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Abstract: This paper presents a performance analysis for Ultra-Short Base Line (USBL) aided
Inertial Navigation Systems (INS) resorting to lower bounds for the covariance of the estimators
based on the Posterior Cramér-Rao Bounds (PCRB) theory. In this framework, the vehicle
interrogates acoustic transponders located in known positions of the mission area. Two distinct
design methodologies are presented: one that estimates essentially the position of the origin of
the Body attached coordinate frame with respect to Earth, and the latter that tracks the position
of the transponders in the Body-fixed coordinate frame. The performance of both systems is
compared in simulation leading to the conclusion that it is equivalent. Their efficiency is also
assessed in simulation by verifying that both systems perform near the PCRB. Copyright (©)2009

IFAC

1. INTRODUCTION

In recent years, low-cost Inertial Navigation Systems (INS)
stepped forward as a significant aid for Underwater Vehi-
cles (UV) positioning in the fulfillment of several missions
at sea. The execution of these tasks, that include envi-
ronmental monitoring, surveillance, underwater inspection
of estuaries, harbors, and pipelines, and geological and
biological surveys (see Pascoal et al. [2000]), requires low-
cost, compact, high performance, and robust navigation
systems that can accurately estimate the UV position
and attitude. The average INS yields excellent short-term
accuracy, however, long term position drifts arise due to
the integration of non-ideal inertial sensors bias and noise,
if not compensated by external aiding sensors.

Among several available underwater navigation aiding sen-
sors such as Doppler Velocity Loggers (DVL), depth pres-
sure sensors, and magnetic compasses, acoustic positioning
systems (see Milne [1983], and Vickery [1998]) like Long
Base Line (LBL), Short Base Line (SBL), and Ultra-Short
Base Line (USBL) stand often as the primary choice for
underwater positioning (see Lurton and Millard [1994],
Smith and Kronen [1997], Larsen [2000], and Lee et al.
[2004]).

In the proposed mission scenarios, illustrated in Fig. 1,
the vehicle is equipped with an INS and an USBL array,
in an inverted USBL configuration (Vickery [1998]), that
interrogates transponders located in known positions of
the mission area, engaging in interrogations over consid-
erable distances, ranging typically from a few meters to
several kilometers.

Theoretical performance bounds have long been pursued
as an important design tool that helps gauge the attain-
able performance by any estimator on preset conditions of
process observations and noise. These kind of bounds allow
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Fig. 1. Mission scenario

as well for an assessment of whether imposed performance
specifications are feasible or not. A commonly used lower
bound for time-invariant statistical models is the Cramér-
Rao bound (CRB) which provides a lower bound on the
estimation error of any estimator of an unknown constant
parameter of that particular statistical model. An anal-
ogous bound for random parameters on non-linear, non-
stationary system models was first derived in Van Trees
[1968], and is referred to as the Posterior Cramér-Rao
Bound (PCRB), which is used in the work presented in
this paper to assess the achievable performance of the
navigation systems.

Control systems for this type of robotic vehicles often
rely on information provided by external observers to
feedback errors and steer the vehicle to its desired pose.
The choice of where this quantities (e.g. position, velocity,
and attitude) are expressed, either on Body or Earth fixed
coordinate frames, depends on the purpose, application
and mainly on the design methodology of the controller.

The navigation system can be designed to provide esti-
mates expressed on any specific coordinate frame, either
by posterior conversion of the outputs from one frame to
another (e.g. estimator designed to provide outputs on
Earth fixed coordinates with posterior conversion to Body
fixed coordinates or vice-versa) or by directly designing
the systems on the desired coordinate frame. Intuitively
one might expect each coordinate frame tailored filter to
perform better then the other on its own design frame
due, for instance, to unaccounted posterior frame con-
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Fig. 2. Navigation system block diagram

version during the filtering process. Moreover, most in-
ertial quantities are directly sensed on Body coordinate
frame, whereas for use on an Earth frame designed system
these have to be correctly converted from Body to Earth
coordinates. Positioning devices aboard the vehicle like
inverted USBL configurations obtain directly the position
of transponders in Body-fixed coordinates motivating the
use of Body referenced estimators.

The work presented herein shows, resorting to Monte-
Carlo simulations, that for this class of navigation systems
the overall performance of the estimators is equivalent
and also asserts that both estimators perform closely to
the expected theoretical lower bound, emphasizing their
efficiency and leaving little margin for improvement. To
the best knowledge of the authors, this paper presents for
the first time the application of PCRB tools on this kind of
estimators, set on a framework of a direct-feedback EKF
estimating and correcting errors on an INS. This paper
also presents two estimators: one designed to estimate the
position and velocity of the Body frame in Earth fixed
coordinates, while the other is designed to estimate the
position of the interrogated transponder in the Body frame
and Body velocity with respect to Earth expressed in
Body-fixed coordinates.

The paper is organized as follows: the main aspects and the
proposed architecture of the navigation systems synthe-
sized on both designated Body and Earth fixed coordinate
frames, are reviewed in Section 2. Section 2 also gives
a brief review on the USBL positioning system and the
fusion techniques to aid the inertial navigation systems.
The theory behind the PCRB and the method on how to
compute it is presented in Section 3. Section 4 presents the
simulation results that validate the proposed techniques
and compares the performance of both systems against
each other and against the PCRB. Finally Section 5 pro-
vides some conclusion remarks and comments on future
work.

2. NAVIGATION SYSTEM ARCHITECTURE

The proposed navigation system architecture is depicted
in Fig. 2. The INS is the backbone algorithm that performs
attitude, velocity and position numerical integration from
rate gyro and accelerometer triads data, rigidly mounted
on the vehicle structure (strapdown configuration). The
undesirable INS estimates drift, due to integration of
non ideal inertial sensor disturbances (bias and noise),
is dynamically compensated by the EKF that estimates
position, velocity, attitude and bias compensation errors,
according to the direct-feedback configuration shown in
Fig. 2. After the error correction procedure is completed,
the EKF error estimates are reset maintaining the filter
linearization assumptions valid.

The inputs provided to the inertial algorithms are the
accelerometer and rate gyro readings, corrupted by zero
mean white Gaussian noise n and random walk bias,
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b = ny, yielding

B

aspr =2a+Pg—-ob,+n,, w=a&-7b,+n,

where db = b — b denotes bias compensation error, b
is the nominal bias, b is the compensated bias, Pg is the
nominal gravity vector, and the subscripts a and w identify
accelerometer and rate gyro quantities, respectively.

2.1 Attitude algorithm

The attitude of the vehicle is defined to be the orientation
of the Body coordinate frame with respect to a Earth fixed
coordinate frame. It can be expressed by a rotation matrix
R € SO(3), which represents a rotation from Body to
Earth fixed coordinate frame, with kinematics given by

R = Rlwx] (1)

where w is the angular velocity of the Body frame with
respect to Earth, expressed in Body coordinates. Both for-
mulations of the navigation system presented in this work
share the same attitude representation and computations.

For highly maneuverable vehicles, the attitude numerical
integration algorithm must properly address angular high-
frequency motions (coning) to avoid attitude estimation
errors build-up. The attitude multi-rate approach, based
on the work detailed in Savage [1998a], computes the
dynamic angular rate effects using high-speed, low order
algorithms, whose output is periodically fed to a moderate-
speed algorithm that computes attitude resorting to exact,
closed-form equations. Discrete time Body fixed frame
attitude updates are computed in Direction Cosine Matrix
(DCM) form

B -1

sin || Ak
Bt R () = Taxg + 22

[kl

1 — cos || Ak]|
Mex]+ ———5—
fIA% 12

ex]? (2)

where ||| represents the Euclidean norm, { By, } is the Body
frame at time k and 5" 'R(Ag) is the rotation matrix

from {Bj} to {By_1} coordinate frames, parameterized
by the rotation vector Ag. The rotation vector updates
are formulated as A\ = ap + B, in order to denote
angular integration and coning attitude terms o, and 3y,
respectively. The attitude high-speed algorithm computes
B, as a summation of the high-frequency angular rate vec-
tor changes using simple, recursive computations (Savage
[1998a]), providing high-accuracy results.

The attitude error equation, implemented in the EKF, was
brought to full detail by Britting [1971] and models the
attitude error dynamics

S\ = —Réb, + Rn,, (3)

respectively, where the attitude error rotation vector d is
defined by R(6A) = RR7*, bearing a first order approxi-

mation

R(0A) = Isxs + [0AX] = [0AX] =~ RRT — 1545 (4)
of the Direction Cosine Matrix (DCM) parametrization,
where R represents nominal rotation matrix.

The INS attitude estimate, R, is compensated in the INS

error correction routines as depicted in Fig. 2, using the
rotation error matrix R(dA) definition, which yields

Ry = RE(6A:)R,

where Rg(éj\k) is parameterized by the rotation vector
0 according to the DCM form.



2.2 Earth-fixed position and velocity computation

In the Earth-fixed proposed solution, the navigation sys-
tem estimates the position and velocity of the Body co-
ordinate frame with respect to an Earth fixed coordinate
frame, both represented in Earth coordinates. The discrete
numerical integration scheme computes solutions at fixed
discrete times for the simplified continuous dynamics

Pp="y 5)
Ey=RBagr+Fg (6)
where g represents the gravity vector on Earth, v is

the velocity of the origin of the Body frame with respect

to Earth, and Fp is the position of the origin of the Body
frame with respect to Earth.

Using the equivalence between strapdown attitude and ve-
locity /position algorithms Roscoe [2001], the same multi-

rate approach is applied (Savage [1998b]) to compute exact
velocity updates at moderate-speed

Vi = Vi-1 +5,_, RAVE + AvG/cor i
where Avy, is the velocity increment related to the specific
force, and Avg/cor 1 Tepresents the velocity increment
due to gravity and Coriolis effects Savage [1998b]. The
term APr-1vgp ;. also accounts for high-speed velocity
rotation and high-frequency dynamic variations due to
angular rate vector rotation, yielding
Avk =V + AVrot Kkt AVscul k
where Av,.o; 1 and Avgy,  are the rotation and sculling

velocity increments respectively, computed by the high-
frequency algorithms.

Position updates also account for position rotation com-
pensation and scrolling effects yielding an overall high-
accuracy integration algorithm. Readers not familiarized
with INS algorithms are referred to Savage [1998a,b], Brit-
ting [1971] for further details.

The linear velocity and position errors are defined by

v=Cv-"v op="p-p, (7)
respectively, where “p is Body frame origin position
relative to the Earth coordinate frame, p the Body frame
origin position estimate, ©+¥ is the nominal linear velocity,
and v the linear velocity estimate.

The linear equation errors are implemented in the EKF,
based on the perturbations previously defined in (7),
bearing a first-order error model

op = dv , ov = —Rdb, — [RPagrx]oA + Rn,  (8)

which are linearly compensated in the INS correction
routines using

Py =P — 0Dk, Vi =V, — ¥
2.8 Body-fixed position and velocity computation

In order to fully exploit the information of the USBL
positioning device, the Body-fixed estimator keeps track
of the position of the transponder being interrogated in
Body coordinates. This allows for an optimal fusion of
the position fixes and the transponder position estimates,
without any need of transforming between Earth estimates
and Body coordinates.

The velocity of the origin of the Body frame with respect
to Earth represented in Body-fixed coordinates, is related
to the same quantity in Earth-fixed coordinates by

By =RTEy (9)
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Taking the time-derivative of (9) yields

By = RTEv + RTEY (10)

Using the rotation matrix kinematics (1) and Earth veloc-
ity kinematics in (6) yields
By =P agp + RTPg — [wx]" v (11)
The position of the transponder on Body frame is given
by
Pp, = RT(Ept = p) (12)
where p, is the transponder position in Earth coordi-

nates, and Fp is the position of the origin of the Body
frame in Earth coordinates.

Taking the time-derivative of (12) yields
Ppr=R"("p =" p) + R"("p. - p)
Assuming that the transponder is fixed on Earth coordi-

nates (e.g. moored to the sea bottom), thus £p, = 0, and
using the rotation matrix kinematics (1) comes
B

(13)

. B

pe = —lwx]"p v (14)
The discrete-time solutions for the continuous rigid body
dynamics are obtained using an implicit trapezoidal inte-
grator, i.e. second order Adams-Moulton Method (Hairer

et al. [1993])

B
gor="Sagpy + Rng — [wix]” Vi

B B

Ty,
Vi="Vi_1+ = (Gor + Jor-1)

2

dpk = BVk - [ka]B Ptk

Tk
Bptk = Bpt k—1 T o (9pk + Ipr—1)

where T} is the sampling interval of the inertial sensors,
and the subscript k denotes the sample time index of
the estimates and sensor samples. Notice that as it is
an implicit algorithm without a closed-form solution, a
numeric technique like the Fixed-Point method should be
executed in each integration step. Interestingly enough,
preliminary assessment tests in a simulation environment
showed that the short-term numerical precision of this in-
tegration system is equivalent to the high-precision inertial
algorithm presented previously.

The Body velocity and position errors are defined similarly
to the Earth-fixed case yielding

B

ov =v-Bv  op=p -Pp, (15)

A first-order perturbation analysis of the continuous kine-
matics of the Body-fixed system, using the errors defined
in (15), then leads to the error model given by
6:p = —|wx]ép — v — [Bptx} ob,, + [Bptx] ny,
§v = — [wx]ov+R" [Pgx] 6 — 6b,
—[Pvx] by, + [Pvx]|n, +n,

(16)

2.4 Bias compensation
The accelerometer and rate gyro bias terms are expressed
in the Body frame and modeled in the EKF by

(Sbw = -1, , 5ba = —1y, (17)

and are linearly compensated in the INS correction rou-
tines using

bik:b;k_éﬁakVbjk:b;k_(sBWk



2.5 USBL positioning system and aiding

The USBL sensor consists of a small and compact array
of acoustic transducers that allows for the computation
of a transponder position in the vehicle coordinate frame,
based on the travel time of acoustic signals emitted by
the transponder. The measurements provided by these
systems have very low update rates (typically below 1
Hz) imposed by physical limitations and mission specific
constraints (velocity of acoustic waves in the water, multi-
path phenomena, and other disturbances), with a perfor-
mance that degrades as the transponder/USBL distance
increases.

The measurement of travel time is obtained from the
round trip travel time of the acoustic signals between the
USBL array and the transponder. Taking into account the
quantization performed by the acoustic system, the travel
time measurements for receiver i are given by

t, +e.
t, =T,
- 7]

where t; is the nominal travel time, €. represents the
common mode noise for transponder j (common to all
receivers - includes transponder-receiver relative motion
time-scaling effects and errors in sound propagation veloc-
ity), Ts is the acoustic sampling period and [-] represents
the mathematical round operator. The travel time mea-
surements are considered to be approximately described

by _

t, =1, +mn, (19)
where 7, represents the measurement noise for receiver i
(corresponds to the differential quantization error induced
by the acoustic system sampling frequency and the digital
implementation of the detection algorithms).

(18)

The travel time from the transponder to each receiver
on the USBL array can be expressed by the following
expressions

ti=1"p. — p:ll/v, = "P. —P—R"P: /v, (20)

=P = P l/v, (21)
where Fp, and Pp, are the positions of receiver i,
respectively, in Earth and Body coordinate frames, “p,
is the known position of the transponder in Earth coordi-
nate frame, and v, represents the acoustic waves velocity
underwater, assumed constant and known.

Using the approximation for the attitude error (4) and the
position error definition (7) in (20) yields (see Morgado
et al. [2006])

t.~|"p. —p+0p

—R"p,, — [R"D,, x| 6A|l/v, (22)
which are integrated into the Earth-fixed EKF as obser-
vations for each receiver by linearizing ¢, about the filter
state space variables and the INS estimated quantities. In
this case dp represents the position error define in (7) and
O represents the attitude error defined in (4).

The Body-fixed EKF linearizes its observations directly
from (21)
ti = ||Bpt - 6p - Bf)m /Up (23)

where Jp represents now the Body-fixed position error
defined in (15).

3. THE POSTERIOR CRAMER-RAO BOUND

The Posterior Cramér-Rao Bound (PCRB) arises as a
valuable analysis tool to assess the performance of dy-

23

namical estimators. It is also suitable for non-linear non-
stationary dynamical systems as is the case of the work
presented herein. The solution proposed in Van Trees
[1968], did not allow for an efficient computation of the
bound. A recursive method for an efficient computation
of the PCRB for the discrete-time case was presented
in Tichavsky et al. [1998]. Readers not familiarized with
the theory beyond the PCRB should follow the review
presented in Tichavsky et al. [1998] and references therein.

Consider the general form for the process and observation
models
fk) (Xk, Wk?)
zi, = hy, (Xk, Vi)
where xj, is the system state at sample time k, {z} is
the set of available measurements, {wy} and {v} are
independent white processes, and fi, and hj are possibly
non-linear non-stationary functions.

Xk+1

f (24)

Let X; be any estimate of the true state vector of the
process given by (24).

Since we are interested in the class of unbiased estimators
for the state vector, we have the following inequality for
the covariance of the estimation error

Pe= B { % — i) [ —xl"} > 7!

where Jj, is the posterior Fisher Information Matrix (FIM)
defined as

(25)

Je = E{~Vx, VL logp(xy,zx)} (26)

where p(xy, zx) is the joint probability density function of
the state vector and observations throughout the full ex-
tent of the trajectory of the underlying dynamical system.

Tichavsky et al. [1998] show that the FIM J; can be
efficiently computed using the following recursion

Jer1 = Di? = D' (Ji + Dlil)il Dy? (27)
where
D' = Ep(xplzns) {— Vi Vi 108 p(xk11,%1)} - (28)
D? = Epxiialznin) {—ka Vzkﬂ Ing(XkJrl’Xk)}
- 0" 29
Di? = Eprsalzni) {_kaﬂvzkﬂ log (X1, Xk)}

T
+ Ep(xk+1|zk+l) {_vXk+1vxk+1 logp(zk+17 Xk+1)}30)
and the recursion is initialized with
Jo = E{~Vx,Vx, logp(xo) } (31)
In order to compute the terms (28-30), the expected value
operator Epx, ,,|z,,,){""*} needs to be evaluated. The
computational complexity of these expectations depends
entirely on the structure of the underlying process and
observation models, and involves solving integral terms
that, in general, do not have closed-form solutions, neither
in the particular case of the estimators presented herein.
As suggested in Simandl et al. [2001], the terms can be
estimated using Monte-Carlo simulations and replacing
the expected values by the sample mean of the realizations,
e.g. the term (28) is computed as
1M
D]}‘-l = M Z —kavz:k logp(Xk+1, Xk) |xk:Xk(j) (32)
j=1
where {x;(j)}_, is the jth realization of the state tra-

jectory, j = 1,2,..., M, and M is the number of Monte-
Carlo realizations. As expected, as M increases the quality



of the Monte-Carlo estimates improve, however there is no
rule of thumb on selecting an M that guarantees that the
estimates will be satisfactory.

In the scope of the work presented herein, we restrict
the PCRB evaluation to the discrete-time Additive White
Gaussian Noise (AWGN) case in which comes for the
process and observation models

Xpy1 = fi (xx) + Wy

z, = hy (Xk) + Vi

where now xj, represents the discretized errors of the navi-

gation systems at sample time k, as presented in Section 2,

{wy} is the process equivalent AWGN, {v}} is the mea-

surement equivalent AWGN, {z;} is the set of available

measurements which are related to the state vector by the

non-linear non-stationary observation function hy, and fj
models the discretized navigation system error model.

In this framework, the logarithmic terms of the PCRB
recursion can be written as

(33)

—log p(Xp41,%xk) = c1+

1 _
5[Xk+1 — £, (x1)]" QX1 — Fi (x1)]
—log p(Zk+1,Xk41) = C2+

1

i[Zk—H — hk+1 (X]H_l)]TR]:il[Zk-&-l - hk+1 (Xk+1)](35)

where ¢; and ¢ are constants, Qy is the discrete equivalent
process AWGN covariance matrix, and Ry is the discrete
equivalent observation AWGN covariance matrix.

Thus, it can be easily derived for the terms (28-30)

(34)

DI = B {FT (x)Q; ‘Fulxi)) (36)
DI = —E{Fl(xi)} Q)" (37)
DP=Q;' +E {H£+1(Xk+1)Rl:i1Hk+1(Xk+1)} (38)

where

Fr(xk) = [V, 1" (39)
Hy 1 (Xp41) = [V by )" (40)

are the Jacobians of f;, and hyq, respectively, evaluated
at their true values.

To correctly compute the PCRB for specific navigation
systems in analysis herein, the numerical integration algo-
rithms are executed in a direct-feedback setting without
the EKF in the loop, for M Monte-Carlo realizations of
the inertial sensors AWGN. In each integration step the
errors that arise from the inertial algorithms are recorded
for posterior evaluation of the PCRB and corrected in the
correction routines maintaining the linearization assump-
tions valid. Using this setup the evaluated PCRB assesses
the attainable performance of any estimator that is placed
in the direct-feedback loop.

4. SIMULATION RESULTS

The overall navigation system performance was assessed
in simulation. The USBL array is composed of five hy-
drophones installed on the vehicle, for instance on the nose
cone, according to the configuration depicted in Fig. 3. The
maximum distance between the receivers is 20 cm, which
are mounted on a non coplanar configuration. The pinger
on the vehicle interrogates the transponder every second,
leaving enough time after the reception of the reply for
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disturbance phenomena like multi-path to fadeout on the
channel.

The Time-Of-Arrival (TOA) of the acoustic waves arriving
at the receivers are considered to be disturbed by zero
mean Additive White Gaussian Noise (AWGN) with a
variance of (2500us)? prior to the quantization procedure
(note that this AWGN is the same for all receivers and
that the differential disturbance is induced by the quanti-
zation). The acoustic quantization was performed with a
sampling frequency of 400 kHz.

z[m]

o1 o
y[m] x[m]

Fig. 3. Receivers installation geometry

The INS provides measurements of the position, veloc-
ity and attitude with a frequency of 50 Hz. The white
Gaussian noise and bias characteristics of the sensors are
presented in Table 1. A magnetometer is also used in the
proposed solutions, as presented in Morgado et al. [2006],
yielding attitude estimation improvements. The noise and
bias characteristics used in the simulations are inspired
on the Crossbow CXL10TG3 triaxial accelerometer, the
Crossbow CXM113 triaxial magnetometer, and on the
Silicon Sensing Systems CRS03 triaxial rate gyro.

Table 1. Sensor characteristics

Sensor Bias Standard Deviation - ¢
Rate gyro 5°/s 0.05 °/s
Accelerometer 12 mg 0.6 mg
Magnetometer | (Calibrated) 60 uG

The performance of both estimators is assessed resorting
to Monte-Carlo simulations over the same trajectory and
the same set of noise realizations. The PCRB of both
systems is also computed using 500 runs of Monte-Carlo
simulations as described in Sec. 3. In the results presented
herein, the output of the Body-fixed estimator is converted
to the same representation of the Earth-fixed estimator
and vice-versa for performance comparison purposes.

The vehicle describes a path composed of several tight
curves, as illustrated in Fig. 4, in order to achieve high an-
gular velocities and to fully extent the differences between
the two models. All inertial sensors have an initial bias
misalignment of 1/3 on all axis. The acoustic transponder
is placed 200 meters away, in the x coordinate, from the
initial position of the vehicle.

The Root-Mean-Square (RMS) error in position of both
systems, based on a Monte-Carlo simulation of 100 runs,
is plotted in Fig. 5 and represented in Earth-fixed coordi-
nates. This plot also displays the PCRB of the Earth-fixed
system and the covariance estimate of the filter designed
in Earth-fixed coordinates. An analogous plot is presented
in Fig. 6 with a view from Body-fixed coordinate frame.

Surprisingly enough, as it can be seen from the figures, the
performance of the estimators designed in the two differ-
ent coordinates, Earth-fixed and Body-fixed, is equivalent
across representation frames for this class of systems. In
fact, the black line in the graphs that represents the Earth-
fixed estimator output error is not distinguishable from the
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Fig. 6. Position RMS error Body-fixed coordinate frame

blue one because of this performance equivalence. From
an analysis of the results it becomes also clear that, in the
conditions presented herein, the estimators perform very
close to the lower bound provided by the PCRB in both
coordinate frames. After an initial transient due to the
bias misalignment in the inertial sensors it can be seen
that the filter estimates converge to the PCRB along the
described trajectory. Comparing the estimated covariance
of the EKF with the RMS of the position error it can also
be seen that the filters are as expected coherent.
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5. CONCLUSIONS AND FUTURE WORK

The work presented in this paper addressed the perfor-
mance analysis of USBL aided INS’s and the methodolo-
gies that can be used to optimally design these class of
systems on different coordinate frames, in particular on
Earth-fixed and on Body-fixed coordinate frames. The per-
formance of the navigation systems designed in these two
coordinate frames was compared in simulation resorting to
Monte-Carlo simulations and shown to be equivalent. The
results presented herein also revealed that the performance
of both systems is close to the lower bound provided by the
PCRB. Future work on this subject will have its main focus
on the implementation and field validation of the proposed

techniques on board the underwater vehicles operated by
ISR.
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