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Abstract—We consider the problem of sensor-aware path the environment which make parts of the environment hidden
planning for a robot in a Networked Robot System, in particular  from the camera network. Even if we could employ a large
in urban environments equipped with a network of surveillance |, mber of cameras to have an environment fully in view,
cameras. A robot can use observations from the camera . . . ’
network to improve its own localization performance, but also dynamic obstacles still can C“?ate new hidden patches.
needs to take into account the specifics of its local sensors. We ~Furthermore, other areas might be observed by a camera,
model our problem in the Markov Decision Process framework, but not with sufficient resolution for accurate event detec-
which forms a natural way to express concurrent and possibly  tions. In this case, we send mobile robots to positions where
conflicting objectives — such as reaching a goal quickly, keeping igher resolution images are required. In NRS the intesacti

the robot localized, keeping the target in sight — each with their bet th t d h i v b hieved
own priority. We show how we can successfully prioritize the etween the system an umans will largely be achieve

different objectives in a flexible way by changing the reward through human-robot interaction, which in general require
function, based on the sensory needs of the system. a robot to be close to a human subject. In this work, we

consider the problem of a robot planning a path to reach
a target location. For instance, consider a situation where
Robots are leaving the research labs and operating maerobot needs to reach a human for interaction purposes.
often in human-inhabited environments, such as urban pedde robot should take into account available sensory ca-
trian areas. The main idea of the URUS (Ubiquitous Netpabilities provided by a robot's mounted sensors as well
working Robotics In Urban Settings) Project [1], [2] is toas by the network of surveillance cameras. In particular, a
incorporate a network of intelligent components, e.g.pteb robot can use observations from the camera network for its
sensors, devices and communications in order to improwvn localization, or take into account the specifics of its
quality of life in urban areas. The scenario we consider in ounounted sensors to plan an approach to a target location
work is a group of robots assisting humans in a car-free arethat maximizes the information its sensors will give it abou
a so-called Networked Robot System (NRS). The pedestridghe target.
area in which the robots operate is equipped with surveilan We use a Markov Decision Process (MDP) framework to
cameras providing the robot with more information. Imple-address our sensor-aware path planning problem [3], [4]. A
menting such a system requires addressing many scientiflecision-theoretic framework such as the MDP forms a nat-
and technological challenges such as cooperative lotializa ural way to express concurrent and possibly conflicting ob-
and navigation, map building, human-robot interactiorg anjectives such as reaching the goal quickly, keeping thetrobo
wireless networking, to name but a few. In this paper, wépcalized, keeping the target in sight, each with their own
focus on one particular problem, namely how to plan pathsriority. Given the partially observable nature of the pewib,
for robots taking into account the coverage of the cameraodeling it as a partially observable MDP (POMDP) would
network as well as the robots’ own sensors. be appropriate. However, given the scale and level of detail
In many NRS, surveillance cameras will run a set obfthe problems we are targeting, with many states, and, more
event detection algorithms, for instance observing evenisiportantly, a large number of possible observations and a
such as people waving, people lying on the floor, fires, drigh planning horizon, this is beyond current state-ofdite
other emergencies, each with a different priority. Howgveapproximate POMDP planners.
the network of cameras will have a limited coverage and
accuracy. In particular, the environment might contaimdbli
spots that are not observed by any fixed camera. As such,In related work, the Coastal Navigation algorithm models
though the camera network is supposed to cover the scetige problem of navigating a robot while keeping localizatio
employing mobile robots for visual coverage is a needincertainty low as a POMDP [5]. It converts the POMDP
A camera network might cover a lab environment, buinto an augmented MDP, which has an extended state space
providing full coverage for urban environments is a difficul composed of robot locations and discretized entropy levels
task. There are often obstacles both natural and man-madeTine entropy is used as a measure for the uncertainty of the
_ _ _ robot’s localization. In our case, we keep the size of thiesta
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solving of the MDPs. The environment, the costs and theerifies
rewards can be modeled in advance and the optimal path
can be determined for all destinations. Moreover, if there V*(s) = max,_, {

R(s,a) +~ Z T(s,a, s')V*(s')} .

are changes in the environment, updating the MDP model s'es
even with a large number of states is quite fast. We have a (1)
good initial estimate of the value functions which causes th |, orqer to computé’*, dynamic programing techniques

algorithm to converge quickly. such as value iteration can be used [3], [4].
Some researchers studied this problem under a path plan-
ning framework. Choi et al [6] used Q-learning to find the V. COSTS ANDREWARDS FORACTIVE COOPERATIVE
path which can maintain good kinematic isotropic property PERCEPTION
while avoiding obstacles. Singh [7] et al introduce a greedy We will implement our ideas on decision-theoretic robot
search approach for motion planning in order to maximizguidance by defining the MDP’s reward function. This is
the amount of information collected while placing bounds om flexible way for the user of the system to specify the
their resources. Since the original algorithm, callecursive relative importance of the considered factors. In pargigul
greedy is computationally expensive, an approximate algothe idea of taking the best path is directly related to costs
rithm is used which decomposes the state space in a unifosnd rewards. By rewards, we mean what the agents receive
grid in order to reduce the computational complexity. Thelong the path or at destination. The costs are defined as
algorithm is suboptimal and is still expensive to apply talte the amount of resource consumption, effort, loss necessary
time applications. In [8], a gradient-search-based allgori to achieve the goal or the risk, e.g., risk of bumping into
is used to provide a suboptimal solution for sensor positioan obstacle due to taking a narrow path. In our scenario,
selection to realize the best observation of a moving targgicalization certainty, visibility of the target locatipas well
in an environment with no obstacles. Comparing to ouss reaching the destination are considered as the rewards.
work, the authors only considered the localization cetyain Maneuvering risk and traveling are considered as costs, i.e
as a parameter that affects the robot path. Moreover, tlg negative rewards. Each of them are explained below in
algorithm only considers one step ahead rewards based getail.
the other robots’ position prediction. Park [9] proposes a Before going into details, it is necessary to mention that
real-time path planning by combining probabilistic roagmathe world is discretized in a number of states. Each state is
and reinforcement learning to deal with uncertain dynamigpecified by its position and its orientation. The oriewtati
environments and similar environments. To avoid obstaclespace is divided into eight equal sectors and the first starts
the Q values in the states occupied by the obstacles are geto radian. There are three atomic actions possible in each
to zero. This is one shortcoming of this work because thetate: stay in the same state but change the orientat®n
planned path might not be optimal anymore, specially if ther move forward.
environment is highly dynamic.
A. Goal Reward
The goal rewardo is defined as the reward the agent
lll. BACKGROUND ONMARKOV DECISIONPROCESSES  recejves when it reaches the goal state. This reward may
vary based on the degree of our interest in the goal and
We will briefly introduce the Markov Decision Processthe situation. For example, if the camera network detects
(MDP) framework [3], [4]. MDPs provide strong mathemat-a fire and the system deploys the robot to provide more
ical tools for decision making under uncertainty, in case thdetails, considering the urgency of the case, the systeg onl
state of the environment is observable to the robot. It isonsiders the rewards which result in generating the fastes
formally specified by a four tupl€sS, A, T, R) where S is  path to the goal and ignores other possible rewards.
a (finite) set of statesd is a (finite) set of atomic actions, o )
T is the transition model and is a reward function. Each B- Localization Certainty Reward
element ofS describes the state of the system at a given Often, the pose of a target, e.g., a robot, a person, etc.
time instant. Each action element A represents the action is an important piece of information we need to know. For
that agent takes, at any time step. A value function definezkample, when the robot should approach a person to let
asV : S — R determines the sum of total expected futurghe person to interact with the robot, in order to prevent
reward from being in a state V(s) = E[>_,-,7'R:i(s,a)], collision, having an accurate relative localization of abb
where0 <~ < 1 is a discount factor. A policy is a function and the person is very important. In another word, if the
7 : S — A which maps states to actions(s) states the person is localized but with a large uncertainty, the rolaot ¢
action that should be taken in stateand the value of the use its sensors in order to help the camera network to better
policy V. (s) is the expected cumulative discounted futurdocalize the person. Therefore, if the localization uraiety
reward that the agent gets if it executes The optimal of the robot is not good enough, while it is traveling toward
policy 7* tells us which action to take at each state in ordethe person, it has to give more priority to paths with larger
to maximize the expected reward, and can be implementékrtainty Reward than to other paths, e.g., shorter paths bu
using the optimal value functio™. It is known thatV*  with a large localization uncertainty.
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Fig. 2. [lllustration of the maneuvering cost function. Giyimore attention
to maneuvering cost than the traveling cost, in absence @fr atbsts and
Fig. 1.  The figure shows a robot in several positions. The méwa  rewards, forces the robot to take path P1-P2-P6-P7 insteRd-&82-P3-P4-
Positions P1 and P4 is zero but in P2 and P3 is not zero. Thedewstue  P5, although P1-P2-P3-P4-P5 is shorter.
depends on the relative distance and the angle receives.

assigned. Although it is closer to the object than the robot i

The observation model of the surveillance cameras i57 considering its orientation, the target is not in theottsb
assumed Gaussian, with the mean centered at the real valjga of sight.

The covariance increases proportionally with the relativgorma"y, py is defined as:
distance between the camera and object of interest. To each
state in state space we assign a real numbewhich is

called Localization Certainty and is defined as: pv = Zm (4)
P
pL = 1430- @ i = 0if A, > 1, |Ag] > & line of the sight is
¢ blocked by an obstacle placed between the state and the
whereo; is defined as: goal or an obstacle is in the state; Otherwisg = 1.
1 A, is defined as the Euclidean distance between the goal
0i = e, and the state ang is a positive number representing the

maximum visibility radius.Ay is the relative angle between

wheree = [1,1,...,1]7 is al x N vector, N is the number of the robot’s orientation and the line of the sight to the goal a

cameras that can observe the state @nd the covariance ¢ representing the maximum visibility angle. The visibility

matrix of cameras which cover the state. and the robot sensor range are related but visibility is a

. different concept, as it is affected by the robot orientatio

C. Visibility Reward and, more importantly, the path characteristics. A patHn wit
One important issue in our scenario is the visibility issuemany obstacles between the goal and the robot has a low

The visibility is defined as feasibility of observing the etjj visibility, even if the robot is equipped with a long-range

of interest at a specific position and angle. We explain thisensor.

concept by providing an example which is drawn in Fig. 1. ]

In this example, a robot with an on-board camera in sever®: Maneuvering Cost

positions is shown. The robot in P1 is not able to see the Often, a robot needs to change its orientation. To do so, it

object of interest which is depicted by a circle becausérits | needs space. In larger spaces, the maneuvering risk isssmall

of sight is blocked by the obstacle on the way. However, iffor a robot, it is less possible to bump into an obstacle when

P2, the robot is potentially able to view the object. It meani has a larger free space to maneuver. The places closer

that although the object may not be in robot camera viewo the obstacle are more risky for changing the orientation.

field, there is no obstacle that blocks the robot line of sightMoreover, a narrow passage is more risky to take than a

The robot in P3 can see the target and we give a highaider passage. Therefore, the maneuvering pgsbf each

visibility reward compared to P2 because as it is closer tstate is defined as a function of two factors:

the object and the visibility is less sensitive to change in an

the orientation. Moreover, in P4, a zero visibility rewagd i pm ===+ (1 —an)*9 (5)
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The left figure shows the schematic diagram of the UR&sS ted which is located in UPC Nord campus, Barcelona. The figure presents

the free spaces and obstacles. The places marked with yelled sfjuares are the obstacles and the rest is the free space.

where0 < ajs < 1 is used to balance the importance ofpath for all possible goal states off-line. One importasties
passage width (first term) versus the number of surroundingith this method is the change in the environment. Since
obstacles (second term) arids the number of surrounding the environment is dynamic, we may experience changes
in the environment, e.g., an unforeseen obstacle appears on
the robot path and blocks it. In this case we recalculate
the value function. As we have a good initial starting value

) i for value functions, in a few iterations the algorithm might

is the largest cell size. conyerges. Because of that we call this methotive cost-

obstacles )\ is defined as:
Ai

Amam

A=

\; is the cell size of*cell and 4z

To make things clear, a scenario is explained in Fig.
Considering a higher cost for maneuvering,

(6)

_2reward based robot guidance since we can change the optimal
the robot 'ﬁath according to changes in the environment and also our

forced to take path P1-P2-P6-P7 instead of taking the patfiaqs We define the rewards as:

P1-P2-P3-P4-P5, even though the second path is shorter.

E. Traveling Cost

p = Bapc + Bvpev + Brper + Brer + Bupu

(8)

The cost of travelingr has two components: the relative Choosing 3 is based on the robot mission. To limit the
distance and rotation. It is considered as a linear comibimat search space ofs, we normalize the cost and rewargse

of the two costs:

pr =ar * Ap + (1 —ar) * Ay,

where0 < ar < 1.

()

[0,1].

VI. EXPERIMENTS

The first component is calculated based on the relative To verify the performance of the proposed method, we
Euclidean distancé\, the robot needs to take to travel fromran a series of simulations. Fig. 3(a) shows the schematic
one state to another. The second component is determind@gram of the URUS test bed which is located in UPC
by calculating the absolute difference; between the orien- Nord campus, Barcelona. The area size is about 1 hectare,
tation of the two states. We usually give the higher relativivhich we divided in equal siz x 2 m* squares as depicted
importance to the second term as for our robots changing Fig. 3(b). In each cell, we considered 8 different robot

the orientation needs more resources in terms of energy af@dentations. The first orientation is at O radian and thp &te
7- The total number of states is 20000. However, part of them

are occupied by obstacles and we only deal with the free
states. Fig. 3(b) presents the free spaces and obstackes. Th
We use the concepts defined in the previous section aces marked with yellow filled squares are the obstacles
and the rest is the free space. A discrete MDP is used to
considers all the quantitative rewards and computes thie b@sodel the path generation. The reward function is consiblere
path. We model the environment, cost and rewards and theatcording to (8). The basic atomic actions are either toistay
using a simulated environment, we determine the optimahe same cell and only change the orientatieris or move

time.

V. DECISION-THEORETICROBOT GUIDANCE

plan paths using value iteration (Section Ill). Value itema
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forward. Here we assume deterministic actions, however it VII. CONCLUSION AND FUTURE WORK

is trivial to extend the work to noisy actions, as the same | this paper we address the problem of generating an

value iteration procedure can be applied. In Fig. 4, the goghtimal path for a robot taking into account available sepso

position is specified by 'G’ and the area under the camei@papilities, both provided by a robot's own sensors and

coverage is shown by a rectangle with a dashed edge.  py a network of surveillance cameras. By changing some
parameters we can guide the robot to the same position but
taking different paths. The urban environments we target

) are highly dynamic environments in which demands change
Consider the case when the network of cameras detect§aidly. Sometimes a robot should reach the goal as fast

fire. The robot should be deployed in such a way it gets tgs possible, sometimes it should consider other factots suc
the place in the shortest possible time. Another situaion ks jts |ocalization uncertainty and sometimes for an ogtima
where the robot is asked to approach and provide a serviggth we should consider the positions of both the object of
for a person who is localized but with large uncertainty. T¢nterest and the robot. We model the path planning problem
do so, robot has to know its own localization very well ingg Markov Decision Process, which allows to prioritize
order to find out the position of the person using the relativg,e different objectives in a flexible way by changing the
localization for further operation. This is the situatioh@ve | award function. We also can solve the MDP in real time
robot has to take a path under camera coverage and Wiiing value iteration. Since main focus of the NRS is to
acceptablepr,. The aim of the experiments are to evaluatemploy a network of cooperative robots in order to assist and
the effect of different parameters on the generated patfrovide services for human beings, extending this soltttion
Fig. 4(a) shows a scenario where we have a camera whighe muiti-robot and multi-goal active guidance is necessar
covers the area marked with the dashed rectangle. We chegiqce the number of robots is limited and we might have
the behavior of the system, the generated optimal path, lyore demands for services at the same time than available
changing the values of;, and 5 while 3y is set to zero. yesoyrces, we have to prioritize our planning based on degre
First, we setf,, to zero. Naturally, the generated path isof our interest in the objects, the costs and rewards exgain
the path with the lowest traveling cost. In Fig. 4(a), then this paper. In other words, the challenge will be to te#l th

generated path is shown. In Fig. 4(c), we kept @ the  system which robot should take which path and in which
same but changéy . Increasing3;, causes a different path to g qer.

be considered for the robot. The generated path goes through
the area covered by the camera. To see the further effect of REFERENCES
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time the system changes the generated path in such a wayurban settings,” inProceedings of the IEEE/RSJ IROS Workshop on
. Network Robot System2006.
it Stay_s longer _und_er the area covered by the camera. T M. Barbosa, A. Bernardino, D. Figueira, J. Gaspar, N. Gdves, P. U.
result is shown in Fig. 4(e). It can be seen that even when we Lima, P. Moreno, A. Pahliani, J. Santos-Victor, M. T. J. Spaand
change the robot orientation, due to a lafgig the system J. Sequeira, “ISRol]?otNet: A tesitl:gad ffor sensor andII robotvmkg

. . systems,” inProc. of International Conference on Intelligent Robots
still guides the rpb_ot to t_he area covered by the camera. and Systems2009, to appear.
The next scenario is designed to see the effe¢hobndBr  [3] R. S. Sutton and A. G. Bart®einforcement Learning: An Introduction
on the generated path while eith8y is fixed or changed. g'LPéeStS' 1k99g- op _ 4 Ontimal Contraind ed

. . . e . P. bertsekasbDynamic Programming an ptimal Contraind ed.

There are S|tL_Jat|o_n§ where s_endlng_the robot to the p(_)Sl_tléﬂ Belmont, MA: Athena Scientific, 2000,
where the object is in robot line of sight has the top prioritys] N. Roy and S. Thrun, “Coastal navigation with mobile ragbtin
e.g., the camera detects an intruder and has to send the robotAdvances in Neural Information Processing Systems MIT Press,
to track.. In'other. Woirds, the priority is that the robot r.mh (6] M. Choi, W. Kim, and B.-J. Yi, “Trajectory planning in 6-geses-
to a point in which it can observe the person as quickly as of-freedom operational space for the 3-degrees-of-freedwechanism
possible. Using a robot equipped with a laser range finder, configured by constraining the stewart platform structu@ontrol,

. Automation and Systems, 2007. ICCAS '07. Internationalf€ence
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improving robot localization uncertainty, giving some gle

to 51, causes the path generated to become longer but pass

through the area covered by the camera. This is depicted in
Fig. 4(f).



