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ABSTRACT
We present a procedure for the estimation of bids in auction
protocols. This class of protocols is of interest to multia-
gent systems because they can be used to coordinate the
assignment of tasks to agents. The main idea is to take ad-
vantage of methods for the synthesis of task execution con-
trollers that rely on the availability of value functions. These
provide a natural way to obtain the bid values for a given
task. The approach is demonstrated on an active surveil-
lance system, where mobile robots must approach and iden-
tify humans, and conduct patrols. The Partially Observable
Markov Decision Process (POMDP) framework is used to
compute policies for the execution of tasks by each agent,
the task bid values are obtained directly from the respective
value functions. Several simulation examples are presented
for an urban surveillance environment, illustrating the ap-
plicability of our ideas.

General Terms
Multiagent systems
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1. INTRODUCTION
We present an approach to the estimation of bids in auc-

tion protocols. It is based in the value functions obtained
from the design of controllers for the execution of tasks by
the agents. From these functions, the fitness of an agent to
execute a task (given the state of the environment) can be
obtained directly, and without extra effort.

The use of auction protocols was initially proposed by
[20] for collaborative, distributed problem solving among a
set of agents. In multi-robot systems, these protocols are
commonly used to determine the assignment of tasks [5].
They are also used in assignment problems arising in areas
such as corporate management [2], and game theory [13].
The main advantages of these protocols are their robustness
to individual agent failures and the reduced bandwidth re-
quirements [6]. Another advantage is that the assignment
solutions are computed in a distributed manner, and thus
can be used by agents with low computational resources.
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A crucial challenge to applying auction protocols is the es-
timation of the agents’ bid values for each task. Agents must
evaluate their fitness for executing a task using only locally
available information. In mobile robotic applications, tasks
often consist in the execution of a path [6, 7, 5]. Therefore,
the bid value on each task can be the path distance, the
travel time or a combination of these measures [12]. In gen-
eral, these are heuristic measures that need to be defined for
each task, often in an ad-hoc manner. By comparison, the
advantage of using task controllers based on value functions
is that bid functions need not be tailored for the application
at hand. Instead, they already have been computed, and
will reflect better true bid values, since they are derived di-
rectly from the task controller. In order to implement our
task execution controllers using value functions, they are
synthesized through a decision-theoretic approach. In par-
ticular, we use Partially Observable Markov Decision Pro-
cesses (POMDPs) [10], which form a general and powerful
mathematical basis for planning under uncertainty.

The remainder of this paper is as follows. In Section 2 we
present an overview of the proposed approach. The POMDP
framework is reviewed in Section 3, and Section 4 describes
the auction protocol. In Section 5 the proposed approach for
the estimation of bids is presented. Section 6 shows how the
approach can be applied to an active surveillance system,
and it is evaluated through simulation. Finally, in Section 7
we discuss the paper.

2. MULTIAGENT TASK COORDINATION
The problems considered in this paper are the assignment

of tasks and their execution in a multiagent system. The
first problem is formulated as the assignment of tasks with
unknown arrival order. The agents can execute only one
task at a time, which can be interrupted to begin the execu-
tion of another one. In this case, the current progress of the
interrupted task is lost. Due to communication and hard-
ware failures, the number of available agents is not known
a priori. The computation of the assignment solution when
the order of task arrivals is known and no failures occur is
NP-HARD in general, [9, 4]. The available algorithms pro-
posed for this problem often require computational resources
organized in a centralized manner.

The second problem is the synthesis of controllers for the
execution of each task by the agents. Each has available
a finite, and possibly distinct, set of actions and can per-
ceive features of interest in the environment. This problem
is then formulated as computing a controller for the exe-
cution of a task by an agent. The tasks are assumed to



Agent

POMDP Model Task A

Arrival
of tasks

Auct ioneer

Auction Protocol

POMDP Model Task B

POMDP Model Task D

POMDP Model Task C

Agent

POMDP Model Task A

POMDP Model Task B

POMDP Model Task D

POMDP Model Task C

Agent

POMDP Model Task A

POMDP Model Task B

POMDP Model Task D

POMDP Model Task C

Figure 1: Diagram of proposed solution. Each agent
is running a POMDP model for each task in parallel,
but only one is active (indicated by a solid box).

be executed by a single agent, without explicit coordination
with other agents. In this way, we avoid the severe complex-
ity penalty involved when considering the full joint planning
problem (either centralized or decentralized). Coordination
is achieved on a task level, by finding the optimal assignment
of individual tasks to agents.

A POMDP problem is formulated and solved for each task
an agent can execute. The POMDPs at each agent receive
the same set of local observations, but between agents no
beliefs or other types of information are shared. When an
agent is assigned a task, the policy of the corresponding
POMDP is enabled and the others disabled. That is, the
actions executed by the agent are those determined only by
the policy of the assigned task POMDP.

The proposed approach in this paper is represented in the
block diagram of Figure 2. It is composed by a central su-
pervisor, denoted the auctioneer, and a set of heterogeneous
agents. The tasks to be executed by the agent are received
by the auctioneer and are then assigned through an auc-
tion protocol. Although the solution to the computation of
task assignments is centralized, these can arrive in any or-
der and the computational complexity is polynomial. Also,
it is robust to communication and individual agent failures.
The disadvantage is that in general, an optimal assignment
solution is not guaranteed.

3. POMDP BACKGROUND
We will discuss POMDP models and solutions, briefly

introducing some general background. A more elaborate
POMDP model description is provided by [10], for instance.

A POMDP models the interaction of an agent with a
stochastic and partially observable environment, and it pro-
vides a rich mathematical framework for acting optimally in
such environments. The framework is based on the assump-
tions that at any time step the environment is in a state
s ∈ S and the action a ∈ A is taken by the agent. As a re-
sult of this action, a reward r(s, a) signal is received by the
agent from the environment. And the environment state

is changed to the new state s′, in accordance to a known
stochastic transition model p(s′|s, a). The task of an agent
is defined by the reward it is given at each time step. The
agent task goal is to maximize the long-term reward signals
received. After the environment transition to the new state,
an observation o ∈ O is perceived by the agent. This is con-
ditional on the current environment state, and possibly the
action executed, according to a known stochastic observa-
tion model p(o|s′, a).

Given the transition and observation models, the POMDP
can be transformed to a belief-state MDP, where the all past
information of the agent is summarized using a belief vec-
tor b(s). It represents a probability distribution over S, from
which a Markovian signal can be derived for the planning of
actions. The initial state of the system is drawn from the
initial belief b0, which is typically included in the POMDP
problem formulation. Every time an action a is taken by
the agent and observation o is obtained, the agent belief is
updated by Bayes’ rule; for the discrete case:

b
o
a(s′) =

p(o|s′, a)

p(o|a, b)

X

s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) =
P

s′∈S
p(o|s′, a)

P

s∈S
p(s′|s, a)b(s), is a

normalizing constant.
In POMDP literature, a plan is called a policy π(b) and

maps beliefs to actions. The policy can then be used to se-
lect the action the agent must execute in order to achieve the
task goal. A policy π can be characterized by a value func-
tion V π which is defined as the expected future discounted
reward V π(b) the agent can gather by following π starting
from belief b:

V
π(b) = Eπ

h

h
X

t=0

γ
t
r(bt, π(bt))

˛

˛

˛

b0 = b
i

, (2)

where r(bt, π(bt)) =
P

s∈S
r(s, π(bt))bt(s) following the

POMDP model as defined before, h is the planning horizon,
and γ is a discount rate, 0 ≤ γ ≤ 1.

The process of solving POMDPs optimally is hard, and
thus algorithms that compute approximate solutions are used.
There has been much progress in approximate POMDP solv-
ing, see for instance [8, 21] and references therein. Further-
more, if a value function has been computed off-line, the
on-line execution of the policy it implements does not re-
quire much computational requirements.

4. AUCTION PROTOCOL
The purpose of the auction protocol is to determine the

POMDP policy that each agent must execute. This is equiv-
alent, in the context of this paper, to the assignment of tasks
to agents. The task generation process is assumed to be ex-
ogenous to the multiagent system. For instance, the execu-
tion of a task can be triggered by the occurrence of an event.
The tasks arrive at the auctioneer at any time instant, but
are assigned in a bulk manner at regular intervals. Note that
we can also start a round of task assignment on demand, for
instance when a high-priority task arrives. Also, a task can
be scheduled to be executed at periodic time intervals, such
as battery recharge operations.

The task execution requests could also originate from some
of the agents or the auctioneer. As an example, the auction-



eer may directly receive event messages and locally favor the
assignment of some tasks over others. The priority of each
task is dictated by the specific application.

In order to solve the task assignment problem, the auc-
tioneer is only required to know the expected discounted re-
ward values of the POMDP task solutions from each agent,
given their individual beliefs. The auction protocol is de-
signed as follows, requesting this information from each agent.

Definition 1 (Auction Protocol). The auction pro-
tocol is as follows:

1) All of the tasks are announced to the agents by the
auctioneer.

2) The agents reply with their current expected discount
reward V π(b) for each task. Hence, this is obtained
from the solution V π for the task’s POMDP model,
and the agent’s current belief b.

3) The assignment solution is computed by the auctioneer
and announced to the agents.

The assignment solution is determined by solving a mixed
integer-linear program (MILP). The number of tasks waiting
to be assigned by the auctioneer, at a particular instant,
is represented by w. The number of agents that replied
with bids is n. The assignment of the tasks to the agents is
represented by the matrix Y . The element yij is one if the
i-th agent is assigned the j-th task, and zero otherwise. The
optimal assignment solution, Y ∗, is then determined from
the MILP:

max
X

i

X

j

βij · yij

s.t.
X

i

yij ≤ 1, j = 1, . . . , w

X

j

yij ≤ 1, i = 1, . . . , n

yij ∈ {0, 1}

(3)

where βij is the value of the bid received from the i-th
agent for the execution of the j-th task. The problem con-
straints state that each task is assigned to at most one agent
and vice-verse. Thus, if their numbers are not equal, that is
w 6= n, some tasks are not assigned or some agents remain
idle. This can also occur in heterogeneous multiagent sys-
tems, where some agents may not be able to execute some
of the tasks. In this case, the agents reply with an arbitrary
negative value. From the problem formulation, it is clear
that if βij is negative then the i-th agent is not assigned
the j-th task. This is because there is at least one feasible
solution without this assignment and with a greater value
for the cost functional.

The main advantage of this protocol is that the auctioneer
is not required to known the number of available agents or
their beliefs. Therefore, the approach is robust to the fail-
ure of agents or temporary network shortages. Because if an
agent cannot be contacted, the others are still assigned tasks.
Also, the communication and computational resources are
reduced since only the current expected discounted reward
must be reported to the auctioneer. Finally, the coordina-
tion of the agents is obtained implicitly through the auction
protocol.

Although the assignment problem is a MILP, it can be effi-
ciently solved in polynomial time using the Hungarian algo-
rithm [3]. Therefore, this approach can be applied to small
and medium sized problems with tens or hundreds of agents
and tasks. In contrast, the auction protocols described in [5]
often exhibit exponential complexity. The reason is that in
these protocols, agents bid on bundles of tasks instead of
the single task case of our protocol. Although the compu-
tational complexity is greatly reduced, the solution is only
locally optimal. In [11] it was shown that for bundles with
a small number of tasks, the assignment solution quality is
improved without significantly increasing the computational
and communication costs. Nevertheless the problem of com-
puting the bid value is not considered and the tasks to be
executed are known in advance. This is not the case in this
paper, where the tasks and their arrival order are not known
in advance. Also, it is assumed that agents do not accurately
know their state. As a result, the estimation of bids for fu-
ture tasks is complicated by the uncertainty at the current
state.

5. POMDPS FOR BID ESTIMATION
In this work, we assume that the agents do not share any

information among them. The reason is to reduce the net-
work bandwidth and computational requirements, since the
POMDP instances are smaller. It is known that relying on
perfect communication can reduce the decentralized plan-
ning to a centralized one [17], but the size of the centralized
problem still grows exponentially in the number of agents.
Another reason is that since the agents are assumed not to
be required to coordinate their individual actions in order
to execute tasks, their POMDP models in general need not
account for other agents. It must be stressed that the ex-
ecution of tasks could benefit from knowledge on the other
agents’ beliefs and actions. For instance, if the planned
paths of two mobile robots intersect, the collision could be
avoided if their beliefs were shared. In order to avoid such
potentially dangerous cases, low-level safety controllers are
assumed to be available for the execution of actions.

Since multiple independent decision makers are present in
the environment, the problem could be modeled as a de-
centralized POMDP (Dec-POMDP) [1, 19, 14]. However,
given their very high complexity class, current algorithms
do not scale to the types of applications we are focusing
on. In our case, the coordination of the agents is obtained
implicitly through the auction protocol and the auctioneer;
coordination is considered on the level of task assignments
vs. the level of individual agent actions, as is common in
Dec-POMDPs.

A POMDP model of a certain task provides both an im-
plementation of the task, i.e., how the agent should act to
accomplish the task, as well as a valuation of the agent’s
fitness to execute it. The latter depends on the state of the
environment, and in the POMDP case, on the agent’s belief
state. For each task, the reward model is such that when the
agent accomplishes the goal, for instance reaching an area
where to patrol, it receives a single reward of 10. When
reaching the goal, the agent is transferred to an absorbing
state, in which it receives zero reward, and it only leaves the
absorbing state when a new task has been assigned. The
use of an absorbing state is crucial, because otherwise the
POMDP values can keep on rising, by instructing the agent
to remain in a goal state. Although this effect might not



influence the policy implemented by the value function, in-
flated values are not desirable for our approach, given that
we compare values between different POMDPs.

As discussed, in order to evaluate the relative benefit of
using agent x over agent y, their valuations should be in the
same range. For this reason we employ the same maximum
reward in each POMDP model, where the values of each
are normalized to [0, 10]. However, we need to be able to
express different priorities for tasks, in order to ensure that
more important tasks get assigned first; for instance, when
there are more tasks than agents available. This is accounted
for by multiplying each the bid values by the task priority.
Since the bid values are normalized, the result is that each
bid is weighted by the respective task priority.

Note that instead of POMDPs also other planning mod-
els can be used, as long as they involve computing a value
function. An example is the ALLIANCE control architec-
ture [15], where the agent impatience and acquiescence levels
determine the task to be executed. Assume that the sum of
both levels is equal to some constant. Then the value func-
tion can be identified with the agent impatience and the
acquiescence with the complementary value.

6. ACTIVE SURVEILLANCE SYSTEM
The presented approach is applied, in simulation, to an

active surveillance system. It is composed by a set of mobile
robots, an auctioneer and a network of cameras. These are
capable of detecting, with some uncertainty, the location in
the environment of robots and humans. Upon the detec-
tion of a human by the cameras, the auctioneer is notified.
Note that here we present a simplified scenario, which can
be extended easily to include more events (with different
priorities), for instance the detection of fires.

6.1 Experimental setup
The robots have available on-board cameras, which can

recognize humans, also with some uncertainty. Each robot
can obtain its localization in the environment directly from
the camera network. In addition, the robots’ on-board power
supply is limited and must be recharged after some time has
elapsed. The tasks the mobile robots can execute are thus:
(i) identification of humans, (ii) meeting a person, (iii) patrol
the environment and (iv) recharge their on-board batteries.
The first two tasks are assigned only when a person detection
event has occurred. In these tasks the robot must approach
the desired location and use the on-board sensors either to
identify a human or meet it, in order to engage in human-
robot interaction. The last two task types are assigned at
regular intervals and have a low priority with respect to the
first two. In this manner, if no events occur mobile robots
can conduct patrols or recharge their batteries.

A set of four robots were simulated (as a unicycle), three
modeled after a Pioneer 3-AT robot (indicated by Pioneer
A, B and C), and one after an AtrvJr robot. In our current
setup, the difference between the Pioneers and the AtrvJr
is their maximum speed, which is 1.0m

s
for the AtrvJr and

0.4m
s

for the Pioneers. In addition, the camera of Pioneer A
had a higher resolution than the cameras on-board the other
robots. As a result, this robot could observe a location in
the environment from a greater distance than the others.

A topological map of the active surveillance environment
is represented in Figure 2. It was obtained from the test site
of the URUS project [18], at the UPC campus in Barcelona,
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Figure 2: Topological map of the active surveillance
environment.

Task State variables
Patrol SouthWest Robot position
Patrol NorthWest Robot position
Patrol NorthEast Robot position
Patrol SouthEast Robot position
Meet Person Robot position, person position
Identify Person Robot position, person position
Recharge Robot position, battery level

Table 1: State variables used by different tasks. Po-
sitions are represented by nodes in the topological
map; battery level consists of four levels, ranging
from “high” to “very low”.

Spain. The overall dimensions of the map are 100 by 100
meters, as represented in the figure. The environment was
partitioned in smaller regions, with the center of each rep-
resented in the map. The tasks are defined as navigation
actions, defined using the region centers as way-points. In
such a topological map, from each node a robot can only
move to nodes connected to it by edges, representing the
topology of the environment.

Each of the tasks mentioned in the previous section have
been modeled and approximately solved a POMDP, using
Symbolic Perseus [16]. The POMDP models are represented
using two-stage dynamic Bayesian networks, and the soft-
ware allows for exploiting (context-specific) independence
between state variables. Table 1 lists the different state vari-
ables for each task. We assume the surveillance cameras can
localize each robot, but with a particular uncertainty. Also
each robot’s movement actions are subject to noise. As we
are essentially considering long-term plans, the discount rate
is set high, γ = 0.99. Each movement action is penalized
with a reward of −0.1.

6.2 Simulation Results
In a first experiment, all of the robots are initially posi-

tioned at the region containing the center node, in location
(46, 45), and are requested to execute four patrol tasks, one
to each corner of the map. The value functions of each robot



0 100 200 300 400

0

2

4

6

8

10
V

al
ue

Time

Patrol SouthWest

0 100 200 300 400

0

2

4

6

8

10

V
al

ue
Time

Patrol NorthWest

Pioneer A

AtrvJr

Pioneer B

Pioneer C

0 100 200 300 400

0

2

4

6

8

10

V
al

ue

Time

Patrol NorthEast

0 100 200 300 400

0

2

4

6

8

10

V
al

ue

Time

Patrol SouthEast

Figure 3: Four different Patrol tasks.
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Figure 4: Three Patrol tasks and a Meet person task.

over time are plotted in Figure 3. As the belief of the robot
changes while moving through the environment, the value
for each of the tasks is updated. The AtrvJr robot has ini-
tially the highest value for any task since it is the fastest
robot. Nevertheless it can only be assigned one task, in this
case the “Patrol SouthEast” task, and the Pioneers are as-
signed the remaining three tasks: Pioneer A gets “Patrol
NorthWest”, Pioneer B “Patrol NorthEast”, and Pioneer C
“Patrol SouthWest”. Although the AtrvJr robot has initially
a higher value for the“Patrol NorthWest” task, it is assigned
a different task. The reason is that the task assignment is
determined by maximizing the sum of all bid values (3) and
not individual bids.

Until about 100 time units, all Pioneers are still close to
their initial starting position. As a result, their values for
each task are similar, but a hysteresis mechanism prevents
the assignment solution from changing too often. But as
the robots move progressively away from the starting point,
their values also become more different and the assignment
solution stabilizes naturally.

In the second experiment (see Figure 4), three of the
robots again start at the same node, but now at location
(46, 75). The robots are requested to execute three patrol
tasks and also a recharge task. This is only executed when
their battery level is low enough. Since the robots start
with a full battery, initially each is assigned a patrol task.
At about 50 time units, a person is detected in the node at
location (46, 90) and a task to meet the person is requested.
Since the patrol and recharge tasks have a lower priority, one
of the robots, Pioneer A, abandons its patrol task and was

assigned the “Meet person” task. The other two robots are
assigned two of the patrol tasks and one task is left unas-
signed. At around 100 time units, the AtrvJr robot, while
moving to the patrol task goal, passes by the node contain-
ing the battery recharge station. Since the destination of the
patrol task is still far and its battery is low, it is assigned
the recharge task.

Finally, in the third experiment (Figure 5) robots Pio-
neer A and B are initially at nodes with locations (2.5, 17.5)
and (87.5, 17.5) respectively. The robots where initially re-
quested to execute two patrols tasks, one for each of their
respective locations. Since the robots where already at their
goals, they did not move. At about 40 time units, a person
was detected at node (46, 17.5) and an identify person task
was requested. For this task, unlike the meet person, the
robot is only required to approach the person close enough
to take a clear picture. Although the robot Pioneer A is
further away from the person, it has a camera with a better
resolution and can take a picture at a greater distance. For
this reason it is assigned the “Identify person” task instead
of Pioneer B.

These experiments demonstrate that the auction protocol
enable the robots to coordinate their task execution without
communication of their state or beliefs. Also, the system is
able to respond to detected events that occur during the
execution of the tasks initially requested. Although in sim-
ulation, the presented methodology should transfer well to
a real-world scenario, given the robustness with respect to
communication failures.
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Figure 5: Identify person task and two Patrol tasks.

7. DISCUSSION AND FUTURE WORK
An approach to the assignment and execution of tasks

in a multiagent system was presented. The motivation be-
hind the approach was to illustrate the benefits of using
auction protocols and the POMDP framework in multia-
gent systems. The auction protocols enable the coordina-
tion of multiple agents under stringent network operation
conditions and robustness to individual agent failures. But
an important drawback in the use of auctions is the question
of how to estimate each agent’s bid values.

The synthesis of controllers for the execution of tasks
was performed using the POMDP framework. If suitable
stochastic models of the environment and the agent obser-
vations are available, the synthesis problem can be formu-
lated in a straightforward mathematical manner. The main
difficulty of the POMDP approach is to compute a solution
in an efficient manner. This is especially the case for almost
all problem instances, expect those with relatively small di-
mensions.

The combination of the two frameworks produced a solu-
tion in which the individual drawbacks are mitigated. From
the synthesis of controllers using POMDP task models, the
values to bid are naturally obtained from the respective ex-
pected discounted rewards. Another advantage is that the
agent’s belief is already factored into this value. As a result,
it is not necessary to invest additional time in the design
of bid functions for each of the agents’ tasks. Furthermore,
as they are derived directly from the task controller, they
are likely to reflect better true bid values, compared to com-
monly used heuristic bid functions.

The use of an auction enabled the use of smaller POMDP
models than otherwise would be used if all agents and all
tasks are considered simultaneously. This because the agents’
coordination is implied in the use of the auction protocol and
the auctioneer. Therefore, in the controller synthesis prob-
lem the other agents and tasks can be abstracted away. This
is at the cost of optimality, since in practice the agents can
interfere in each others’ task execution.

It is possible, depending on the application, to use dif-
ferent auction protocols, such as on-line combinatorial auc-
tions [13], or for agents to bid on bundles of tasks. This
would require that the arrival order for tasks is known or
that agents could accurately estimate their future rewards.
Also, instead of POMDPs other planning models can be
used, as long as they involve computing a value function.

A direction of future research is the synthesis of a con-

troller for the auctioneer to determine the task priorities.
The purpose is to maximize some performance criteria, such
as the minimum assignment delay for some task types. The
controller can also be used to determine which tasks to trade
with other auctioneers.
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