
The Normalized Subspace Inclusion: Robust Clustering of Motion Subspaces

Nuno Pinho da Silva João Paulo Costeira
ISR – Instituto Superior Técnico
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Abstract

Perceiving dynamic scenes of rigid bodies, through affine
projections of moving 3D point clouds, boils down to clus-
tering the rigid motion subspaces supported by the points’
image trajectories. For a physically meaningful interpre-
tation, clusters must be consistent with the geometry of the
underlying subspaces. Most of the existing measures for
subspace clustering are ambiguous, or geometrically in-
consistent. A practical consequence is that methods based
on such (dis)similarities are unstable when the number of
rigid bodies increase. This paper introduces the Normalized
Subspace Inclusion (NSI) criterion to resolve these issues.
Relying on this similarity, we propose a robust methodol-
ogy for rigid motion segmentation, and test it, extensively,
on the Hopkins155 database. The geometric consistency of
the NSI assures the method’s accuracy when the number of
rigid bodies increases, while robustness proves to be suit-
able for dealing with challenging imaging conditions.

1. Introduction
Extending the structure from motion framework from

one rigid object (Tomasi and Kanade [10]) to multiple mov-

ing objects appearing in the field of view (Costeira and

Kanade [1], Ozden et al. [5], Yan and Pollefeys [17]), re-

quires the primary task of identifying the rigid bodies in the

scene, wether they are independent rigid objects, or rigid

parts of articulated objects (Fig. 1).

In the finite sample scenario, rigid bodies are clouds of

3D points moving rigidly. Assuming affine projections and

given their correspondences along the sequence, segment-

ing the rigid motions is framed as the robust clustering of

their imaged trajectories. The clustering relies on subspace

comparison, because the 2D trajectories of rigid motion
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(a) Articulated object (b) Multiple rigid objects

Figure 1. Rigid-body segmentation: our result of segmenting (a)

the articulated and (b) cars10 sequences, from the Hopkins155

database (Tron and Vidal [11]) (red ∗ are points classified outliers).

Section 4 presents results over the entire data set.

support linear subspaces.

We find that proper subspace clustering requires invari-

ance both to the orthogonal and the inclusion relationship

between subspaces. Most of the existing measures for sub-

space comparison do not comply with this observation, thus

being inappropriate for a unified treatment of the problem

and unstable when the number of motions increase. In sec-

tion 3 we provide simple examples proving these facts. In

particular, we show that a geometric consistent criterion

cannot be a distance function, because it violates the iden-

tity of the indiscernibles1 by being consistent with the in-

clusion of subspaces (i.e. if L1 ⊆ L2 , where L1 and L2 are

motion subspaces, the criterion must reflect that all features

supporting L1 also support L2 , as the trajectories of the

points on the L1 lines also lie on the L2 boxes in Fig. 1(a)).

The main contribution of this paper is the normalized
subspace inclusion (NSI), a criterion for subspace cluster-

ing consistent with the geometry of the underlying sub-

spaces. Our approach for (rigid) motion segmentation relies

on splitting the observations into geometrically meaningful

clusters, and agglomerating them, under the NSI criterion,

to provide the adequate interpretation (segmentation), given

the total number of motions (see Figure 3).

1We call the identity of indiscernibles to the following metric axiom

that any distance function D must satisfy: D(x, y) = 0 ⇔ x = y.
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Extensive validation on the Hopkins155 database (Tron

and Vidal [11]) shows that our approach can leverage the

segmentation results given by state-of-the-art methods (e.g.,

ALC from Rao et al. [7] and LSA from Yan and Polle-

feys [17]), particularly in challenging settings presenting

more than two rigid bodies and outdoor scenes.

2. Motion Subspaces
Consider a rigid body moving relative to the camera and

let Nj be the number of 3D points xji tracked over F
frames (the index j represents the jth rigid body in a multi-

body scene). Assuming affine projections, the data matrix

Wj ∈ R
2F×Nj , collecting the images of the point trajecto-

ries, is written as

Wj = [wj1 . . .wjNj
], j = 1, . . . , M (1)

wji = [u1
ji

v1
ji

. . . uF
ji

vF
ji

]T , i = 1, . . . , Nj (2)

[uf
ji

vf
ji

]
T

= Mf
j

[
xT

ji
1
]T

, f = 1, . . . , F (3)

Mf
j = K2×4

[
Rf

j tf
j

0T 1

]
(4)

where Rf
j is the rotation, and tf

j the translation, of the

jth rigid body’s coordinate frame relative to the camera

at time (image) f , and K2×4 collects the affine model’s

intrinsic parameters. Given (3), Wj can be decomposed

into a motion matrix Mj ∈ R
2F×4 and structure matrix

Sj ∈ R
4×Nj , as shown by Tomasi and Kanade [10], i.e.

Wj = MjSj =

⎡
⎢⎣

M1
j

...

MF
j

⎤
⎥⎦
[

xji . . . xjNj

1 . . . 1

]
. (5)

Since the column subspace of Wj is generated by the

motion matrix Mj , it is a (rigid) motion subspace. From

(5), the measurement matrix Wj is at most rank 4, and so

is the dimension of the rigid motion subspace.

2.1. Problem Formulation

When a scene contains multiple objects (rigid or artic-

ulated), we built the data matrix W ∈ R
2F×N by track-

ing the trajectories of M rigid bodies with different mo-

tions relative to the camera. Here N = N0 + . . . + NM is

the total number of point trajectories, and N0 is the number

of outlying trajectories, i.e. mismatches or nonrigid moving

points. Hence, the problem of (rigid) motion segmentation

is to identify the trajectories of each rigid body, as well as

the outlying trajectories (Fig. 2).

Formally, given a data matrix W, construct its canonical

(segmented) form, i.e.

W = [W0W1 . . .WM ], (6)

where W0 assembles an arbitrary number of outliers,

Wj = MjSj (j �= 0), and the subspaces generated by

each rigid body may intersect arbitrarily.

From (5), identifying rigid bodies is tantamount to seg-

menting the subspaces supported by their 2D trajecto-

ries. However, the basis of the motion subspaces is given

by stacking the affine projections of the special euclidean

group (4), and segmenting, while imposing the metric

(rotation and translation) constraints, leads to the cyclic

dilemma: to check the constraints it is necessary to seg-

ment features and to segment it is necessary to compute the

constraints.

A useful alternative is to impose the number M of mo-

tions extrinsically, as shown in the works of Sugaya and

Kanatani [8], Vidal et al. [12], Yan and Pollefeys [17],

though this will not, per se, impose physical coherence. To

attain it, the M clusters must respect the geometry of the

underlying motion subspaces.

2.2. Related Work

Under affine projections, independent motions, and no

outliers, the segmentation is obtained by the block diago-

nal structure of the shape interaction matrix (Costeira and

Kanade [1]). Unfortunately, null cross-correlation does

not hold for partially dependent motions, motivating ap-

proaches such as the Sugaya and Kanatani [8] Multi-Stage

Learning (MSL), the Vidal et al. [12] Generalized Principal

Component Analysis (GPCA) or the Yan and Pollefeys [17]

Local Subspace Affinity (LSA).

The results on the Hopkins155 database (Tron and Vi-

dal [11]) showed that the LSA was the most accurate of

these methods. However, as we show in section 3, the sum

of the squared sines of the principal angles, i.e. the crite-

rion underlying the affinity in the LSA method, may pro-

vide no insight into the geometric relation between the seg-

ments. Also, all previous methods rely on the global rank
detection of a data matrix, which is prone to errors in the

presence of noise and outliers. Therefore, some additional

procedure, e.g. RANSAC must be considered to deal with

outliers. Furthermore, recent results (Rao et al. [7]) sug-

gested that robustness improves the segmentation.

Recent approaches such as the MDPO (Jian and

Chen [3]), the GMC (Silva and Costeira [6]) and the ALC

(Rao et al. [7]) are intrinsically robust. The MDPO is a

two-view approach, combining mixtures of Dirichlet pro-

cess with RANSAC, and has the advantage of being inde-

pendent of the number of clusters. However, its application

is limited to independent motions in a calibrated setup. The

GMC is a divisive method, using recursion over the space

of the dimensions to comply with degeneracies, and explor-

ing the riemannian structure of the Grassmann manifold to

find the maximum consensus subspace. The ALC follows

an agglomerative strategy, minimizing the segmentation’s
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(a) The first, second and last frame from the Kanatani3 sequence (Hopkins155 database) with the points classified as outliers superimposed.

(b) MSL and ALC (c) our result

Figure 2. Outlier detection: (a) Feature points in the chin are outliers: their image positions slide along the sequence ina non-rigid way. (b)

The segmentation given by the MSL (Sugaya and Kanatani [8]) and ALC (Rao et al. [7]) fails to detect them. Our approach (c) recognizes

the outlying trajectories, though admitting one false negative (the forehead point).

Ŵ0

W

Ŵ1 Ŵm−1

W0 W1 WM

Ŵm

Robust Subpsace
Segmentation

Impose the
number of rigid motions

GMC

NSI

m inlier clusters
N̂0 outliers

M inlier clusters
N0 outliers

Divisive
Clustering
(Top-Down)

Agglomerative
Clustering
(Bottom-Up)

Figure 3. Two step approach: imposing the number of sub-

spaces provides semantical meaning for the geometric segmenta-

tion, since the latter is a relaxed solution of the motion segmenta-

tion problem.

coding length over a range of distortions. It is often ac-

curate, but very time consuming and may lose robustness

during the voting process (Fig. 2).

Fig. 3 summarizes our approach. The GMC provides the

initial grouping and the corresponding dimensions of the

underlying subspaces. These clusters are pair-wise hierar-

chically agglomerated under the NSI criterion, thus finding

the interpretation according to the number of motions im-

posed.

3. Normalized Subspace Inclusion (NSI)
Physically meaningful subspace clustering must be geo-

metrically correct. We will use examples to show that most

of the subspace clustering criteria are ambiguous and re-

sult into inconsistent clusters, i.e. clusters disrespecting the

geometric relation between the underlying subspaces. The

reason is that they are invariant only to the orthogonal or

to the inclusion relationship between subspaces, but not to

both.

Following this observation, we propose the normalized
subspace inclusion (NSI) criterion. LetL1 andL2 be linear

subspaces of R
n , such that dim(L1 ) = d1 and dim(L2 ) =

d2. Define the NSI as

NSI(L1 ,L2 ) =
tr{UT

1 U2UT
2 U1}

min(d1, d2)
, (7)

where tr{·} is the trace function and, U1 and U2 are or-

thonormal bases for L1 and L2 , respectively.

The NSI measures the similarity between two subspaces

by quantifying “how much a subspace belongs to another”.

Formally, it generalizes the cos2 between vectors by con-

sidering all principal directions between two subspaces.
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3.1. Subspace Clustering

A key issue in any clustering algorithm is to determine

the groups’ (dis)similarity. The following criteria are often

employed when clustering subspaces2:

• LPA: The Least Principal Angle is a dissimilarity cri-

terion, used by Yan and Pollefeys [17] to build kine-

matic chains; it is defined as

LPA(L1 ,L2 ) = cos−1

(√
σmax

(
UT

1 U2

))
(8)

• SD : The Subspace Distance

SD(L1 ,L2 ) =
√

max(d1, d2)− tr{UT
1 U2UT

2 U1}
(9)

verifies all distance axioms, and is applied in face

recognition (Sun et al. [9] and Wang et al. [13]).

• SCPA: Considering the Sum of the cos2 of the Princi-

pal Angles

SCPA(L1 ,L2 ) = tr{UT
1 U2UT

2 U1}. (10)

will also show the importance of the normalization in

the NSI criterion (7).

• SSPA: The Sum of the sin2 of the Principal Angles is

the dissimilarity employed by Yan and Pollefeys [17]

in their affinity e−SSPA(L1 ,L2 ); it can be written as

SSPA(L1 ,L2 ) = min(d1, d2)− SCPA(L1 ,L2 ).
(11)

The following examples motivate the usefulness of the

NSI criterion3. Practical situations include degenerated

structures clustered into more general rigid bodies, such as

lines in boxes (Fig. 1 (a)), or interpreting scenes containing

both independent and partially dependent motions.

Example 1 (LPA) Let L1 = span{[0 1√
2

1√
2
]T } and

XZ = span

⎧⎨
⎩
⎡
⎣ 1 0

0 0
0 1

⎤
⎦
⎫⎬
⎭ , YZ = span

⎧⎨
⎩
⎡
⎣ 0 0

1 0
0 1

⎤
⎦
⎫⎬
⎭ ,

as in Fig. 4. Since L1 ⊂ YZ and YZ ∩ XZ �= ∅, we have

LPA(L1 ,YZ) = 0, LPA(XZ ,YZ) = 0, (12)

2We do not consider the largest principal angle, defined as the matrix

2-norm of the difference between the orthogonal projectors, because it is

related to the notion of distance between equidimensional subspaces [2],

thus being of restricted application.
3In all cases we are given m = 3 subspaces and have to cluster them

into M = 2 linear manifolds.

XZ

YZ
L1

Figure 4. The subspace union of Example 1.

disregarding that all points lying in L1 also support YX ,
but not all points in YX belong to XZ . We may use this
example to show that the sum of the canonical correlations
(Kim et al. [4]) is not inclusion consistent, because it is only
invariant to the orthogonality between subspaces.

Example 2 (SCPA and SD) Consider the following sub-
spaces of R

4 : L1 = span{[0 1√
2

1√
2
0]T}, and

XYZ=span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,ZW=span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

From (10),

SCPA(L1 ,XYZ) = 1, SCPA(ZW,XYZ) = 1, (13)

showing that, without the NSI’s normalization (7), we have
the ambiguity from the previous example. Also, applying the
Subspace Distance (9),

SD(L1 ,XYZ) =
√

2, SD(L1 ,ZW) =
√

3
2 , (14)

implies
SD(L1 ,XYZ) > SD(L1 ,ZW), (15)

which is inconsistent with the fact that all points in L1 have
zero distance to XYZ and nonzero distance to ZW.

Example 3 (SSPA) Consider R
5 and suppose we have to

cluster LV = span{[0 0 0 0 1]T} and

XYZ=span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,ZW=span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.
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into M = 2 groups. Note that LV is orthogonal to both
XYZ and ZW , whereas the latter intersect. However,

SSPA(LV ,XYZ) = 1, SSPA(LV ,ZW) = 1 (16)

SSPA(ZW,XYZ) = 1, (17)

which is inconsistent with the orthogonality between LV

and the other subspaces. In this venue, the product of the
squared canonical correlations (Wolf and Shashua [15]) is
also orthogonally inconsistent, since a single orthogonal di-
rection is sufficient for nullity.

Normalized Subspace Inclusion. Maximizing the NSI (7)

provides the correct clustering for all examples:

• Example 1:

NSI(L1 ,YZ) = 1, NSI(L1 ,XZ) = 1
2 . (18)

NSI(XZ ,YZ) =
1
2
. (19)

So, we group L1 with YZ . We will show that the

NSI is unitary iif the subspaces verify L1 ⊆ L2 .

• Example 2:Applying the NSI, we get the numerical

result according to the strength of the geometric rela-

tion between the subspaces and, therefore, the correct

grouping, i.e.

NSI(L1 ,XYZ) = 1, NSI(L1 ,ZW) = 1
2 (20)

NSI(ZW,XYZ) =
1
2
. (21)

and the clusters are {L1 ,XYZ} and ZW .

• Example 3: The NSI’s results are

NSI(LV ,XYZ) = 0, NSI(LV ,ZW) = 0 (22)

NSI(ZW,XYZ) =
1
2
, (23)

providing the correct clusters by taking the maximum.

We will show that the NSI has the property of being

null iif the subspaces are orthogonal.

3.2. Properties of the NSI

Let L1 and L2 be subspaces of R
n , with arbitrary di-

mensions d1 and d2, and unitary bases U1 and U2, respec-

tively. Note that

tr{UT
1 U2UT

2 U1} = tr{U2UT
2 U1UT

1 } (24)

= tr{UT
2 U1UT

1 U2} (25)

=
min(d1,d2)∑
k=1

σ2
k(UT

1 U2) (26)

=
min(d1,d2)∑
k=1

cos2(θk(L1 ,L2 )) (27)

≤ min(d1, d2) (28)

where σk is the kth singular value of the matrix argument,

and θk is the kth principal angle between L1 and L2 .

Recalling (7), the normalized subspace inclusion (NSI)
criterion has the following properties:

• Basis Independent: The orthogonal projectors UjUT
j

in (24) are unique and independent of the chosen basis.

• Symmetric: From (25) we see that NSI(L1 ,L2 ) =
NSI(L2 ,L1 ). So, the NSI can be used to construct

affinity matrices (as in Weiss [14]). However, if d1 �=
d2, the NSI should be interpreted as “how much” the

lower dimensional subspace belongs to the greater di-

mensional one.

• normalized: From (26–28) we have 0 ≤ NSI ≤
1. This property sets two invariant values for the

orthogonal and inclusion configuration, respectively.

Also, it allows using the NSI in fuzzy clustering al-

gorithms [16].

• orthogonality consistency: Note that

L1 ⊥ L2 ⇔ cos(θk(L1 ,L2 )) = 0, (29)

∀ k = 1, . . . ,min(d1, d2), and, from (27) and (7),

NSI(L1 ,L2 ) = 0 ⇔ L1 ⊥ L2 . (30)

• inclusion consistency: Without loss of generality, let

d1 ≤ d2. Then

L1 ⊆ L2 ⇔ cos(θk(L1 ,L2 )) = 1, (31)

∀ k = 1, . . . , d1. Recalling (27) and (7)

NSI(L1 ,L2 ) = 1 ⇔ L1 ⊆ L2 . (32)

The inclusion consistency property implies that a crite-

rion for subspace clustering, interpreted as a dissimilarity,

must not be a distance function, because it will violate the

identity of the indiscernibles (one of the metric axioms) that

any distance must verify. Unlike other criterion, the NSI is

invariant to both the orthogonal and inclusion relationship

between subspaces, thus leveraging the subspace clustering

results, as shown in the next section.

4. Experiments
Our approach (Fig. 3) relies on a first robust segmenta-

tion of the union of the subspaces. To implement the GMC ,

we project the data matrix onto its 4M -dimensional princi-

pal space (M is the number of rigid motions)4, each result-

ing point onto the sphere, and let the optimization threshold

define the inliers’ band for each group. Hence, the whole

approach relies solely on the given number of (rigid) mo-

tions M .
44M is the maximum possible rank of the observations without out-

liers, i.e. it is the true rank of the data matrix only if its range is the union

of M independent full motion subspaces.
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Figure 5. Synthetic scene: (a) two independently moving spheres:

the hemispheres of the right one rotate, in opposite directions,

around the world’s z−axis, while the whole sphere translates; (b)

average misclassification rate per criterion (1000 trials per noise

level, considering 512 × 512 images).

4.1. Synthetic scene

Observing the scene in Fig. 5(a) generates a sequence5

that generalizes Examples 1–3. It combines almost all

possible degeneracies: the features from right sphere sup-

port partially dependent, degenerated motion subspaces, be-

cause the motion from each hemisphere is perceived has

planar (i.e. there is no “depth” information). Also, there

is transparent motion from the south hemisphere.

The results in Fig. 5(b) were obtained using the same

subspace clustering algorithm, only differing the criterion:

as long as the initialization is geometrically correct, the

NSI guarantees better scene interpretations than the other

criteria.

4.2. Real data

The Hopkins155 database consists of 155 sequences,

with 2 and 3 rigid bodies, divided into three classes (Fig. 6),

and the points were automatically tracked, with the track-

ing errors manually corrected [11]. In order to be consistent

with this ground-truth, we need to consider every point as

an inlier, thus outliers were assigned to the group supporting

its nearest subspace.

Tables 1–3 present the results of our method, together

with the LSA (as provided with the Hopkins155 database)

and the (sparse projection) ALC the most accurate methods

tested on the entire data set (Rao et al. [7]).

Table 1 presents the results by class. Our approach

achieves the highest accuracy in the traffic class, which con-

tains sequences taken by handheld camera, often with de-

generate motions [11], pointing out its robustness to real-

world imaging conditions. Also, the misclassification rate

decreases as the number of motions increases, being our ap-

5121 frames from a fixed orthographic camera (without occlusion) with

the optical axis aligned with the z − axis of the world coordinate sys-

tem. The inter-frame rotation was 3 degrees and the translation of the right

sphere was 3/121 units along the negative direction of the x − axis.

method checkboard articulated traffic
avg [%] | std [%] avg [%] | std [%] avg [%] | std [%]

LSA 3.35|8.06 4.58|6.59 9.09|14.86
ALC 2.37|6.18 12.30|16.50 3.06|6.21
our result 3.54|7.39 7.79|8.22 1.69|6.33

(a) 155 (all) sequences

method checkboard articulated traffic
avg [%] | std [%] avg [%] | std [%] avg [%] | std [%]

LSA 5.70|10.89 7.25|9.30 25.30|19.05
ALC 5.00|9.14 21.08|28.87 8.86|13.16
our result 2.92|5.73 6.38|9.03 1.67|1.51

(a) 35 sequences with M = 3 rigid motions

method checkboard articulated traffic
avg [%] | std [%] avg [%] | std [%] avg [%] | std [%]

LSA 2.57|6.79 4.10|6.47 5.43|11.17
ALC 1.49|4.58 10.70|15.00 1.75|1.83
our result 3.75|7.89 8.05|8.51 1.69|7.00

(a) 120 sequences with M = 2 rigid motions

Table 1. Average (avg) and standard deviation (std) of misclassifi-

cation rates by class of sequences.

Method checkboard articulated traffic all

LSA 5.13 1.93 3.96 4.58

ALC
1213.55
(∼20m)

558.36
(∼9m)

962.52
(∼16m)

1097.06
(∼18m)

our result 14.75 4.16 11.02 12.85

Table 3. Computational burden (average cpu time [s]).

proach the most accurate for all classes with M = 3 mo-

tions, thus showing the NSI’s immunity to the higher com-

plexity of the agglomerative task.

This is confirmed by table 2, where it can be seen that our

approach achieves an average misclassification rate 1.42%
better than the LSA, but 0.07% higher than the ALC, while

being slightly more stable. Also, the difference between all

methods is much higher for sequences with 3 groups than

for sequences with 2 groups (the vast majority of the se-

quences in the database).

In table 36, note that our segmentation is, on average,

only 8 seconds (3 times) slower than the LSA and 85 times

faster than the ALC, balancing accuracy with computational

burden.

5. Conclusion
We introduced the Normalized Subspace Inclusion

(NSI), a criterion for subspace clustering consistent with

the geometry of the subspaces underlying the observations,

unlike other widely used criteria, as our examples demon-

strated. We combine it with the GMC [6] to obtain a mo-

tion segmentation approach that can cope with motion de-

generacies and outliers, and is stable under increasing num-

ber of motions.
A natural extension is to unify motion segmentation

and kinematic chain construction, two subspace cluster-

6These times are essentially indicative (order of magnitude), because

they depend on particular implementations. All code was written in

Matlab� .
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(a) checkboard: 1rt2tc sequence (b) articulated: arm sequence (c) traffic: cars5 sequence

Figure 6. Examples from the classes on the Hopkins155 database, with our result superimposed (the red ∗ are points classified as outliers).

Method avg [%] std [%]

LSA 4.86 10.29
ALC 3.37 7.97
our result 3.44 7.34

(a) 155 (all) sequences

Method avg [%] std [%]

LSA 9.71 14.71
ALC 6.69 11.48
our result 2.87 5.28

(b) 35 sequences with M = 3 rigid motions

Method avg [%] std [%]

LSA 3.45 8.14
ALC 2.40 6.35
our result 3.61 7.84

(c) 120 sequences with M = 2 rigid motions

Table 2. Average (avg) and standard deviation (std) of misclassification rates for all classes of sequences. For sequences with M = 3
rigid motions sequences, lower error rates are expected if the number of misclassified points remains fairly the same, because the total of

features is often higher in the M = 3 group sequences than in sequences with M = 2 groups, since most of the sequences with 2 groups

were constructed by splitting each 3 motion sequence into its respective clusters.

ing applications, under the NSI criterion, using non-
parametric clustering algorithms. Further research must
be conducted towards explicitly imposing the metric con-
straints.
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