in the frequency domain

by means of the time-invariant formulation (6), to obtain

a desired transfer function that merges the low-frequency

contents of the attitude observations with the high-frequency

information from the angular rate readings. Steady-state

Kalman filter gains are adopted to yield an asymptotically

stable filter that can be easily implemented and tested in

low-cost hardware. Interestingly enough, under operating

conditions found in some terrestrial and oceanic applications,

the gains adopted in the proposed filter (5) are also the

Kalman gains for the time-varying system (4).

Theorem 2: Let the state and observation disturbances in

the attitude kinematics (4) be characterized by the Gaussian

white noises wωr
∼ N (0,Ξω), wb ∼ N (0,Ξb) and vλ ∼

N (0,Θλ), respectively, and assume that the pitch and roll

angles are constant. Then the complementary attitude filter

(5) is the “steady-state” Kalman filter for the system (4) in

the sense that the Kalman feedback gain Kopt k converges

asymptotically as follows

lim
k→∞

∥

∥

∥

∥

Kopt k −

[

Q(λ̄k)(K1λ − I) + Q(λ̄k−1)
K2λ

]∥

∥

∥

∥

= 0.

(12)
Proof: The estimation error covariance matrix of the

Kalman filter for the system (6) satisfies

Pxλ k+1|k = FPxλ k|k−1F
′ + GΞG′

− FPxλ k|k−1H
′S−1

Pλ kHPxλ k|k−1F
′, (13)

where SPλ k = HPxλ k|k−1H
′ + Θλ, Ξ =

[

Ξω 0

0 Ξb

]

,
see references [18], [19] for a derivation of (13). Given
the transformation of variables (10), the covariance ma-

trix Σxλ k+1|k = E
([

λ̃x k+1

b̃x k+1

]

[ λ̃
′

x k+1 b̃
′

x k+1 ]
)

is given by

Σxλ k+1|k = Tk+1Pxλ k+1|kT
′
k+1

and, using (13), satisfies

Σxλ k+1|k = ZkΣxλ k|k−1Z
′
k + Tk+1GΞG

′
T

′
k+1

− ZkΣxλ k|k−1T
−T
k H

′
S
−1

Σλ kHT
−1

k Σxλ k|k−1Z
′
k,

where SΣλ k = HT−1

k Σxλ k|k−1T
−T
k H′ + Θλ, and Zk =

Tk+1FT−1

k . With a slight abuse of notation, let K1λ k and
K2λ k denote the optimal time-varying gains for the system
(6) and formulate the attitude filter (5) with time-varying
gains

[

λ̂k+1

b̂k+1

]

=

[

I −TQ(λ̄k)
0 I

] [

λ̂k

b̂k

]

+

[

TQ(λ̄k)
0

]

ωr k

+

[

Q(λ̄k)(K1λ k − I) + Q(λ̄k−1)
K2λ k

]

(yλ k − ŷλ k).

(14)

The attitude filter (14) is the Kalman filter for the system (4)

if i) Σxλ k+1|k is the error covariance of the attitude filter

(14) and ii) Σxλ k+1|k is the error covariance of the optimal

filter for the attitude kinematics (4). If these conditions are

verified, the time-varying and the steady-state Kalman filters

for the attitude kinematics (4) are respectively given by the

attitude complementary filters (14) and (5), for a discussion

on the uniqueness of the Kalman gains, the reader is referred

to [18], [19].

The condition of constant pitch and roll implies that

Q(λ̄k+1) = Q(λ̄k), hence the kinematics (7) and (11)

are identical (independently of time-varying or steady-state

feedback gains), [λ̃
′

x k b̃′
x k

]′ = [λ̃
′

k b̃′
k
]′ and Σxλ k+1|k

is the error covariance of the attitude filter (14).

The matrix Σxλ k+1|k is the covariance error of the

Kalman filter for the system

zk+1 = Zkzk + Tk+1Gwz k,

yz k = HT−1

k zk + vz k,
(15)

where zk ∈ R
6, wz ∼ N (0,Ξ), vz ∼ N (0,Θλ). Using

Q(λ̄k+1) = Q(λ̄k), the matrices of the system (15) are
given by

Zk =

[

I −TQ(λ̄k)
0 I

]

, Tk+1G =

[

−TQ(λ̄k) 0
0 I

]

,

HT
−1

k =
[

Q−1(λ̄k−1) 0
]

,

which are the state space matrices of the attitude kinematics

(4) with attitude observation given by (5b). Consequently,
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Fig. 3. AHRS architecture

the attitude filter (14) produces the optimal estimation error

covariance matrix Σxλ k+1|k for the system (4) and, by

uniqueness, the attitude filter (14) is a Kalman filter. Using

K1λ k → K1λ and K2λ k → K2λ as k → ∞ yields (12), that

completes the proof.

The complementary filter performance results presented in

Theorem 2 hold for applications where the pitch and roll an-

gles are constant or, for practical purposes, can be considered

approximately constant. For the case of time-varying pitch

and roll angles, the performance of the complementary and

the optimal filters can be compared offline by computing the

estimation error covariances of the filters, as detailed in [19].

Later in this work, the performance of the filter is analyzed

using the experimental data obtained on-board the DELFIMx

catamaran.

Although performance results are presented in Theorem 2,

the design of the feedback gains is performed in the fre-

quency domain due to the characteristics of the attitude

aiding sensor at hand. This approach exploits the low-

frequency region where the attitude observations are typically

more accurate, and the high-frequency region where the

integration of the rate gyro yields better attitude estimates.

III. AHRS IMPLEMENTATION: THE

MAGNETO-PENDULAR SENSOR

This section presents the overall Attitude and Heading

Reference System architecture that builds on the attitude

complementary filter derived in the previous section, and

discusses the implementation details of the attitude filter

using the Magneto-Pendular Sensor (MPS).

A. AHRS architecture

The block diagram of the AHRS is depicted in Fig. 3.

The attitude complementary filter, detailed in Section II and

illustrated in Fig. 2, merges the angular rate information from

the rate gyros with the attitude reconstruction provided by

the MPS. The compensation of the centripetal acceleration

block improves the attitude estimates in turning maneuvers.

B. Centripetal Acceleration Removal

The computation of pitch and roll angles using directly

the accelerometer reading is distorted in the presence of

external linear and angular accelerations. The accelerometer

measurement model is given by [2]

ar =
d Bv

dt
+ ω × Bv − Bg, (16)

where d B
v

dt
is the linear acceleration, ω×Bv is the centripetal

acceleration, and Bg is the gravity acceleration vector in

body fixed frame coordinates. Typical maneuvers of au-

tonomous vehicles involve mostly short term linear accel-

erations, which hence are high-frequency and the resulting

distortion in pitch and roll can be smoothed out by the

complementary low-pass filter. On the other hand, centripetal

accelerations occur even in trimming maneuvers, e.g. a

helicoidal path, and must be compensated for. As depicted

in Fig. 3, the pendular reading estimate âp is obtained by

compensating the centripetal acceleration

âp = ar − ω̂ ×B v̂, (17)

where ω̂ = ωr − b̂ω is the angular rate drawn from the rate

gyro measurement after bias compensation and Bv̂ is the

linear velocity estimate provided to the AHRS. The effect

of linear acceleration in âp is compensated in the frequency

domain by appropriate design of the complementary filter.

C. Magneto-Pendular Sensor

The attitude observation yλ k in Euler angles coordinates

is determined using the body and Earth frame representations

of two vectors, namely the Earth’s magnetic and gravitational

fields. Note that yλ k can be obtained using other attitude

reconstruction algorithms and sensors, for more details see

[3] and references therein.

The magnetic field vector is measured in the body frame

by the magnetometer

mr = R′
X(φ)R′

Y (θ)R′
Z(ψ)Em̄ + nm, (18)

where the magnetic field in Earth frame coordinates, denoted
by Em̄, is known, nm is the magnetometer measurement
noise, and RX(φ), RY (θ), and RZ(ψ) represent the roll,
pitch, and yaw elementary rotation matrices, respectively.
Denoting the projection of the magnetometer reading on the
x-y plane by P m = RY (θ)RX(φ)mr, the yaw angle is
obtained by algebraic manipulation of (18), producing

ψ = arctan 2
(

E
my

P
mx −

E
mx

P
my,

E
mx

P
mx + E

my
P
my

)

,

(19)

where the four quadrant arctan, denoted as arctan2, was

adopted. The pitch and roll angles are obtained from the

accelerometer, which is regarded as a pendular sensor

âp ≈ −Bg = −R′
X(φ)R′

Y (θ)Eg =





g sin θ
−g cos θ sinφ
−g cos θ cosφ



 ,

(20)

where Eg =
[

0 0 g
]′

is the gravity vector in Earth frame

coordinates, and g is the local gravitational acceleration. The

pitch and roll angles are given by algebraic manipulation of

(20), producing

φ = arctan 2 (−ay,−az) ,

θ =







arctan
(

−ax sin φ
ay

)

, sinφ 6= 0

arctan
(

−ax cos φ

az

)

, cosφ 6= 0
.

(21)

The yaw, pitch, and roll observations (19,21) define a

virtual attitude sensor measurement that is referred to as

Magneto-Pendular Sensor (MPS). The MPS observation
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TABLE I

COMPLEMENTARY FILTER PARAMETERS

State Weights Observation Weight Filter Gain

Attitude
Filter

Ξω = 3I

Ξb = 10−10
I

Θλ = 0.8 × 10
−2

I
K1 λ = 2.97 × 10−1

I

K2 λ = 9.41 × 10−5
I

noise vλ is a nonlinear function of the inertial sensor noises,

and of the acceleration compensation errors, and is mostly

high-frequency due to the influence of linear accelerations.

Consequently, the observation noise weight matrix Θλ is

tuned to yield good steady-state high-frequency rejection of

the MPS noise.

The theoretical stability property of the attitude filters

derived in Section II cannot be directly inferred to the

overall AHRS due to the use of ω̂ in the computation of

the attitude aiding observation. This fact, which is specific to

the adopted attitude aiding sensor, can be easily overcome by

resorting to nonpendular attitude aiding devices, e. g. vision

based techniques. Alternatively, the direct measurements of

the rate gyros can be used after obtaining, off-line, a good

bias estimate by performing straight-line trajectories prior to

compensating for centripetal acceleration in the filter. The

proposed AHRS implementation is focused on low-cost and

simplicity and Monte Carlo simulations were adopted to

validate in practice the MPS attitude aiding integration in

the AHRS architecture.

IV. EXPERIMENTAL RESULTS

The AHRS is validated in this section using a low-

power hardware architecture enclosing low-cost sensors and

mounted on-board the DELFIMx catamaran. The properties

of the complementary filters in the frequency domain are

discussed and the resulting performance of the proposed

filter is analyzed. The attitude estimation results using the

experimental data collected in the catamaran sea tests are

presented, and the initial calibration errors of the rate gyros

biases are addressed.

The DELFIMx surface craft, depicted in Fig. 1, is a small

Catamaran 4.5 m long and 2.45 m wide, with a mass of

300 Kg. Propulsion is ensured by two propellers driven

by electrical motors, and the maximum rated speed of the

vehicle with respect to the water is 6 knots, the reader is

referred to [21] for further details.

The Inertial Measurement Unit (IMU) installed on-board

the DELFIMx craft is a strapdown system comprising a

triaxial XBOW CXL02LF3 accelerometer and three single

axes Silicon Sensing CRS03 rate gyros mounted along

three orthogonal axes. The inertial sensors are sampled at

56 Hz. The hardware architecture is also equipped with a

Honeywell HMR3300 magnetometer, interfaced by a serial

port connection.

A. Filter Parameter Design

The attitude filter derived in Section II is designed to

produce a closed-loop frequency response which blends the

complementary frequency contents of the inertial and the
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Fig. 5. Attitude estimation results

aiding sensor measurements. In this frequency domain frame-

work, the state and measurement weight matrices are used as

tuning parameters and the filter gains are identified with the

steady-state Kalman filter gains. The adopted weights and

corresponding gains are detailed in Table I.

The complementary frequency response of the closed-loop

filters is depicted in Fig. 4 and was obtained by considering

Q(λ) = Q(0), i.e. the frequency response of the time

invariant system (6) used in the filter design. As shown in

Fig. 4, the low-frequency region of the MPS is blended with

the high-frequency contents of the open-loop integration of

the rate gyros measurements. The complementary transfer

functions are validated in practice with the experimental data
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Fig. 7. Rate gyro bias estimates

obtained on-board the DELFIMx catamaran.

B. Experimental Results Analysis

This section presents the attitude filter estimation results

obtained with the experimental data collected on-board the

DELFIMx catamaran during tests at sea using the hardware

architecture detailed previously. The trajectory described by

the DELFIMx is mainly characterized by straightline and

circular paths to assess the performance of the resultant

AHRS in realistic operational scenarios.

The attitude and angular velocity estimation results are

presented in Figs. 5-6, where the yaw measurements obtained

from the GPS unit installed on-board are also shown for the

sake of comparison. The attitude estimation results are as

expected, namely the yaw estimate is consistent with the

turning maneuvers performed by the platform and with the

yaw measurement given by the GPS unit, and the mean of the

estimated pitch and roll angles corresponds to the installation

angles of the AHRS in the DELFIMx. Interestingly enough,

the standard deviations of the roll and pitch are of small

amplitude, as shown by the estimation results depicted in

Fig. 5(b), which suggests that the performance degradation

of the attitude filter due to time-varying pitch and roll is

small. The rate gyro bias estimation results are presented

in Fig. 7 and show that the attitude complementary filter

compensates for slowly time-varying bias, by means of the

small design weight Ξb in the computation of the feedback

gain, see Table I for details.

V. CONCLUSIONS

A discrete time-varying complementary filter for attitude

estimation was proposed and its stability and performance

properties were derived. Using the Euler angles parametriza-

tion, the attitude filter compensates for rate gyro bias and

is stable for trajectories described by nonsingular configu-

rations. The steady-state filter gains are computed to shape

a frequency response that blends the frequency contents of

the aiding and the inertial sensors. Implementation aspects

were detailed, namely an attitude aiding observation based

on magnetic and pendular measurements was derived. The

structure of the resulting Attitude and Heading Reference

System which can be represented in a simple block diagram,

was easily implemented on a low-cost hardware, and was

validated using experimental data, in tests at sea with the

DELFIMx catamaran.
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