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Abstract—An inexpensive single pan and tilt camera based
indoor positioning and tracking system is proposed, supported
on an architecture where three main modules can be identified:
one related to the interface with the camera, tackled with pa-
rameter estimation techniques; other, responsible for isolating
and identifying the target, based on advanced image processing
techniques, and a third, that resorting to nonlinear dynamic
system suboptimal state estimation techniques, performs the
tracking of the target and estimates its position, and linear and
angular velocities. The contributions of this work are fourfold:
i) a new indoor positioning and tracking system architecture; ii)
a new lens distortion calibration method, that preserves generic
straight lines in images; iii) suboptimal nonlinear multiple-
model adaptive estimation techniques, for the adopted target
model, to tackle the positioning and tracking tasks, and iv)
the implementation and validation in real time of a complex
tracking system, based on a low cost single camera. To assess
the performance of the proposed system, a series of indoor
experimental tests for a range of operation of up to ten meter
were carried out. An accuracy of 20 cm was obtained under
realistic conditions.

I. INTRODUCTION

With the development and the widespread use of robotic
systems, localization and tracking have become fundamental
issues that must be addressed in order to provide autonomous
capabilities to a robot. The availability of reliable estimates is
essential to its navigation and control systems, which justifies
the significant effort that has been put into this domain, see
[1], [2] and [3] and the references therein.
Successfully exploited alternative techniques have been

reported such as infrared radiation, ultrasound, radio fre-
quency, and vision (see a comparison in [1] and [5]). The
indoor tracking system proposed in this work uses vision
technology, since this technique has a growing domain of
applicability and allows to achieve interesting results with
very low investment. This system estimates in real time the
position, velocity, and acceleration of a target that evolves
in an unknown trajectory, in the 3D world, as well as its
angular velocity. In order to accomplish this purpose, a
new positioning and tracking architecture is detailed, based
on suboptimal stochastic multiple-model adaptive estimation
techniques. The complete process of synthesis, analysis,
implementation, and validation in real time is presented next.
This document is organized as follows: in section II,

the architecture and the main methodologies and algorithms

This work was partially supported by Fundação para a Ciência e a
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Program that includes FEDER funds and by the project PDCT/MAR -
RUMOS of FCT and GREX of EC.

used in the positioning and tracking system proposed are
described. In section III, the camera and lens models are
studied in detail. To isolate and identify the target, advanced
image processing algorithms are discussed in section IV, and
in section V a multiple-model nonlinear estimation technique
is proposed. Section VI analyzes the experimental results
obtained and in VII some concluding remarks are addressed.

II. SYSTEM ARCHITECTURE

Fig. 1. Tracking system architecture.

In this project a new indoor positioning system archi-
tecture is proposed, based on three main modules: one
that addresses the interface with the camera, the second
that implements the image processing algorithms, and a
third responsible for dynamic systems state estimation. The
proposed architecture is presented in Fig. 1, where some
quantities are introduced informally to augment the legibility
of the document.
The extraction of physical information from an image

acquired by a camera requires the knowledge of its intrinsic
(A) and extrinsic (R andT) parameters, which are computed
during the initial calibration process. In this work, calibration
was preceded by an independent determination of a set of
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parameters (K) responsible for compensating the distortion
introduced by the lens of the camera. Since the low cost
camera used has no orientation sensor, the knowledge of its
position in each moment required the development of an ex-
ternal algorithm capable of the estimation of its instantaneous
pan and tilt angles (αr and θr, respectively).
The target identification is the main purpose of the image

processing module. An active contour method, usually de-
nominated as snakes, was selected to track the important
features in the image. The approach selected consists in
estimating the target contour, providing the necessary in-
formation to compute its center coordinates (u, v) and its
distance (d) to the origin of the world reference frame. These
quantities correspond to the measurements that are used to
estimate the position (x̂), velocity (v̂), and acceleration (â)
of the body to be tracked. Note that the computation of d
requires the knowledge of the real dimensions of the target,
since the proposed system uses one single camera instead of
a stereo configuration.
To obtain estimates on the state and parameters of the

underlying dynamic system, an estimation problem is for-
mulated and solved. However, the dynamic model adopted
and the sensor used have nonlinear characteristics. Extended
Kalman filters included in a multiple-model adaptive estima-
tion architecture were selected to provide estimates on the
system state (x̂, v̂, and â), to identify the unknown target
angular velocity ŵ, and the estimation error covariance P ,
as depicted in Fig. 1.
The command of the camera is the result of solving a

decision problem, with the purpose of maintaining the target
close to the image center. Since the range of movements
available is very restricted, the implemented decision system
is very simple and consists in computing the pan and tilt
angles (αc and θc), that should be sent to the camera at each
moment. Large distances between the referred centers are
avoided, thus the capability of the overall system to track
the targets is increased.

III. SENSOR: PTZ CAMERA
A. Camera model
Given the high complexity of the camera optical system,

and the consequent high number of parameters required to
model the whole image acquisition process, it is common to
exploit a linear model to the camera. In this architecture it
was considered the classical pinhole model [4].
In order to determine the camera intrinsic and extrinsic

parameters, the classical approach proposed by Faugeras [4]
was selected and implemented, with the major advantages
that only one image is required and reliable results can be
obtained. A separate algorithm that compensates for lens
distortion was implemented, as described in section III-C.

B. PTZ camera internal geometry
The camera used in this project has the ability to describe

pan and tilt movements, which makes possible the variation
over time of its extrinsic parameters. Thus, the rigorous
definition of the rigid body transformation between camera

and world reference frames implies the adoption of a model
to the camera internal geometry and the study of its direct
kinematics. The Creative WebCam Live! Motion camera used
has a closed architecture, thus its internal geometry model
was estimated from the analysis of its external structure,
based on a small number of experiments.
The proposed model considers five transformations, that

include the pan, tilt, and roll angles between the world and
camera reference frames; the offset between the origin of the
world reference frame and the camera rotation center, and the
offset between the camera rotation and optical centers.
The composition of these transformations leads to the

global transformation between world and camera reference
frames cgM = Mg−1

c , Mgc = Mg0
0g1

1g2
2g3

3gc, that is
fundamental to determine the camera projection matrix over
time.
The introduced geometry requires the knowledge of five

parameters: pan, tilt and roll angles, the position of the
camera optical center in the world coordinate frame, when
these angles are zero, and the offset between this point and
the camera rotation center. Since there is no position sensor
in the camera, its orientation must be determined in real time
using reference points in the 3D world. The position of the
camera optical and rotation centers, when the pan and tilt
angles are zero, can be computed on an initial stage resorting
to points of the world with known coordinates.

C. Lens distortion

The mapping function of the pinhole camera between the
3D world and the 2D camera image is linear, when expressed
in homogeneous coordinates. However, if a low-cost or wide-
angle lens system is used, the linear pinhole camera model
fails. In those cases, and for the camera used in this work,
the radial lens distortion is the main source of errors (no
vestige of tangential distortion was identified). Therefore,
it is necessary to compensate this distortion resorting to a
nonlinear inverse radial distortion function, which corrects
measurements in the 2D camera image to those that would
have been obtained with an ideal linear pinhole camera
model.
The inverse radial distortion function is a mapping that

recovers the coordinates (x, y) of undistorted points from the
coordinates (xd, yd) of the correspondent distorted points,
where both coordinates are related to a reference frame with
origin in image distortion center (x0, y0). Since radial defor-
mation increases with the distance to the distortion center, the
inverse radial distortion function f(rd) can be approximated
and parameterized by a Taylor expansion [6], that results in
x = xd + xd

∑∞

i=0 kir
i−1
d and y = yd + yd

∑∞

i=0 kir
i−1
d ,

where rd =
√

x2
d + y2

d.
In this project, it were only taken into account the parame-

ters k3 and k5, that, as stated in [6] and according to practical
tests, are sufficient to obtain good results. Using more pa-
rameters brings no major improvement to the approximation
of f(rd) for images in video resolution, and an estimation
of less parameters is more robust.
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The proposed lens distortion compensation method is
independent of the calibration process responsible for de-
termining the pinhole model parameters, and is based on the
rationale that straight lines in the 3D space must remain
straight lines in 2D camera images. Ideally, if acquired
images were not affected by distortion, 3D world straight
lines would be preserved in 2D images. Hence, the inverse
radial distortion model parameters estimation was based on
the resolution of the following set of equations⎧⎪⎨

⎪⎩
fi1 = (yi1 − ŷi1(mi, bi, xi1))

2 = 0
...

fiNp
= (yiNp

− ŷiNp
(mi, bi, xiNp

))2 = 0

i = 1, . . . , Nr

with ŷij(mi, bi, xij) = mixij + bi, where Nr and Np are
the number of straight lines and points per straight line
acquired from the distorted image, respectively. A set of
Nr ∗ Np nonlinear equations results; its solution can be
found resorting to the Newton’s method, and estimates for
parameters k3, k5, x0, y0, mi, bi, i = 1, . . . , Nr, are
obtained.

IV. IMAGE PROCESSING

In this section, advanced image processing algorithms are
described to implement the target isolation and identification,
leading to the measurements to be provided to the estimation
system.

A. Target isolation and identification
The isolation and identification of the target to be tracked

in each acquired image is proposed to be tackled resorting
to an active contours method. Active contours [7], or snakes,
are curves defined within an image domain that can move
under the influence of internal forces coming from within the
curve itself and external forces computed from the image
data. The internal and external forces are defined so that
the snake will conform to an object boundary or other
desired features within an image. Snakes are widely used
in several computer vision domains, such as edge detection
[7], image segmentation [8], shape modeling [9], [10], or
motion tracking [8], as happens in this application.
1) Parametric active contours (traditional method): in

this project a parametric active contour method is used
[7], in which a parameterized curve x(s) = [x(s), y(s)],
s ∈ [0, 1], evolves over time towards the desired image
features, usually edges, attracted by external forces given by
the negative gradient of a potential function. The evolution
occurs in order to minimize the energy of the snake Esk =
Eint+Eext, that includes a term related to its internal energy
Eint, which has to do with its smoothness, and a term of
external energy Eext, based on forces extracted from the
image [7]. Traditionally, this energy can be expressed in the
form

Esk =

∫ 1

0

1

2
[α|x′(s)|2 + β|x′′(s)|2] + Eext(x(s))ds, (1)

where parameters α and β control the snake tension and
rigidity, respectively, and x′(s) and x′′(s) denote the first
and second derivatives of x(s) with respect to s.
Approximating the solution of the variational formulation

(1) by the spacial finite differences method, with step h,
yields

(xt)i =
α

h2
(xi+1 − 2xi + xi−1)−

β

h4
(xi+2 − 4xi+1+

+ 6xi − 4xi−1 + xi−2) + F
(p)
ext(xi), (2)

where xi = x(ih, t), and F
(p)
ext(xi) represents the image

influence at the point xi.
The temporal evolution of the active contour in the image

domain occurs according to xn+1 = xn + τxn
t , where τ

is the considered temporal step. The iterative process ends
when the coordinates of each point of the snake remain
approximately constant over time.
Traditional snakes have two main limitations: poor initial-

izations may lead the snake towards boundaries other than
the desired ones, and they have some difficulties in converg-
ing to boundary concavities. Therefore, in this project the
gradient vector flow (GVF) approach proposed by Chenyang
Xu and Jerry L. Prince in [11] was followed, where a
new class of external forces for active contour models that
addresses both problems referred above is introduced.
2) Gradient vector flow snakes: the overall GVF approach

proposed in [11] consists in using a new external force,
here denoted by v(x, y), which defines the gradient vector
flow field. This force leads to the dynamic snake equation
xt(s, t) = αx′′(s, t)−βx′′′′(s, t)+v, whose solution corre-
sponds to the GVF snake, and can be computed numerically
by iterative processes, after discretization, in a procedure
similar to the one followed in the traditional snake method.
GVF field is defined as the vector field v(x, y) =

[u(x, y), v(x, y)] that minimizes the functional

ε =

∫ ∫
μ(u2

x +u2
y +v2

x +v2
y)+ |∇f |2|v−∇f |2dxdy, (3)

where the indices x and y represent the partial derivatives
with respect to x and y, respectively; f is a scalar field
f(x, y) = −Eext(x, y), and μ is a regularization parameter
that should be set according to the amount of noise present
in the image (images with more noise require the choice of
larger values for the parameter μ).
Using the calculus of variations [12], it can be shown that

the GVF field that minimizes (3) can be found by solving a
pair of Euler equations, whose solution can be computed by
means of an iterative numerical procedure, that, as deduced
in [11], corresponds to propagate the GVF field components
according to the iterative expressions

un+1
i,j = (1 − bi,jΔt)un

i,j + r(un
i+1,j + un

i,j+1+

+ un
i−1,j + un

i,j−1 − 4un
i,j) + c1

i,jΔt (4)

vn+1
i,j = (1− bi,jΔt)vn

i,j + r(vn
i+1,j + vn

i,j+1+

+ vn
i−1,j + vn

i,j−1 − 4vn
i,j) + c2

i,jΔt, (5)
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where

b(x, y) = fx(x, y)2 + fy(x, y)2, (6)
c1(x, y) = b(x, y)fx(x, y), and (7)
c2(x, y) = b(x, y)fy(x, y). (8)

The notation adopted is the one proposed by Xu and Prince
in [11], so that fx and fy correspond to the partial derivatives
of f with respect to x and y; indices i, j and n correspond
to x, y and t, respectively; Δt corresponds to the time step
for each iteration, and r = μΔt

h2 , with h = Δx = Δy (Δx
and Δy correspond to the spacing between pixels).
According to numerical analysis theory [13], stability of

equations (4) and (5) is guaranteed whenever the restriction

0 < �t ≤
h2

4μ + h2||b||
, ||b|| = max

∀i,j

bi,j ,

is verified. As can be concluded from the expressions above,
convergence of the iterative process can be made faster on
coarser images, i.e. for larger values of the spatial sampling
h. On the other hand, smoother GVF fields, with larger
values of the parameter μ, make the convergence rate slower.
These last cases correspond to smaller values of the sampling
period �t.
B. Sensor measurements
Once defined the target contour identification procedure,

it is important to make a brief overview on the way this
information is used. The measurements that will be provided
to the estimation process are the target center coordinates
(u, v) and its distance (d) to the origin of world reference
frame.
Target center coordinates in each acquired image are com-

puted easily from its estimated contour, as being the mean
of the coordinates of the points that belong to this contour.
Target distance to the origin of world reference frame is
computed from its estimated boundary. Its real dimensions
in the 3D world, and the knowledge of the camera intrinsic
and extrinsic parameters, allow to establish metric relations
between image and world quantities. Estimates on the depth
of the target can then be obtained. A complete stochastic
characterization of these quantities can be found in [5] and
these will be the measurements provided to the estimation
method detailed next.
The use of triangulation methods for at least two cameras

would allow the computation of the target distance without
further knowledge on the target. However, the present track-
ing system uses a single camera. Thus, additional information
must be available. In this work, it is assumed that the target
dimensions are known.

V. TRACKING SYSTEM
In this section, the nonlinear estimation methods im-

plemented are described. Estimates on the target position,
velocity and acceleration, in the 3D world, are provided and
angular velocity is identified. This estimator is based on
measurements from the previously computed target center
coordinates and distance to the origin of world reference
frame.

A. Extended Kalman filter
The Kalman filter [14] provides an optimal solution to the

problem of estimating the state of a discrete time process
that is described by a linear stochastic difference equation.
However, this approach is not valid when the process and/or
the measurements are nonlinear. One of the most successful
approaches, in these situations, consists in applying a linear
time-varying Kalman filter to a system that results from
the linearization of the original nonlinear one, along the
estimates. This kind of filters are usually referred to as
Extended Kalman filters (EKF) [14], and have the advantage
of being computationally efficient, which is essential in real
time applications.
Consider a nonlinear system with state x ∈ �n expressed

by the nonlinear stochastic difference equation

xk = f(xk−1,uk−1,wk−1),

and with measurements available z ∈ �m given by

zk = h(xk,vk),

where the index k represents time, uk the control input, and
wk ∈ �

n and vk ∈ �
m are random variables that correspond

to the process and measurement noise, respectively. These
variables are assumed to be independent, i.e. E[wkvk

T ] = 0,
and with Gaussian probability density functions with zero
mean and given covariance matrices.
In the case of linear dynamic systems, the estimates

provided by the Kalman filter are optimal, in the sense that
the mean square estimation error is minimized. Estimates
computed by EKF are suboptimal. It is even possible that
it does not converge to the system state in some situations.
However, the good performance observed in many practical
applications made this strategy the most successful and
popular in nonlinear estimation.
The implementation of an EKF requires a mathematical

model to the target and sensors used. The choice of appro-
priate models is extremely important since it improves sig-
nificantly the target tracking system performance, reducing
the effects of the limited observation data available in this
kind of applications. Given the movements expected for the
targets to be tracked, the 3D Planar Constant-Turn Model
as presented in [15], was selected. This model considers the
vector x = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]T as the state of the target,
where [x, y, z], [ẋ, ẏ, ż], and [ẍ, ÿ, z̈] are the target position,
velocity, and acceleration in the world, respectively.
The sensor measurements available in each time instant,

that define function h, correspond to the target center coor-
dinates (u, v) and target distance (d) to the origin of world
reference frame, and are given by

u =
p11x + p12y + p13z + p14

p31x + p32y + p33z + p34
+ vu

v =
p21x + p22y + p23z + p24

p31x + p32y + p33z + p34
+ vv

d =
√

x2 + y2 + z2 + vd, (9)

where pij is the projection matrix element in the line i
and column j, and v = [vu, vv, vd]

T is the measurement
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noise (the time step subscript k was omitted for simplicity of
notation). The measurement vector is given by z = [u, v, d]T .
The complete measurement process characterization re-

quires also the definition of the measurement noise covari-
ance matrix. This matrix can be obtained from an accurate
study of the available sensors, which, in this project, con-
sisted in executing a set of experiments aiming to compute
the standard deviation of the estimation error in the image
coordinates of a 3D world point, and the standard deviation
of the error in target depth estimation, as detailed in [5].

B. Multiple-model

The model considered to the target requires the knowledge
of its angular velocity. However, this value is not known
in real applications, which led us to the application of a
multiple model based approach, identifying simultaneously
some parameters of the system and estimating its state.
The implemented method, known as Multiple-Model

Adaptive Estimator (MMAE) [16], considers several models
to a system that differ in a parameters set (in this case the
target angular velocity). Each one of these models includes
an extended Kalman filter, whose state estimates are mixed
properly. The individual estimates are combined using a
weighted sum with the a posteriori hypothesis probabilities
of each model as weighting factors, leading to the state
estimate

x̂k =

N∑
j=1

pj
kx̂

j
k,

and the global covariance matrix

Pk =

N∑
j=1

pj
k[Pj

k + (x̂j
k − x̂k)(x̂j

k − x̂k)T ],

where P
j
k is the estimate error covariance of the model j

and pj
k is its a posteriori probability.

It should be stressed that the methods used to compute the
a posteriori probability for each model and the final state
estimate are optimal, if each one of the individual estimates
is optimal. However, this is not the case in this application,
since the known solutions to nonlinear estimation problems
at present can only provide sub-optimal results.

VI. EXPERIMENTAL RESULTS

In this section some brief considerations about the de-
veloped system are made, and experimental results of its
application to real time situations are analyzed.

A. Application description

The positioning and tracking system proposed in this
project was implemented in Matlab, and can be divided
into three main modules: one that addresses the interface
with the camera, other that implements the image processing
algorithms, and a third related to the estimation process.

1) Interface with the camera: since the camera used in
this project has a discrete and limited range of movements,
its orientation in each time instant is determined according
to a decision system whose aim is to avoid that the distance
between the image and the target centers exceed certain
values.
The CCD sensor built-in the camera acquires images with

a maximum dimension of 640 × 480 pixels, which is the
resolution chosen for this application. Despite its higher
computational requirements, smaller targets can be tracked
with an increase on the accuracy of the system.
2) Image processing: the active contour method was

implemented with the values of α and β equal to 0.5 and
0.05, respectively, since these values were the ones that led
to better results.
The developed application is optimized to follow red

targets, whose identification in acquired images is easy, since
image segmentation is itself a very complex domain, and
does not correspond to the main focus of this work.
3) Estimation process: the adopted MMAE approach

was based on the utilization of four initially equiprobable
target models, that differ on target angular velocity values:
2π 1

50 [0, 1, 2, 3] rad/s.
Each one of the referred models requires the knowledge

of the power spectral density matrix of the process noise,
that is not available. The matrix considered to this quantity
was diag[0.1, 0.1, 0.1], since it led to the best experimental
results.

The sampling interval of the application was made variable,
however the use of the previously referred parameters
imposed an inferior bound of approximately 0.5 s.

B. Application performance
The results presented in this section are relative to the

tracking of a red balloon attached to a robot Pioneer P3-
DX, as depicted in Fig. 2, programmed to describe a circular
trajectory.

Fig. 2. Real time target tracking. Left: Experimental setup; Right: Target
identification, where the initial snake is presented in black, its temporal
evolution is presented in red, and the contour final estimate is presented in
blue.

In Fig. 3, the 3D nominal and estimated target trajectories
are presented. The position, velocity, and acceleration esti-
mation errors are presented in Fig. 4. These quantities have
large transients in the beginning of the experiment, due to the
initial state estimation error, and decrease quickly to values
beneath 20 cm, 4 cm/s, and 0.5 cm/s2, respectively. There
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are several reasons that can justify the errors observed: i) the
uncertainty associated with the characterization of the real
trajectory described by the target; ii) possible mismatches
in the models considered for the camera and target, and iii)
incomplete measurement and sensor noise characterization.
Moreover, given the suboptimal nature of the results

produced by the extended Kalman filter in nonlinear applica-
tions, in some experiments, where an excessively poor initial
state estimate was tested, divergence of the filter occurred.
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Fig. 3. 3D position estimate of a real target. The real position of the target
in the initial instant is presented in black.
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Fig. 4. Position (left pan), velocity (center pan), and acceleration (right
pan) estimation error of a real target in the world.

The results of the adopted MMAE approach are presented
in Fig. 5. For the trajectory reported the real target angular
velocity is 2π0.0217 rad/s. Thus, the probability associated
to the model closer to the real target tends to 1 along the
experiment, as depicted on the left panel of Fig. 5. On the
right panel of that figure, the real and estimated angular
velocities are plotted.
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Fig. 5. MMAE evolution over time. On the left are the a posteriori
hypothesis probabilities. On the right are the real (red) and estimated (blue)
target angular velocities.

In what concerns the operation range for the proposed
system, it depends significantly on the camera used and
on the size of the target. In the experiments reported, an
elliptic shape with axes of length 106 mm and 145 mm was
located with the mentioned accuracies up to distances of
approximately 7 m from the camera. The lower bound of the
range of distances in which the application works properly
is limited by the distance at which the target stops being
completely visible, filling the camera field of vision. For the
target considered, this occurs at distances bellow 40 cm.

VII. CONCLUSIONS AND FUTURE WORK
A new indoor positioning and tracking system architecture

is presented, supported on suboptimal stochastic multiple-
model adaptive estimation techniques. The proposed ap-
proach was implemented using a single low cost pan and tilt
camera, estimating the real time location of a target which
moves in the 3D real world with accuracies on the order of
20 cm.
The main limitations of the implemented system are

the required knowledge on the target dimensions, and the
inability to identify targets with colors other than red.
In the near future, an implementation of the developed

architecture in C will be pursued, which will allow for the
tracking of more unpredictable targets. Also, an extension of
the proposed architecture to a multiple camera based system
is thought. Distances to targets will then be computed resort-
ing to triangulation methods, thus avoiding the requirement
on the precise knowledge of their dimensions.
Finally, it is also recommended the integration of a sensor

in the vision system that retrieves camera orientation in
each time instant, and the implementation of an image
segmentation algorithm that can identify a wider variety of
targets.
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