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SUMMARY

We present a non-trivial case study designed to highlight some of the practical issues that arise when
using mixed-� or complex-� robust synthesis methodologies. By considering a multi-input multi-output
three-cart mass–spring–dashpot (MSD) with uncertain parameters and dynamics, it is demonstrated that
optimized performance (disturbance-rejection) is reduced as the level of uncertainty in one or two real
parameters is increased. Comparisons are made (a) in the frequency domain, (b) by RMS values of key
signals and (c) in time-domain simulations. The mixed-� controllers designed are shown to yield superior
performance as compared with the classical complex-� design. The singular value decomposition analysis
shows the directionality changes resulting from different uncertainty levels and from the use of different
frequency weights. The nominal and marginal stability regions of the closed-loop system are studied
and discussed, illustrating how stability margins can be extended at the cost of reducing performance.
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1. INTRODUCTION

All linear time-invariant (LTI) models of real dynamic systems are subject to uncertainty. For each
LTI model, we must take into account both unmodeled dynamics and uncertain real parameters, as
well as the characteristics of unmeasurable exogenous plant disturbances and sensor noises. The
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design of a multi-input multi-output (MIMO) dynamic compensator, and of the resulting robust
feedback control system, must possess guarantees of both stability- and performance-robustness
with respect to the explicit performance specifications posed by the control system designer.

Fortunately, in the past decade or so, the mixed-� design methodology [1, 2] and MATLAB
software [3], utilizing the so-called D,G-K iteration, have been developed that can indeed be used
to design robust MIMO feedback control systems with the requisite stability- and performance-
robustness guarantees. However, there is a scarcity of detailed complex MIMO numerical studies
that demonstrate the very important tradeoffs between performance and uncertainty. One of the
possible reasons is that the current commercial version of the Robust Toolbox [3] in MATLAB
does not fully implement the complete mixed-� compensator design process; it uses the complex-�
and D-K iteration to design the robust compensators.

In this paper, we use a two-input two-output (TITO) mass–spring–dashpot (MSD) test example
to illustrate these key performance vs uncertainty tradeoffs. This system may appear very simple
and academic; however, it has been widely adopted in benchmark problems to highlight issues in
robust control design, see [4] and references therein for a list of robust control studies using the
MSD framework. The MSD dynamics are commonly used in seismic and vibration models [5–9],
automotive suspension systems [10–13], flexible space structures [14–19], among others.

We have used a ‘beta’ version of the mixed-� software (provided to us by Prof. Gary Balas of
the University of Minnesota), which fully implements the mixed-� D,G-K iteration leading to the
best possible robust compensator. The problem of synthesizing a controller with existing control
theory and computational tools, which is (optimally) robust to structured mixed uncertainty is
very difficult, since the formulated D,G-K optimization problem is not convex. Because of this
non-convexity, in our studies, we used a variety of initial conditions in order to avoid finding a
local minimum. The complex-� synthesis procedure, however, has been successfully applied to a
large number of engineering problems (see, for example, [15]). The mixed-� synthesis problem
extends the above procedure to the mixed real/complex uncertainties case, by exploiting some
new analysis tools recently developed for the mixed-� upper bound [20].

Loosely speaking, the mixed-� compensator design process ‘detunes’ an optimal H∞ compen-
sator, designed for the nominal plant, to hedge for the uncertain real parameters and the inevitable
unmodeled dynamics. The greater the parametric uncertainty, the smaller the guaranteed perfor-
mance. In this study, we shall quantify the deterioration of disturbance-rejection as the parametric
uncertainty increases. Of course, since we deal with a MIMO design, ‘directional properties’
quantified by the singular value decomposition (SVD) are also important, which illustrate the
strong interactions of the subsystems. A similar study [21] examined similar tradeoffs for a simpler
single-input single-output MSD example.

In summary, the purpose of this quasi-tutorial paper is to provide guidance for analysis and
concrete results related to the performance tradeoffs that are always present in MIMO feedback
designs with the guaranteed stability- and performance-robustness. In particular, we discuss and
evaluate the following key engineering design issues:

1. Com pensators that are designed with the current commercial version of the MATLAB Robust
Toolbox [3], which employs the (complex-�) D-K iteration for compensator design, are
quite conservative and yield inferior disturbance-rejection performance compared with the
compensators designed by the mixed-� software that implements the full D,G-K iteration.

2. In robust MIMO feedback designs, for fixed performance weights, changes in the level
of uncertainty associated with the real parameters can have a significant impact upon the
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‘directional properties’ of the closed-loop system. Of course, these can be analyzed and
evaluated by the SVD methodology.

3. In robust MIMO feedback designs with fixed uncertainty for the real parameters, designer-
imposed preferences for relative performance associated with different signals will also have
a significant impact upon the ‘directional properties’ of the closed-loop system. Again, these
can be analyzed and evaluated by the SVD methodology.

4. Examine and determine the actual closed-loop stability regions for different types of ‘legal’
unmodeled dynamics. These can lead to some unexpected behavior.

This paper is organized as follows. In Section 2, we discuss the MSD dynamics, its uncer-
tain real parameters, unmodeled dynamics and present the open-loop frequency-domain analysis.
Section 3 presents the performance-robustness specifications for controller synthesis, modeled using
frequency-domain weights, and describes the search method to optimize performance given the
specifications. We define two cases, one involving a single uncertain parameter, a spring stiffness,
and another that, in addition, involves an uncertain mass. In Section 4, we discuss the charac-
teristics of the robust compensators, obtained by the mixed-� method, in terms of performance.
The performance deterioration when we add another uncertain real parameter is quantified by the
performance weights, disturbance-rejection and output RMS tables. The conservativeness of the
compensator designed by the complex-� method that uses only the D-K iteration with respect to
that obtained by the D,G-K iteration is also demonstrated. Section 5 presents the frequency-domain
analysis of the robust compensators. The tradeoffs in terms of disturbance-rejection SVD plots are
presented and the changes in the directionality of the system obtained by varying the performance
weights are discussed. In Section 6, we present time transients that illustrate the deterioration in
disturbance-rejection as the parametric uncertainty increases. In Section 7, we study how the actual
closed-loop stability regions change as a function of using different ‘legal’ unmodeled dynamics
and discuss the resultant changes in disturbance-rejection in the frequency domain. Section 8
presents some brief conclusions.

2. PLANT MODEL

In this work, the MSD system depicted in Figure 1 is analyzed. The nominal system is composed by
three masses, denoted by m1, m2 and m3, interconnected by elastic springs and dashpots elements,
whose stiffness and damping coefficients are denoted by k1,k2,k3 and b1,b2,b3, respectively.

Figure 1. The two-input two-output mass–spring–dashpot (MSD) system.
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The control inputs u1 and u2 are applied to masses m1 and m3, respectively, and are affected by
unmodeled actuator dynamics, which (for the sake of exposition) we approximate by an unknown
bounded pure time delay in each control channel.

Position sensors y1 and y2, corrupted by additive measurement noises �1 and �2, are located
on masses m2 and m3. The performance outputs z1 and z2 are defined as the positions of masses
m2 and m3, and the control objective is to minimize their displacements from their equilibrium
positions, i.e. disturbance-rejection. From the system configuration, it is immediate that control u1
is non-collocated because the performance specifications are imposed on z1. The two disturbance
forces d1 and d2 act on the same masses where the performance outputs are defined.

2.1. System dynamics

Based on Newton’s laws, the MSD plant dynamics are derived to yield

ẋ1(t) = v1(t)

ẋ2(t) = v2(t)

ẋ3(t) = v3(t)

v̇1(t) = −k1+k3
m1

x1(t)+ k1
m1

x2(t)+ k3
m1

x3(t)− b1+b3
m1

ẋ1(t)

+ b1
m1

ẋ2(t)+ b3
m1

ẋ3(t)+ 1

m1
u1(t)

v̇2(t) = k1
m2

x1(t)− k1+k2+k4
m2

x2(t)+ k4
m2

x3(t)+ b1
m2

ẋ1(t)

−b1+b2+b4
m2

ẋ2(t)+ b4
m2

ẋ3(t)+ 1

m2
d1(t)

v̇3(t) = k3
m3

x1(t)+ k4
m3

x2(t)− k3+k4
m3

x3(t)+ b3
m3

ẋ1(t)

+ b4
m3

ẋ2(t)− b3+b4
m3

ẋ3(t)+ 1

m3
u2(t)+ 1

m3
d2(t)

(1)

where mi , xi and vi are the mass, position and velocity of mass mi , indexed by i=1,2,3, and ui
and di are the forces and disturbances acting on the system, respectively.

The state performance outputs are defined for states x2(t) and x3(t), and the state and control
performance outputs specification are defined using frequency weights

z(s)=
[
x2(s)

x3(s)

]
, zpx (s)=Wpx (s)z(s), zpu(s)=Wpu(s)

[
u1(s)

u2(s)

]
(2)

where z(s) denotes the states associated with the performance outputs, zpx (s) and zpu(s) are
weighted performance outputs, and Wpx (s) and Wpu(s) are frequency-dependent performance
weights (which will be defined in the sequel). The performance state variables are monitored by
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position sensors corrupted by additive noise

y(t)=z(t)+
[

�w1(t)

�w2(t)

]

and �w(t) is the measurement noise.
The augmented state model is straightforward to obtain

ẋ(t) =Ax(t)+B1w(t)+B2u(t)

zp(t) =C1x(t)+D12u(t) (3)

y(t) =C2x(t)+D21w(t)+D22u(t)

where the state variables x(t), generalized noise w(t), control u(t), performance vector zp(t) and
measurements y(t) are given by

x(t) = [x1(t) x2(t) x3(t) v1(t) v2(t) v3(t)]T, zp(t)=[zpx (t)T zpu(t)T]T

w(t) = [d1(t) d2(t) �w1(t) �w2(t)]T, u(t)=[u1(t) u2(t)]T
(4)

The state dynamics matrix A is constant and described by

A=
[

0 I3×3

A21 A22

]
(5)

where submatrices A21 and A22 are related to the stiffness and damping coefficients, ki and bi ,
respectively, and are given by

A21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−k1+k3
m1

k1
m1

k3
m1

k1
m2

−k1+k2+k4
m2

k4
m2

k3
m3

k4
m3

−k3+k4
m3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−b1+b3
m1

b1
m1

b3
m1

b1
m2

−b1+b2+b4
m2

b4
m2

b3
m3

b4
m3

−b3+b4
m3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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The state model matrices are constant and given by

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

03×2 03×2

0 0

1

m2
0

0
1

m3

03×2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

03×2

1

m1
0

0 0

0
1

m3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

C1 =
[
0 1 0

0 0 1
02×3

]
, D12=02×2

C2 = C1, D21=[02×2 I2×2], D22=02×2

(7)

For this study, the known physical parameters are always fixed to the following values:

m1 = m2=1kg

b1 = b2=b3=b4=0.05Ns/m

k2 = 0.15N/m, k3=1.00N/m, k4=0.20N/m

(8)

2.2. Stability robustness

The non-ideal characteristics of the plant are described in order to synthesize a controller that is
robustly stable for a set of legal uncertainties and disturbances.

As shown in Figure 1, the plant includes two actuator unmodeled dynamics described by the
uncertain value in the control time delay, given by the delay times �1 and �2, and two uncertain real
parameters associated with the mass m3 and the elastic coefficient k1 values. These are modeled
according to the mixed �-synthesis framework, using either structured or unstructured uncertainty
models.

2.2.1. Real parameter uncertainty. The real uncertain parameters k1 and m3 are described by

k1 = k̄1+�k1 k̃1

m3 = m̄3+�m3m̃3

(9)

where k̄1 and m̄3 are the nominal values, k̃1 and m̃3 are the uncertainty ranges and the variables
�k1∈R and �m3∈R determine the structured uncertainties values and satisfy ‖�k1‖�1 and ‖�m3‖�1.

Rewriting the velocity dynamics (1) to show the elastic and damping coefficients, and omitting
the dependency on time for the sake of simplicity

v̇1 = 1

m1
[k1(x2−x1)+k3(x3−x1)+b1(ẋ2− ẋ1)+b3(ẋ3− ẋ1)+u1]

v̇2 = 1

m2
[k1(x1−x2)+k2(−x2)+k4(x3−x2)+b1(ẋ1−ẋ2)+b2(−ẋ2)+b4(ẋ3−ẋ2)+d1] (10)

v̇3 = 1

m3
[k3(x1−x3)+k4(x2−x3)+b3(ẋ1− ẋ3)+b4(ẋ2− ẋ3)+u2+d2]
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(a) (b)

Figure 2. Structured uncertainties lower loop LFTs: (a) spring stiffness k1 and (b) mass m3.

it follows that the k1 parameter appears in multiplicative form, while the m3 uncertainty occurs in
the quotient form 1/m3.

For the mixed-� synthesis modeling, the real uncertainties k1 and 1/m3 are regarded as scalar
gain blocks, hence, described by the lower-loop LFT transfer function [3] depicted in Figure 2
and given by

k1 = FL

([
k̄1 k̃1

1 0

]
,�k1

)

1

m3
= FL

(
1

m̄3

[
1 −m̃3

1 −m̃3

]
,�m3

) (11)

The real uncertain parameters values are

k1∈[0.25 1.75]N/m −→ k̄1=1N/m, k̃1=0.75N/m

m3∈[0.20 1.80]kg −→ m̄3=1kg, m̃3=0.8kg
(12)

2.2.2. Unmodeled dynamics. The uncertain control actuators, representing unmodeled dynamics,
are approximated by pure time delays, which are infinite-dimensional systems, so they cannot be
modeled by a finite number of state variables. Assuming that the time delays are neglected, the
resulting multiplicative error is

eM (s)=e−s�−1 (13)

The multiplicative error magnitude can be approximated by an upper bound high-pass transfer
function W�i (s) with a pole placed near the frequency �=�/�. For the �-synthesis methodology,
the magnitude and phase of the transfer function W�i (s) are shaped by a delta block ��i (s)∈C

that satisfies ‖��i (s)‖∞�1, which introduces a phase uncertainty in the range of ±180◦. The
corresponding block diagram is shown in Figure 3.

The control channel time-delay upper bounds are

�i�0.03s, i=1,2 (14)

hence, the W�i (s) transfer function pole is set near the maximum time-delay frequency

W�1(s)=W�2(s)=2.1
s

s+40
(15)
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Figure 3. Time-delay error model block diagram.

Figure 4. eM (s) upper bound, �i =0.03s, see Equation (15).

and the gain adjusts the upper bound magnitude to the eM (s) transfer function, as shown in
Figure 4. The frequency weight block is defined as

z�(s) = W�(s)u(s)

W�(s) =
[
W�1(s) 0

0 W�2(s)

]
(16)

The magnitudes of the transfer functions in (15) vs frequency, shown in Figure 4, define a class
of ‘legal’ complex-valued unmodeled dynamics. For the purposes of stability- and performance-
robustness, any complex-valued uncertainty bounded by the magnitudes of (15) represents a ‘legal’
set of unmodeled dynamics. This issue will be examined further in Section 7.

2.2.3. Plant disturbances. The plant disturbances are modeled as low-frequency colored noise
generated by a pre-whitening process

d(s) = Wd(s)n(s)

Wd(s) = �

s+�
I2×2

(17)

where �=2 rad/s is the corner frequency and �(s) is assumed to be a zero-mean, Gaussian white
noise, with unit intensity �=I2×2. This will allow us to carry out RMS tradeoffs in the sequel.
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The measurement noise hw(t) is assumed to be a zero-mean, Gaussian white noise given by

hw(s) = W�(s)h(s)

W�(s) =
⎡
⎣�1/2

11 0

0 �1/2
22

⎤
⎦ (18)

where �11=�22=10−6 and h(s) is a zero-mean, Gaussian white noise, with unit intensity.

2.3. Frequency-domain analysis

The maximum and minimum singular values of the disturbance and control to state perfor-
mance transfer functions, Tdz(s) and Tuz(s), respectively, are presented in Figures 5 and 6.
As expected by the physics of a MSD system, increasing the spring stiffness k1 or decreasing
the mass coefficient m3 will increase the system’s natural frequencies, and vice versa. Also
note that changes in the mass and spring values will change the ‘coupling’ between the two
subsystems. Of course, in this multivariable setting the coupling can be understood by the SVD
methodology.

Mass 3 value does not influence the disturbance to performance transfer function Tdz(s) MIMO
zeros, located at z1,2=−0.05± j1.41. By the definition of transfer function zero, when the d(s)
inputs and the initial conditions of the plant states correspond to the Tdz(s) zeros, mass 3 will
remain in a stationary position. Thus, using physical intuition it is easy to see that the value of
m3 does not influence the zero location. On the contrary, the stiffness coefficient k1 influences the
open-loop zeros, since it characterizes the dynamic coupling of masses 1 and 2.

The control to output transfer function Tuz(s) has no MIMO zeros because the control u1(t) acts
on mass 1 while the performance variable z1(t) is defined on mass 2, i.e. u1(t) is non-collocated.
Non-collocated control problems are more difficult (due to the absence of zeros).

(a) (b)

Figure 5. Open-loop disturbance d to performance output z singular values, Tdz : (a) varying k1, nominal
m3 and (b) nominal k1, varying m3.
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(a) (b)

Figure 6. Open-loop control to performance output z singular values, Tuz(s): (a) varying k1, nominal m3
and (b) nominal k1, varying m3.

More important, note that the open-loop dynamics amplify the low-frequency disturbance d(s),
which has most of its power for �<2 rad/s as defined in (17). The controller must shape the
directionality of the closed-loop system to filter out the disturbance effects in the performance
vector.

3. PERFORMANCE ROBUSTNESS

The performance-robustness specifications are introduced in the generalized plant, shown in
Figure 7, in the form of frequency weights. The performance outputs zpx (t) and zpu(t) represent
the state and control specifications, respectively, see (2).

The system performance weight is defined by the positions of masses 2 and 3, and implies good
disturbance-rejection at the frequency range, where the disturbance d(s) has most of its power

zpx (s) = Wpx (s)z(s)

Wpx (s) = Ap�

s+�

[
A1 0

0 A2

]
, �=2 rad/s

(19)

where the weights A1 and A2 shape the directionality of the system by penalizing the displacement
of m1 and m3, respectively. The Ap weight controls the best possible disturbance-rejection and is
iteratively maximized in the �-synthesis procedure.

The larger the Ap, the better the disturbance-rejection. Also note that in (19) we use the same
corner frequency � as in the disturbance dynamics (17). Thus, we are communicating to the
mathematics that we are interested in superior disturbance-rejection over the same frequency range
where the disturbances have most of their power.

We assume that control power is available at low frequencies but actuation is expensive at high
frequencies, thereby limiting the bandwidth of the closed-loop system. Towards this end, we shall
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Figure 7. Generalized plant.

use the following frequency weight on the control signals:

zpu(t) = Wpu(s)

[
u1(s)

u2(s)

]

Wpu(s) = 10(s+102)

s+106
I2×2

(20)

where the Bode plot of Wpu(s) :=[Wpu(s)]11=[Wpu(s)]22 is shown in Figure 8.
As described in [22], the performance-robustness specifications are satisfied by introducing an

additional performance delta block �p(s) in the �-synthesis methodology.
The mixed-� synthesis methodology is used to find the largest performance weight Ap for

superior disturbance-rejection for the MSD plant. The structured singular value � upper bound,
denoted by �̄, is found to monotonically increase with the performance weight Ap, as shown in
Figure 9. For sufficient significant purely complex blocks, the � value is continuous [22], which
is guaranteed by the unmodeled dynamics (time delay) and performance delta blocks.

The closed-loop performance is optimized by using the bisection search method to find the
largest Ap such that the norm of the smallest destabilizing structured uncertainty is greater than
unity [22], i.e. �̄<1. The algorithm parameters are:

• Ap, Ā p—Lower and upper bounds of the Ap search interval.

• 	A—Maximum length of the interval [Ap Āp], i.e. the accuracy of the optimal Ap.
• MU_ITER—Number of D-K/D,G-K iterations to determine an upper bound for �.
• MAX_TRIES—Number of different initializations for the D-K/D,G-K iterations.
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Figure 8. Control frequency-dependent weight Wpu(s), see Equation (20).

Figure 9. � upper bound �̄ vs performance weight Ap .

The �-synthesis performance optimization algorithm is run as follows:

1. Make Ap =( Ā p+Ap)/2 and ntry=1.
2. Set the initial conditions using a random seed. Run MU_ITER D-K/D,G-K iterations.
3. Select the smallest complex-�/mixed-� upper bound, �∗ =min{�̄1, . . . , �̄MU ITER}. If �∗>1

and ntry<MAX_TRIES, increment ntry and return to step 2.
4. If �∗<1, set Ap = Ap. Else, Ā p = Ap.

5. If Ā p−Ap<	A, set Ap = Ap and �=�∗, STOP. Else, return to step 1.
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The D-K and D,G-K iterations are run by the dgit and dgkit commands included in the
Robust Control Toolbox of Matlab 7.1 and in the beta version software kindly provided by Prof.
Gary Balas. This implementation of the D-K and D,G-K iterations leads to a robust controller [22],
and an optimization algorithm (that is a modified gradient descent method) is used to compute
the outputs of the D-K and D,G-K algorithms, namely, the � bounds and the sensitivity. In this
search-direction optimization method, an initial guess (search point) is selected from which the
algorithm will (hopefully) converge to the desired global minima. For the purpose of this study, we
have used a number of random search points and have chosen the one which achieves the lowest
minimum; we assume it is the global minimum.

The iteration parameters are defined as MU_ITER=40, MAX_TRIES=3, 	A=0.05, and the
maximum dynamical order of the D and G scaling matrices is defined as 60. The starting Ap and

Ā p parameters are defined according to the parametric uncertainty ranges k̃1 and m̃3.
In this study, the � compensator properties are studied by varying the generalized plant

parameters in terms of the stability- and performance-robustness specifications. We start with
a single parametric uncertainty on the spring stiffness k1 and analyze the effects of adding a
second parametric uncertainty on mass m3. Also, the parametric uncertainty ranges k̃1 and m̃3
are varied to quantify the effects of uncertainty on the closed-loop system performance and on its
frequency-domain properties.

The directionality of the controller is also studied by varying the performance weights A1 and
A2 in the performance output zpx (t), see (19),

• A1=1, A2=1 (nominal).
• A1=5, A2=1 (better control of mass 2 position).
• A1=1, A2=5 (better control of mass 3 position).

which will influence the characteristics of the controller with respect to the parametric uncertainties
and change the directional properties (dynamic coupling) of the closed-loop system.

4. PERFORMANCE RESULTS

In this section, the performance obtained by the �-synthesis methodology is discussed. The influence
of the number of uncertainties, the uncertainty level and the performance weight directionality in
performance-robustness is analyzed and quantified. Moreover, the robust compensators obtained
by the D-K and D,G-K iterations are compared to demonstrate the importance of modeling real
parametric uncertainties in the closed-loop performance and the performance advantage of the
D,G-K iterative scheme.

4.1. Single parameter uncertainty

The performance results for a single uncertainty in the spring stiffness �k1 , computed for the
worst-case performance disturbance, are shown in Table I using the complete mixed-� D,G-K
iteration. It is clear that smaller uncertainty ranges k̃1 yield larger performance weight Ap; hence,
we should expect better disturbance-rejection. The norm ‖‖ is the maximum singular value of the
disturbance-rejection at DC, i.e. �=0 rad/s; as we shall see it remains at about the same value at
low frequencies. The RMS errors assume white-noise signals as discussed in (17) and (18).
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Table I. D,G-K iteration mixed-� performance results (only k1 uncertain, A1=1, A2=1).

k̃1 Ap �̄ ‖T�z(0)‖ RMS(z1) RMS(z2) RMS(u1) RMS(u2)

0.75 23.28 0.999 3.51×10−2 1.40×10−2 3.51×10−2 51.61 1.94
0.50 63.79 0.997 1.44×10−2 1.04×10−2 2.27×10−2 50.39 2.22
0.25 134.93 0.999 7.18×10−3 7.80×10−3 8.24×10−3 85.91 1.27
≈0 223.25 0.999 4.27×10−3 7.63×10−3 1.22×10−2 87.74 2.30

Figure 10. Performance weight Ap vs uncertainty range k̃1 (only k1 uncertain).

The values of the maximized performance weight Ap are not linear with respect to increasing
uncertainty k̃1, as shown in Figure 10. As the spring uncertainty level k̃1 grows, the control problem
becomes harder and Ap tends to zero, indicating inferior disturbance-rejection. The guarantee of
performance robustness fades out as the plant dynamics become vaguely known, agreeing with
physical intuition.

The disturbance-rejection gain for low frequencies ‖T�z1(0)‖ decreases with increasing uncer-
tainty and is about 1/Ap, as expected. The RMS value of the performance output z(t) tends to
decrease, reflecting better performance robustness, whereas the control RMS tends to increase due
to higher compensator feedback gain for smaller uncertainties. Note that �-synthesis is based on
H∞ control theory; hence, the H2 norms of the performance output and the control signal are
not addressed in the controller design, and the H2 norm (i.e. RMS) trends cannot be precisely
established.

The performance-robustness results for asymmetric performance weights (A1=5, A2=1) and
(A2=1, A2=5) are shown in Tables II and III, respectively.

Examination of Tables I–III reveals the fact that the presence of non-collocated control makes
mass 2 position harder to control; hence, the performance specification associated with z1(t) is
more difficult to satisfy than that for z2(t). Consequently, the performance weight Ap is lower for
A1=5A2 than for A2=5A1, while the disturbance-rejection at low frequencies ‖T�z(0)‖ is higher
for A2=5A1 than for A1=5A2. The fact that for the same uncertainty range k̃1, ‖T�z(0)‖ is always
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Table II. D,G-K iteration mixed-� performance results (only k1 uncertain, A1=5, A2=1).

k̃1 Ap �̄ ‖T�z(0)‖ RMS(z1) RMS(z2) RMS(u1) RMS(u2)

0.75 4.93 0.999 1.01×10−1 1.35×10−2 7.58×10−2 50.98 1.61
0.50 12.71 0.999 4.77×10−2 9.56×10−3 3.81×10−2 80.76 1.23
0.25 26.04 0.999 2.32×10−2 7.98×10−3 2.35×10−2 123.37 1.27
≈0 45.60 0.999 1.06×10−2 7.51×10−3 2.60×10−2 78.51 1.94

Table III. D,G-K iteration mixed-� performance results (only k1 uncertain, A1=1, A2=5).

k̃1 Ap �̄ ‖T�z(0)‖ RMS(z1) RMS(z2) RMS(u1) RMS(u2)

0.75 13.43 0.999 2.22×10−2 2.11×10−2 2.42×10−2 90.72 1.65
0.50 39.25 0.997 1.42×10−2 1.31×10−2 1.73×10−2 63.96 2.22
0.25 88.40 0.997 8.56×10−3 1.03×10−2 3.66×10−3 55.73 1.27
≈0 135.85 0.999 6.91×10−3 1.10×10−2 5.52×10−3 55.32 2.25

Table IV. D,G-K iteration mixed-� performance weight Ap (k1,m3 uncertain, A1= A2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 15.27 42.79 47.19 62.40
0.50 18.95 57.44 127.18 204.12
0.20 20.90 62.85 130.92 216.15
≈0 22.98 63.90 134.56 221.62

higher for A1=5A2 than for any of the other two cases indicates that precisely controlling the
mass 2 position is a very hard control problem, and this observation is consistent with engineering
intuition.

4.2. Two real parameter uncertainties

In this case, the spring stiffness k1 and mass m3 are both considered to be real uncertain parameters.
The values of the performance weight Ap and disturbance-rejection for low-frequencies ‖T�z(0)‖
are illustrated in Tables IV and V, respectively.

The extra uncertainty in mass m3 degrades the performance of the closed-loop system, as
expected. Large uncertainty ranges k̃1 and m̃3 yield smaller values of the maximized performance
weight Ap as in the single uncertainty case. Interestingly enough, the Ap values for a very small
mass uncertainty range (m̄3≈0) are similar to those obtained in the single parametric uncertainty
case, see Tables IV and I.

The RMS values of the performance vector, presented in Tables VI and VII, tend to decrease
as the uncertainties ranges m̃3 and k̃1 decrease. The RMS value of control u1(t) shows a tendency
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Table V. D,G-K iteration mixed-� disturbance-rejection ‖T�z(0)‖ (k1,m3 uncertain, A1= A2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 6.42×10−2 2.30×10−2 1.78×10−2 1.59×10−2

0.50 4.94×10−2 1.70×10−2 7.71×10−3 4.76×10−3

0.20 4.06×10−2 1.52×10−2 7.41×10−3 4.42×10−3

≈0 3.61×10−2 1.46×10−2 7.05×10−3 4.33×10−3

Table VI. D,G-K iteration mixed-� performance output RMS(z1) (k1,m3 uncertain, A1= A2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 1.84×10−2 1.59×10−2 1.99×10−2 1.88×10−2

0.50 1.72×10−2 9.98×10−3 8.07×10−3 7.76×10−3

0.20 1.83×10−2 9.45×10−3 7.96×10−3 7.57×10−3

≈0 1.40×10−2 9.36×10−3 7.88×10−3 7.70×10−3

Table VII. D,G-K iteration mixed-� performance output RMS(z2) (k1,m3 uncertain, A1= A2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 5.39×10−2 2.53×10−2 2.20×10−2 1.94×10−2

0.50 4.55×10−2 2.44×10−2 1.48×10−2 1.26×10−2

0.20 3.27×10−2 1.91×10−2 1.29×10−2 1.26×10−2

≈0 2.47×10−2 2.05×10−2 1.54×10−2 9.70×10−3

to increase as the uncertainty decreases, see Table VIII(a). Thus, the control attains higher values
for improved performance.

As shown in Table VIII(b), the RMS value of the control input u2(t) also tends to increase as
k̃1 decreases. But the RMS value of the control input u2(t) tends to decrease as m̃3 decreases,
evidencing an opposite behavior. Physically, this characteristic of the control input u2(t) is related
to the fact that u2(t) is collocated with mass m3.

As evidenced in Tables IV and V and depicted in Figure 11(a), for A1= A2 the performance
weight Ap and the low-frequency disturbance-rejection ‖T�z(0)‖ are more influenced by the spring
stiffness uncertainty k̃1 than by the mass uncertainty m̃3. Physically, this reflects the importance of
the uncertainty k1 in the non-collocated control problem, where the control input u1(t)’s influence
on mass 2 position is channeled through the uncertain spring 1.

If the performance weights A1 and A2 are changed, the influence of parametric uncertainty on
performance is affected. The effects of the spring uncertainty k̃1 on performance are stronger for
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Table VIII. D,G-K iteration mixed-� control input RMS (k1,m3 uncertain,
A1= A2): (a) RMS (u1) and (b) RMS (u2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

(a) RMS(u1)
0.80 46.95 63.23 52.07 108.17
0.50 49.78 77.54 62.42 86.15
0.20 55.06 58.37 62.41 86.99
≈0 74.64 68.24 71.84 73.53

(b) RMS(u2)
0.80 1.37 1.51 1.71 1.47
0.50 1.74 1.76 1.86 1.93
0.20 1.68 1.67 1.70 1.98
≈0 1.17 1.87 2.02 2.18

Figure 11. Disturbance-rejection ‖T�z(0)‖ vs uncertainty range (k̃1, m̃3):
(a) A1= A2; (b) A1=5A2; and (c) A2=5A1.
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Table IX. D,G-K iteration mixed-� performance weight Ap (k1,m3 uncertain, A1=5A2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 4.28 12.43 26.07 41.67
0.50 4.71 12.96 27.01 45.81
0.20 4.74 13.01 27.06 46.37
≈0 4.77 13.05 27.10 46.45

Table X. D,G-K iteration mixed-� disturbance-rejection ‖T�z(0)‖ (k1,m3 uncertain, A1=5A2).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 2.04×10−1 7.25×10−2 3.56×10−2 2.33×10−2

0.50 1.64×10−1 6.32×10−2 3.13×10−2 2.08×10−2

0.20 1.54×10−1 5.61×10−2 2.88×10−2 1.98×10−2

≈0 1.13×10−1 4.53×10−2 2.77×10−2 1.85×10−2

Table XI. D,G-K iteration mixed-� performance weight Ap (k1,m3 uncertain, A2=5A1).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 4.85 11.63 13.75 15.87
0.50 9.47 30.96 64.39 84.45
0.20 13.81 41.09 90.51 135.89
≈0 14.63 43.02 99.26 153.03

Table XII. D,G-K iteration mixed-� disturbance-rejection ‖T�z(0)‖ (k1,m3 uncertain, A2=5A1).

k̃1

m̃3 0.75 0.50 0.25 ≈0

0.80 6.64×10−2 4.87×10−2 5.65×10−2 5.70×10−2

0.50 3.53×10−2 2.02×10−2 1.21×10−2 1.11×10−2

0.20 2.74×10−2 1.50×10−2 8.64×10−3 6.94×10−3

≈0 2.74×10−2 1.28×10−2 7.97×10−3 6.14×10−3

A1=5A2, as shown in Tables IX and X and Figure 11(b), whereas performance is more influenced
by mass m3 uncertainty for A2=5A1, as shown in Tables XI and XII and Figure 11(c).

Physically, the former case focuses on control of mass 2, which is performed partially through
spring k1, and the latter case concerns the control of mass 3, directly related to m3 uncertainty.
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Again, note that the low-frequency disturbance-rejection ‖T�z(0)‖ is worse for A1=5A2, since
the control of the position of mass 2 is a more difficult problem.

Next, we designed the robust compensator using the complex-� synthesis that uses the simpler
D-K iteration, i.e. the version in the current commercially available MATLAB software [3]. This
was done to expose the conservatism when one models real parameter errors with complex-valued
ones and to demonstrate the degradation in disturbance-rejection. This method is used to find the
best performance weight Ap such that �̄<1 for �k1 ∈C.

The results, shown in Tables XIII and XIV, show that the D-K iteration framework is very
conservative. From Tables XIII and XIV, we deduce that the mixed-� compensator (designed by
the full D,G-K iteration) yields a disturbance-rejection about three to five times better than the
purely complex-� compensator (designed by the simpler D-K iteration). This quantifies the fact
that representing real parametric uncertainties by a complex unit circle is a very conservative
approach. The results for the D-K and the D,G-K iterations are similar only when the uncertainty
range k̃1 is very small (k̃1≈0), which is of little interest since the parameter k1 is known.

The results of this section have demonstrated that:

• The level of disturbance-rejection is a function of the size and number of parametric uncertain-
ties. In general, the larger the parametric uncertainties, the worse the level of the disturbance-
rejection at low frequencies.

• The compensators derived by the complex-� D-K iterations assumptions are very conservative
(by a factor of 3–5) when we have significant real parametric uncertainties. The mixed-�,
utilizing the D,G-K iteration, synthesis methodology is highly recommended for robust control
synthesis with significant real parametric uncertainties, a most common occurrence.

• The directionality introduced by the performance weights A1 and A2 impacts the characteris-
tics of the control design. The specific influence of a parametric uncertainty on performance
depends on the performance weights directionality.

Table XIII. D-K iteration (complex-�) vs D,G-K iteration (mixed-�) performance (k1
uncertain, k̃1=0.75).

D-K iteration D,G-K iteration

Ap ‖T�z(0)‖ Ap ‖T�z(0)‖
A1=1, A2=1 5.31 0.123 23.28 3.51×10−2

A1=5, A2=1 1.15 0.279 4.93 0.101
A1=1, A2=5 5.37 8.70×10−2 13.43 2.22×10−2

Table XIV. D-K iteration (complex-�) vs D,G-K iteration (mixed-�) performance (k1,
m3 uncertain, k̃1=0.75, m̃3=0.80).

D-K iteration D,G-K iteration

Ap ‖T�z(0)‖ Ap ‖T�z(0)‖
A1=1, A2=1 4.28 0.204 15.27 6.42×10−2

A1=5, A2=1 4.43 0.225 4.28 0.201
A1=1, A2=5 4.20 0.236 4.85 6.64×10−2
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5. FREQUENCY-DOMAIN ANALYSIS

In this section, the frequency-domain characteristics of the mixed-� compensator are analyzed.
The relationship of the frequency weights with the closed-loop transfer functions is illustrated, in
particular by focusing upon the disturbance-rejection at the low-frequency region. The directionality
of the system is clearly depicted in the SVD plots and in the maximum and minimum singular
values ratio. The mixed- and complex-� synthesis disturbance-rejection and compensator transfer
functions are shown to demonstrate the enhanced performance robustness obtained by using the
D,G-K iterations.

The disturbance to performance output maximum singular values of the closed-loop transfer
function T�z(s) are depicted in Figure 12(a). In the frequency domain, the closed-loop transfer
function yields good disturbance-rejection at the desired frequencies�∈[0 2] rad/s, where d(s) has
more power according to the performance-robustness specifications. Smaller uncertainty ranges k̃1
allow for better disturbance-rejection, confirming the summary results previously shown in Table I.

(a) (b)

(c)

Figure 12. Maximum singular value (only k1 uncertain, A1= A2): (a) T�z(s); (b) T�u(s); and (c) K (s).
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Enhancing the low-frequency disturbance-rejection increases the closed-loop bandwidth; hence,
performance degrades at high frequencies. Considering that the d(s) is modeled by low-pass
frequency weights (17), the �-synthesis methodology finds the best controller for the frequencies
where the disturbance has more power. This approach eventually increases the gains at the remaining
frequency regions—a fact well known in H∞ theory [23]—but if the disturbance is correctly
modeled, the additional closed-loop bandwidth does not result in actual performance degradation.
Simulation results for generic disturbances that confirm this fact are presented in the following
section.

The disturbance-rejection characteristics are also shown in the disturbance to control T�u(s)
transfer function, see Figure 12(b). Reducing the uncertainty k̃1 yields slightly larger controls at
low frequencies �∈[0 2] rad/s.

The tradeoff between uncertainty and performance robustness is clear in the singular-value Bode
plot of the compensator transfer function K (s) presented in Figure 12(c). The compensator gains
are larger for smaller uncertainties k̃1, and according to the performance control weights Wpu(s)

(a) (b)

(c)

Figure 13. Maximum singular value (only k1 uncertain, A1=5A2): (a) T�z(s); (b) T�u(s); and (c) K (s).
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(a) (b)

(c)

Figure 14. Maximum singular value (only k1 uncertain, A2=5A1): (a) T�z(s); (b) T�u(s); and (c) K (s).

defined in (20), the control has most of its power located at the frequency range �∈[0 106] rad/s.
The poles located near the frequency �=102 rad/s cut the compensator bandwidth, where the
zero of Wpu(s) starts to penalize the control signal, to finally attenuate the control signal
power for �>106 rad/s. The control gain in Figure 12(c) is large because it translates posi-
tion error to force, but the order of magnitude of the control inputs and the disturbances is
the same, as it will be illustrated by the results of the time simulations. Also, the control
gain can be shaped to satisfy control input limitations, at the price of degrading disturbance-
rejection.

The maximum singular value plots for A1=5A2 and A2=5A1 bear the same characteristics
described for A1= A2, see Figures 13 and 14. The closed-loop directionality is illustrated properly
by the SVD plots, presented in the sequel.

For the two uncertain parameter case, the stability- and performance-robustness charac-
teristics described in the single uncertainty case also apply. In particular, Figure 15 depicts
the disturbance-rejection and compensator transfer function for fixed k̃1 and varying m̃3.
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(a) (b)

(c)

Figure 15. Maximum singular value (k1,m3 uncertain, k̃1=0.75, A1= A2):
(a) T�z(s); (b) T�u(s); and (c) K (s).

The directionality of the system can be analyzed from Figure 16. The gap between the maximum
and minimum singular values changes significantly as we change the uncertainty levels. This
implies that the directional properties (dynamic coupling) of the robust multivariable design are
significantly influenced by the parameter uncertainty levels. The performance vectors z1(t) and
z2(t) tend to be equally influenced by the disturbance when the performance weights are similar
(A1= A2), see Figure 16(d). Figure 16 also shows that changes in system performance robustness
are more influenced by the elastic coefficient uncertainty k̃1 than by the mass 3 uncertainty m̃3,
when A1= A2.

In the case where the frequency weights introduce additional directionality, A1=5A2 or A2=
5A1, the maximum singular value is approximately five times the value of the minimum singular
value, as shown in Figures 17 and 18.

Note that in the case A1=5A2, the closed-loop disturbance-rejection SVD plot with uncertainty
in m3 and k̃1≈0 is very similar to the SVD plot with m̃3≈0, k̃1≈0, depicted in Figures 17(b)
and (d), respectively. Also, reducing the mass m3 uncertainty has little impact on the T�z(s)
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(a) (b)

(c) (d)

Figure 16. Closed-loop T�z(s) singular values (k1,m3 uncertain, A1= A2): (a) m̃3=0.80, k̃1=0.75;
(b) m̃3=0.80, k̃1≈0; (c) m̃3≈0, k̃1=0.75; and (d) m̃3≈0, k̃1≈0.

directionality for A1=5A2; compare Figures 17(a) with (c). This indicates that the spring stiffness
k1 is an important parameter in the control of mass 2 position. The converse occurs with mass m3
in the control of mass 3, as illustrated by Figure 18, which illustrates the existing subsystems of
the MSD plant.

The superiority of the mixed-� synthesis over the complex-� one is evident in Figures 19
and 20. The disturbance-rejection and the controller transfer functions are more conservative for
the compensator obtained by the complex-� method using the D-K iterations.

The frequency-domain results are in agreement with the performance results previously
presented, and show that:

• The closed-loop plant indeed has superior disturbance-rejection over the frequency band where
the plant disturbance d(s) has more power, so as to meet the designer-posed performance
specifications.
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Figure 17. Closed-loop T�z(s) singular values (k1,m3 uncertain, A1=5A2): (a) m̃3=0.80, k̃1=0.75;
(b) m̃3=0.80, k̃1≈0; (c) m̃3≈0, k̃1=0.75; and (d) m̃3≈0, k̃1≈0.

• The disturbance-rejection obtained by the D,G-K iterations is clearly superior than the one
obtained by the D-K iterations in the low frequency, i.e. where d(s) has more power. These
results are in agreement with those presented for performance robustness, which shows
the importance of mixed-� design to obtain better performance robustness at the relevant
frequency regions, as compared with the complex-� design.

• The directionality of the performance frequency weights shows that k1 is more impor-
tant in the control of mass 2, whereas m3 is more relevant for the control of mass 3.
The directionality properties (dynamic coupling) change significantly as the level of para-
metric uncertainty changes. The influence of the performance frequency weights A1 and
A2 on the guaranteed stability- and performance-robustness also illustrates the interactions
of the subsystems, from control inputs u1 and u2 to the position of masses 2 and 3,
respectively.
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(a) (b)

(c) (d)

Figure 18. Closed-loop T�z(s) singular values (k1,m3 uncertain, A2=5A1): (a) m̃3=0.80, k̃1=0.75;
(b) m̃3=0.80, k̃1≈0; (c) m̃3≈0, k̃1=0.75; and (d) m̃3≈0, k̃1≈0.

• The maximum and minimum singular values ratio, and hence the closed-loop directionality,
is also determined by the performance weights A1 and A2 ratio, focusing the control problem
on the mass 2 or 3 position errors, respectively.

6. TIME-DOMAIN SIMULATIONS

In this section, we present some time simulations for the mixed-� designs. First, in order to obtain
a precise feeling of the directionality properties, we use the SVD to generate the ‘worst-case’
disturbances associated with the maximum singular value direction. Next a filtered square-wave
disturbance is applied to the system to analyze the dynamics of the plant output’s time response.

The time-domain simulations for sinusoidal disturbances corresponding to maximum disturbance
amplification are presented in Figure 21. The ‘worst-case’ unit disturbances d1(t) and d2(t) act in
phase with positions x2(t) and x3(t). The control signals u1(t) and u2(t) have a 180◦ phase shift
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(a) (b)

(c)

Figure 19. D-K iteration (complex-�) vs D,G-K iteration (mixed-�) maximum singular value (only k1
uncertain, k̃1=0.75, A1= A2): (a) T�z(s); (b) T�u(s); and (c) K (s).

with respect to the disturbances to counteract their effect, as expected, and the order of magnitude
of the control input and the disturbances is the same. For A1=5A2, the z2(t) performance output
amplitude is larger than z1(t), since the first one is cheaper than the latter, see Figure 21(b). The
converse occurs for A2=5A1 as shown in Figure 21(c). These plots illustrate in a concrete way
how the directionality properties change.

The generalized plant, shown in Figure 7, is simulated to study the effects of unmodeled state
disturbance in the system. It is assumed that the real control delay is �1=�2=5×10−3 s and that
the uncertain parameters are given by the nominal values k1= k̄1,m3= m̄3.

Applying a filtered square-wave signal n(t) produces disturbance d(t) depicted in Figure 22 and
yields the mass displacements shown in Figure 23. This particular disturbance was selected so that
it would ‘sweep’ across the different disturbance directions. Clearly, the smaller the uncertainty,
the better the time response of the system, i.e the better the disturbance-rejection. The control input
u1(t) counteracts the effects of d1(t), whereas u2(t) is influenced by the sign of (d1(t)−d2(t)),
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Figure 20. D-K iteration (complex-�) vs D,G-K iteration (mixed-�) maximum singular value (k1,m3

uncertain, k̃1=0.75, m̃3=0.8, A1= A2): (a) T�z(s); (b) T�u(s); and (c) K (s).

as depicted in Figure 24. The time-domain results are in agreement with the frequency-domain
results discussed in Section 5.

7. STABILITY REGIONS FOR LEGAL UNMODELED DYNAMICS

In this section, the actual closed-loop stability of the system is studied and compared with the
stability- and performance-robustness region guaranteed by the mixed-� synthesis. Performance-
robustness specifications are neglected to study how closed-loop stability is extended outside the
nominal stability and performance bounds (�k1,�m3)<1. The difference between the nominal and
the actual stability regions is referred to as the stability margin.

The technique to model the pure time-delay error eM (s) using a high-pass frequency weight
W�(s), depicted in Figure 4, is a common but conservative approach. As we have remarked before,
the error magnitude envelope ‖W�(s)D�(s)‖ accounts for a generic set of unmodeled dynamics,
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(a) (b)

(c)

Figure 21. Maximum singular value sinusoidal disturbance (k1,m3 uncertain, k̃1=0.75, m̃3=0.80):
(a) A1= A2; (b) A1=5A2; and (c) A2=5A1.

 

 

Figure 22. Filtered square-wave disturbance.

of which the pure time-delay error eM (s) is just one particular point. We analyze the closed-loop
stability margins for (i) a pure time-delay Padé approximation and (ii) the worst legal D�(s) that
destabilizes the system.
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(b)(a)

Figure 23. Mass positions (filtered square-wave disturbance, A1= A2): (a) mass 2
position and (b) mass 3 position.

(a) (b)

Figure 24. Control inputs (filtered square-wave disturbance, A1= A2) applied
to: (a) mass 1 and (b) mass 3.

7.1. Unmodeled time delay

To compute the actual plant stability region, the time-delay error model is replaced by a sixth-order
Padé approximation;¶ hence, we can check the closed-loop stability using eigenvalues rather than
the multivariable Nyquist criterion. Because the time delay is only one of the legal disturbances
admitted by the upper bound ‖W�(s)‖, the stability-only region of the closed-loop plant is larger
than the nominal stability- and performance-robustness region, as shown in Figure 25. Note that
for the nominal design, Figure 25(a), the system becomes unstable for hard spring stiffness k1 and

¶The Padé approximation order was limited by the computational accuracy of the MATLAB software.
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(a) (b)

(c) (d)

Figure 25. Actual and mixed-� guaranteed stability regions, (Padé approximation, A1= A2): (a) k̃1≈0,
m̃3≈0 compensator; (b) k̃1=0.25, m̃3=0.20 compensator; (c) k̃1=0.50, m̃3=0.50 compensator;

and (d) k̃1=0.80, m̃3=0.75 compensator.

light mass m3. The actual stability region increases when we use the robust compensators, see
Figures 25(b)–(d).

The closed-loop disturbance-rejection T�z(s) singular value plots for the nominal point (m3,k1)=
(1,1) and for a stable point (m3,k1)=(0.55,1.65), which is close to the instability region (see
Figure 25(a)), are shown in Figures 26 and 27, respectively. The disturbance-rejection properties
of the compensator designed for large uncertainties are very similar, see Figures 26(a) and 27(a),
which evidences the closed-loop performance robustness. The performance of the compensator
designed for very small uncertainties degrades at the almost unstable point, see Figures 26(b)
and 27(b).

The interesting point is to compare the disturbance-rejection plots of Figure 27. From a pure
H∞ perspective, the nominal design, resulting in Figure 27(b), is not robust because at about
�=18 rad/s its H∞ norm is larger than that of the robust design of Figure 27(a). However,
for the frequency region of interest, �∈[0 2] rad/s, the ‘non-robust nominal design’ associated
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Figure 26. T�z(s) for (m3,k1)=(1,1) (A1= A2): (a) compensator for k1∈(0.25,1.75), m3∈(0.20,1.80)
and (b) compensator for k1≈1, m3≈1.

Figure 27. T�z(s) for (m3,k1)=(0.55,1.65), (Padé approximation, A1= A2): (a) compensator for
k1∈(0.25,1.75), m3∈(0.20,1.80) and (b) compensator for k1≈1, m3≈1.

with Figure 27(b) yields better disturbance-rejection than the ‘robust design’ of Figure 27(a) in
all directions. This demonstrates that one should be careful in comparing robust vs non-robust
designs using only the H∞ metric; it is best to compare them over the entire frequency range as
in Figure 27. Since �-synthesis always yields H∞ compensators, such comparisons are important
from an engineering perspective.

7.2. Worst-case unmodeled dynamics

We were surprised at the large stability region associated with the nominal design shown in
Figure 25(a). This led us to investigate similar issues for other ‘legal’ unmodeled dynamics.
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Figure 28. Actual and mixed-� guaranteed stability regions (��(s) approximation, A1= A2): (a) k̃1≈0,
m̃3≈0 compensator; (b) k̃1=0.25, m̃3=0.20 compensator; (c) k̃1=0.50, m̃3=0.50 compensator;

and (d) k̃1=0.80, m̃3=0.75 compensator.

According to the stability specifications, the mixed-� compensator guarantees closed-loop
stability for any time delay with ��0.03s and also for any uncertainty whose magnitude is below
the envelope ‖W�(s)‖. Instead of using the particular Padé approximation, the stability margins
are computed for the worst-case destabilizing D�(s).

The stability of the closed-loop system is determined by the � bounds. For each point (k1,m3),
the system is stable if the � upper bound is smaller than unity, �̄<1, or unstable if the � lower
bound is bigger than unity, �>1. If none of them is verified, then the stability of the system cannot
be determined using the � tools. The destabilizing delta, associated with the � lower bound, is
easily constructed using the command dypert included in the MATLAB Robust Toolbox [3].

The stability-only region for the worst destabilizing delta D�(s), depicted in Figure 28, is closer
to the nominal stability- and performance-robustness limits obtained in the �-synthesis design.
Since the stability is analyzed independent of performance specifications [22], the stability-only
region of the closed-loop is still larger than the region where, both stability and performance are
guaranteed.
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(a) (b)

Figure 29. Bode plots of destabilizing legal delta D�(s) for
(m3,k1)=(0.90,1.15): (a) ��1(s) and (b) ��2(s).

For the stability region boundary point (m3,k1)=(0.90,1.15), the transfer function of the
destabilizing delta, depicted in Figure 29, is given by

��1(s) = −s2−2.40s+7.49

s2+5.98s+7.49
=− (s+4.19)(s−1.79)

(s+4.19)(s+1.79)

��2(s) = −s2+2.40s+7.49

s2+5.98s+7.49
=− (s−4.19)(s+1.79)

(s+4.19)(s+1.79)

(21)

where the order of the canceling pole and minimum phase zero difference is of the order of
MATLAB’s numerical precision. The difference between the ��1(s) and ��2(s) transfer functions
illustrates an additional interesting directionality property of the closed-loop plant.

As illustrated by (21), the legal D�(s) that destabilize the closed-loop plant yield a transfer
function I+W�(s)D�(s), which does not represent a time delay. The different stability margins
for the Padé approximation and for the worst destabilizing delta, Figures 25 and 28, show that the
stability-robustness specifications for the time delay are conservative: the time delay is not always
a destabilizing delta. Thus, the worst destabilizing delta D�(s) (21) results in the much smaller
closed-loop stability regions of Figure 28 compared with those of Figure 25. Consequently, the
obtained stability margins are due more to the conservative time-delay model than to the controller
synthesis method. Intuitively, one can argue that the maximum time-delay does not ‘point’ towards
the worst destabilizing direction while (21) does.

The performance of the nominal (k̃1, m̃3)≈(0,0) compensator degrades in the stability-only
region, as shown in Figure 30. By comparing Figures 27 and 30, we see similar behavior. For
the nominal design performance degradation occurs at high frequencies, while obtaining better
disturbance-rejection in the desired low-frequency region. Either using the Padé approximation or
the destabilizing delta, the fact that performance degradation occurs after the corner frequency �=
2 rad/s is not negligible and may very well be acceptable for practical implementation. Nonetheless,
from the point of view of H∞ norm minimization, the disturbance to output norm is effectively
degraded.
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(a) (b)

Figure 30. T�z(s) for (m3,k1)=(0.90,1.13) (A1= A2): (a) compensator for k1∈(0.25,1.75),
m3∈(0.20,1.80) and (b) compensator for k1≈1, m3≈1.

The stability margin results discussed above showed that we can extend stability by neglecting
performance. The performance degradation at non-critical frequencies should be the subject for
further research using other test examples and additional theory.

8. CONCLUSIONS

A robust compensator for a MSD plant with two parametric uncertainties was designed using the
mixed-� synthesis tools. The closed-loop transfer function was shaped by the compensator to meet
the stability- and performance-robustness requirements in the frequency domain. It was observed
that the mixed-� synthesis compensator achieved good performance and stability robustness for
the given plant.

Best performance and disturbance-rejection are obtained for smaller uncertainties, while very
large uncertainties degrade the closed-loop performance. The directionality of the closed-loop
transfer function is shaped by the performance weights. Also, performance weights show that
mass 2 position is more difficult to control than mass 3 position, as expected from an engineering
perspective.

The commercially available complex-� D-K iterations yield very conservative performance for
real parametric uncertainties. From the users’ point of view, D-K and D,G-K software use the same
configuration parameters, which makes mixed-� highly appealing for robust controller synthesis.

The mixed-� compensator is stable in a region outside the �-bounds region if performance is
neglected. The closed-loop is robust to modeling errors in the parametric uncertainties, at the cost
of performance degradation. This demonstrates the tradeoff between stability and performance,
which must always be considered in controller synthesis.

Some important questions arise for future work. The numerical results of Section 7 raise some
important questions in performance robustness from an engineering perspective. Also, a deeper
and general theoretical basis is required to study which uncertain real parameters are most relevant
for �-synthesis and how conservative is this design methodology.
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