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Abstract

In this poster we study active learning for supervised regression algorithms. We focus on a particular
problem where the regression is constrained to an interval. This is the case, for instance, when the objective is
to estimate the probability of success of a certain event given a set of input points. The regression problem
is, thus, constrained to the zero-one interval and the training examples are also discrete, e.g. success or
failure.

The constrained regression problem is usually solved using logistic regression [1]. This is in essence a
generalized linear model for discrete outputs (e.g. classes) based on the logits of the probabilities. Active
strategies for this type of techniques have been studied in [2] and pointed out a trade off between compu-
tational cost for experimental design based techniques and robustness issues that appear in more heuristic
criteria. A support vector machine version of the logistic regression, the kernel logistic regression [3] uses
the log-likelihood of the binomial distribution as the loss function and provides directly estimates of the
probability. Constrained regression has also been studied using Beta models in economics [4], to model rates
and proportions [5] and in psychological studies to account for skew and heteroscedasticity [6]. In this case, a
parametric model is fitted maximizing the likelihood function using, for instance, Newton-Raphson or Fisher
scoring. Better experimental results have been reported using alternative residuals in [7]. Bayesian versions
of this regressors have been recently proposed based on a hierarchical model and priors on the parameters
[8].

This poster proposes a new algorithm for such a constrained regression problem specially suited for the
active learning framework. As logisitc regression, the algorithm uses a Binomial likelihood model. At each
point of the input space, a conjugate Binomial-Beta model provides the distribution of the probability of
success. The two parameters of the Beta at a particular point x∗ are computed by accumulating evidence
of successful and failed events at training points xi using a kernel K(x∗,xi) The expression for the Beta
distribution is
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where S∗i = K(x∗,xi)Si and U∗i = K(x∗,xi)Ui are the accumulated virtual number of successful and
failed trials at point x∗ given the successes (Si) and failures (Ui) at training points xi, i ∈ 1..n. Figure
1 (a) shows the mean regression for a one dimensional problem and Fig. 1 (b) shows the predicted Beta
distributions at each point of the input space.

Since we recover a full Beta distribution, an active learning strategy exploits this extra information,
such as the variance (or other measurements of information), to select new training points in a pool based
situation.The general active learning selection equation we will use is

xn = arg max
xi∈Xo

I(xi), (1)

where I(x) is a measure of the improvement in the regression after trying the point x from the set of all
possible points Xo. Such a strategy allows a great reduction in learning time/samples necessary to converge
to a good approximation of the function. In addition to this, we also design an active criterium that focuses
exploration on promising areas of the space, e.g. areas with an expected high probability of success. In this
case, the function I(xi) trades off exploration and exploitation for instance using the predicted mean p̄i and
variance V ar(pi) of the candidates, I(xi) = p̄iV ar(pi)..

We provide results of our method on a simple simulated one dimensional problem (see Fig. 2 for a
comparison of different active strategies) and on an higher dimensional one that consist on learning the
probability of grasping points of an object [9]. In the latter, the robot has to actively try to grasp objects at
different positions. Due to noise and partial information, the result of grasping is not deterministic. Thus,
we learn the probability of grasping given the input features. We present results using a simulated dataset
(with deterministic outputs) [9] and with real data acquired with a humanoid robot where the output of a
grasp trial is actually non deterministic.
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Figure 1: Approximating a sinus varying p in a one dimensional input space. (a) Estimated mean. The 0-1 blue
points are the observations generated from a Bernoulli using the true p (blue line). Failures are represented
by crosses and successes by circles. The red line with marks is the approximated mean computed from the
posterior. (b) Predicted posterior beta distributions for each point along x.
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Figure 2: The estimated parameter p after 60 queries. The points were selected based on (a) entropy, (b)
variance, (c) EI and (d) randomly.
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