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Abstract— Navigation Systems are a key element of a large
variety of mobile platforms, whether manned or unmanned,
autonomous or human-operated. This paper dwells on the ob-
servability of linear motion quantities (position, linear velocity,
linear acceleration, and bias), in 3-D, of mobile platforms,
and presents necessary and sufficient conditions, with physical
insight, for the observability of these variables. The analysis
provided is based on kinematic models, which are exact and
intrinsic to the motion of a rigid-body, and different cases are
presented depending on the assumptions made on the sensor
suite installed on-board.

I. INTRODUCTION

The design of Integrated Navigation Systems arises nat-

urally in the development of a large variety of vehicles

and other mobile platforms, whether manned or unmanned,

autonomous or human-operated, since the knowledge of the

position, attitude, and other quantities is a basic requirement

for its successful operation. Dead-reckoning navigation sys-

tems such as Inertial Navigation Systems (INS) provide all

these quantities. However, the estimation of the position and

attitude of the vehicle is necessarily obtained in this type

of systems by integrating higher-order derivatives such as

the linear acceleration and the angular velocity, which are

measured using, e.g., an Inertial Measurement Unit (IMU).

As such, and regardless of the accuracy and precision of the

IMU, the errors in the position and attitude estimates grow

unbounded due to the noise and bias of the IMU sensors

[1]. These intrinsic limitations of dead-reckoning navigation

systems are usually tackled by using aiding sensors such

as position and attitude sensors, e.g., the popular Global

Positioning System (GPS), inclinometers, and magnetome-

ters. However, even with the inclusion of aiding sensors, not

all states are always observable, in particular, if biases are

considered and the acceleration of gravity is not known with

enough accuracy. This paper investigates the observability of

linear motion quantities of mobile platforms.

Previous work on the study of observability of Navigation

Systems can be found in the literature. In [2] the observ-

ability of INS during initial alignment and calibration at

rest is analyzed. The nominal nonlinear navigation dynamics

This work was partially supported by Fundação para a Ciência e a
Tecnologia (FCT), ISR/IST plurianual funding, through the POS Con-
hecimento Program that includes FEDER funds and by the projects
PDCT/MAR/55609/2004 - RUMOS and PTDC/EEAACR/72853/2006 - HE-
LICIM of the FCT. The work of P. Batista was supported by a PhD Student
Scholarship from the POCTI Programme of FCT, SFRH/BD/24862/2005.

The authors are with the Institute for Systems and Robotics, Insti-
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are perturbed yielding linearized error dynamics and it is

then shown that the system is not completely observable.

In [3] the observability of a linearized INS error model is

also examined for a stationary vehicle and it is reported,

among other results concerning the leveling errors, that the

unobservable states, which are distributed in two decoupled

subspaces, can be systematically determined. In-flight align-

ment of INS is studied in [4] where it is shown that its

observability is improved by maneuvering. In [5] sufficient

conditions for the observability of stationary Strapdown

Inertial Navigation System (SDINS) are analytically derived.

In [6] an observability analysis of a GPS/INS system during

two types of maneuvers, linear acceleration and steady turn,

is presented. The analysis is based on a perturbation model

of the INS and it is shown that the observability improves

when the vehicle maneuvers. Observability properties of the

errors in an integrated navigation system are studied in [7],

where it is shown that acceleration changes improve the

estimates of attitude and rate-gyro bias and changes of the

angular velocity enhance the lever arm estimate. However,

no theoretical results for non-trivial trajectories are given

and only simulation results are provided, which confirm that

the degree of observability of the system increases with the

richness of the trajectories described by the vehicle.

It is well known that the observability improves when

the vehicle maneuvers. This papers details such maneuvers

and provides necessary and sufficient conditions for the

observability of linear motion quantities (position, linear ve-

locity, and linear acceleration) of mobile platforms assuming

exact angular measurements. Four different sensor suites

are considered and definite results are provided for all of

them. The analysis is based on kinematic models, which

are exact and intrinsic to the motion of the vehicle, and

builds on well established observability results for general

linear time-varying (LTV) and time invariant (LTI) systems.

All the results presented in the paper are related to the

concept of complete observability. Nevertheless, extensions

for differential observability or instantaneous observability

(see [8] for details) conditions are trivially obtained from

the results derived in the paper.

The paper is organized as follows. Section II introduces

the classes of dynamic systems whose observability will

be studied. The main results of the paper are presented in

Section III, where physical interpretations are also offered.

Finally, Section IV summarizes the main conclusions of

the paper. Throughout the paper the symbol 0 denotes a

matrix of zeros and I an identity matrix, both of appropriate
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dimensions.

II. LINEAR MOTION KINEMATICS

Let {I} be an inertial coordinate frame and {B} the

body-fixed coordinate frame, whose origin coincides with

the center of mass of the vehicle. Let Ip(t) denote the

position of the origin of {B}, described in {I}, and v(t)
the velocity of the vehicle relative to {I}, expressed in

body-fixed coordinates. The linear motion kinematics of the

vehicle are given by

d

dt
Ip(t) = R(t)v(t), (1)

where R(t) is the rotation matrix from body-fixed to inertial

coordinates, i.e., from {B} to {I}, that satisfies

Ṙ(t) = R(t)S [ω(t)] ,

where ω(t) is the angular velocity of the vehicle, expressed
in body-fixed coordinates, and

S [ω(t)] =





0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0



, ω(t) =





ω1(t)
ω2(t)
ω3(t)



.

The position of the vehicle in inertial coordinates is often

available, e.g., when there is a GPS receiver installed on-

board. However, in underwater robotics, for instance, GPS is

unavailable and alternative positioning sensors are required

[9]. Acoustic positioning systems are common, e.g., long

baseline (LBL) or ultra-short baseline (USBL) sensors. In the

latter case the USBL (in the so-called inverse configuration)

typically measures the position of an external fixed mark

relative to the position of the vehicle, expressed in body-

fixed coordinates, and thus the position of the vehicle is only

available indirectly. Indeed, if p(t) denotes the measurement

of the USBL as it was just described, it satisfies

p(t) = RT (t)
[

Ipm(t) − Ip(t)
]

,

where Ipm(t) denotes the position of the mark relative to

{I}, expressed in inertial coordinates. In this framework, the

kinematics of the vehicle can be described, indirectly, by

ṗ(t) = −S [ω(t)]p(t) − v(t). (2)

A essential element of Navigation Systems is the IMU,

which usually contains a triad of orthogonal accelerometers

and rate-gyros. Assuming that the IMU is mounted in the

center of mass of the vehicle and aligned with the body-fixed

coordinate frame {B}, the rate-gyros provide the angular

velocity of the vehicle, ω(t), and the accelerometers measure

an acceleration quantity a(t) given by

a(t) = v̇(t) + S [ω(t)]v(t) − g(t) + b(t), (3)

where g(t) denotes the acceleration of gravity and b(t)
the bias of the accelerometer, both expressed in body-fixed

coordinates. Ideal accelerometers would not measure the

gravitational term but in practice this term must be consid-

ered due to the inherent physics of the accelerometers, see

[10] for further details. The term S [ω(t)]v(t) corresponds

to the Coriolis acceleration of the vehicle and must also be

considered.

In the remainder of this section four different systems will

be introduced to describe the linear motion of the vehicle

and its relation with the various sensors. The differences

between the proposed dynamics depend on the sensor suite

considered. As it was seen, both (1) and (2) describe the

evolution of the position of the vehicle given the sensors

installed on-board. In what concerns observability properties

they are equivalent assuming exact angular measurements.

Throughout the paper (2) is preferred due to its particular

structure without loss of generality.

A. Navigation with calibrated accelerometer

In the first case considered in the paper it is assumed

that the vehicle is equipped with a positioning sensor and

a calibrated accelerometer, aside from the triad of rate-gyros

or an Attitude and Heading Reference System (AHRS), that

provides the angular velocity of the vehicle. The derivative

of the linear position is given by (2), whereas the derivative

of the velocity may be obtained from (3). The acceleration

of gravity is locally constant in inertial coordinates. Thus,

the derivative of this quantity when expressed in body-fixed

coordinates is given by

ġ(t) = −S [ω(t)]g(t).

The system dynamics can then be written as















ṗ(t) = −S [ω(t)]p(t) − v(t)
v̇(t) = −S [ω(t)]v(t) + g(t) + a(t)
ġ(t) = −S [ω(t)]g(t)
y1(t) = p(t)

, (4)

where a(t) is here considered as a deterministic input and

y1(t) denotes the system output, available for the estimation

of the system state.

B. Dynamic Accelerometer Bias Estimation

The previous system dynamics were derived assuming that

the accelerometer was calibrated. This section introduces

a class of systems suitable for the estimation of the bias

of an accelerometer assuming exact angular and velocity

measurements, in body-fixed coordinates. This is particularly

interesting, for example, if one has available a calibration

table which permits the generation of high-resolution trajec-

tories with known velocities. This system reads as















v̇(t) = −S [ω(t)]v(t) + g(t) − b(t) + a(t)
ġ(t) = −S [ω(t)]g(t)

ḃ(t) = 0

y2(t) = v(t)

, (5)

where a(t) is again assumed to be a deterministic input,

which is in fact available from the triad of accelerometers,

and the output of the system is the velocity of the origin of

the body-fixed coordinate frame.

1178



C. Navigation with known gravity

In Section II-A it was assumed that the accelerometer

was calibrated and the gravity unknown. In this section the

accelerometer measurements are assumed corrupted by an

unknown bias but the gravity is supposed to be known. This

is not a very practical situation as, even if the magnitude of

the gravity is known with great accuracy, any misalignment

in the estimation of the gravity acceleration vector in body-

fixed coordinates results in severe problems in the acceler-

ation compensation. Nevertheless, it presents an interesting

theoretical problem and provides insight to the more general

setup, which will be presented in the next subsection. The

system dynamics that reflect these assumptions are given by














ṗ(t) = −S [ω(t)]p(t) − v(t)
v̇(t) = −S [ω(t)]v(t) − b(t) + a(t) + g(t)

ḃ(t) = 0

y3(t) = p(t)

, (6)

where a(t) and g(t) are assumed to be deterministic inputs

and the system output is the position of the vehicle.

D. Navigation with dynamic accelerometer bias determina-

tion in the presence of unknown gravity

The most general setup regarding the estimation of linear

motion quantities of mobile platforms is presented in this

section. Both the gravity and the bias of the accelerometer

are supposed unknown and the system dynamics read as






















ṗ(t) = −S [ω(t)]p(t) − v(t)
v̇(t) = −S [ω(t)]v(t) + g(t) − b(t) + a(t)
ġ(t) = −S [ω(t)]g(t)

ḃ(t) = 0

y4(t) = p(t)

. (7)

III. MAIN RESULTS

A. Navigation with calibrated accelerometer

This section examines the observability of the dynamic

system (4), which has been derived in the past by the authors

to propose a navigation filter with a calibrated accelerometer.

The result provided in this section is not new, see [11], but

it is presented here in preparation for the results that will

follow.

Theorem 1: The dynamic system (4) is observable.

Proof: In compact form, the dynamic system (4) can

be rewritten as
{

ẋ1(t) = A1(t)x1(t) + B1u1(t)
y1(t) = C1x1(t)

,

where x1(t) =
[

pT (t)v(T t)gT (t)
]T

∈ R
9 is the vector of

system states, u1(t) = a(t) ∈ R
3 is the input of the system,

A1(t)=





−S [ω(t)] −I 0

0 −S [ω(t)] I

0 0 −S [ω(t)]



, B1 =





0

I

0



,

and C1 = [I 0 0]. Consider the Lyapunov transformation

x1(t) := T1(t)x1(t),

with

T1(t) := diag (R(t), R(t), R(t))

and define an equivalent output y1(t) := R(t)y1(t). Then,

the new system dynamics can be written as
{

ẋ1(t) = A1x1(t) + B1(t)u1(t)
y1(t) = C1x1(t)

,

where

A1 =





0 −I 0

0 0 I

0 0 0



, B1(t) =





0

R(t)
0



 ,

and C1 = [I 0 0]. Since the pair (A1, C1) is observable, it

follows that (4) is also observable as both systems are related

through a Lyapunov transformation, with equivalent outputs

[12].

B. Dynamic Accelerometer Bias Estimation

This section presents observability conditions for dynamic

accelerometer bias estimation. Before going into the details,

some simpler but very useful and inspiring properties re-

garding the observability of the system are presented and

discussed.

In compact form, the system dynamics (5) can be written

as
{

ẋ2(t) = A2(t)x2(t) + B2u2(t)
y2(t) = C2x2(t)

, (8)

where x2(t) =
[

vT (t)gT (t)bT (t)
]T

∈ R
9 is the vector of

states of the system, u2(t) = a(t) ∈ R
3 is the input of the

system,

A2(t) =





−S [ω(t)] I −I

0 −S [ω(t)] 0

0 0 0



 , B2 =





I

0

0



 ,

and C2 = [I 0 0]. Within this framework, suppose that

the angular velocity ω is constant. In this situation, the

dynamic system (8) is LTI and therefore its observability

can be directly assessed from the analysis of the rank of the

observability matrix O2 associated to the pair (A2,C2). It

is a simple matter of computation to show that

• for constant ω = 0, rank [O2] = 6 and

• for constant ω 6= 0, rank [O2] = 8.

From this first result it is already possible to say that the

system (8) is not observable for, at least, some trajectories

of ω, and this is not a surprise. Indeed, for ω = 0, both the

gravity and the bias are constant in body-fixed coordinates

(and inertial coordinates too) and it is impossible to distin-

guish between them based on the velocity measurements.

However, in this situation, it is straightforward to show that

it would be possible to design an observer for both v and the

quantity g−b. When ω is constant but nonzero, the degree

of observability of the system increases. In this situation it

is also straightforward to show that it is still possible to

estimate both v and g − b. This fact is important and will

be exploited shortly as it suggests that g−b is an observable

mode regardless of the trajectory described by the angular
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velocity. Moreover, the non-observable subspace is related to

the direction of the angular velocity, which suggests that, if

the axis of rotation changes, the system becomes observable.

The following proposition is required before presenting the

main result of this section, which confirms this suspicion.
Proposition 1: The dynamic system (8) is observable on

[t0, tf ] if and only if

SW
2A

(tf , t0) := R
[2,2] (tf , t0)

−
4

T

[

R
[2] (tf , t0)

]T [

R
[2] (tf , t0)

]

+
6

T 2

[

R
[2] (tf , t0)

]T [

R
[3] (tf , t0)

]

+
6

T 2

[

R
[3] (tf , t0)

]T [

R
[2] (tf , t0)

]

−
12

T 3

[

R
[3] (tf , t0)

]T [

R
[3] (tf , t0)

]

(9)

is positive definite, where T := tf − t0,

R
[1] (t, t0) :=

∫ t

t0

R (σ) dσ,

R
[2] (t, t0) :=

∫ t

t0

∫ σ1

t0

R (σ2) dσ2dσ1,

R
[3] (t, t0) :=

∫ t

t0

∫ σ1

t0

∫ σ2

t0

R (σ3) dσ3dσ2dσ1,

and

R
[2,2] (t, t0) :=

∫ t

t0

[

R
[1] (σ, t0)

]T [

R
[1] (σ, t0)

]

dσ.

Proof: To examine the observability of the dynamic

system (8) it is convenient to compute the observability

Gramian W2 (t0, tf ), given by

W2 (t0, tf ) :=

∫ tf

t0

φT
2 (t, t0)C

T
2 C2φ2 (t, t0) dt,

where φ2 (t, t0) denotes the transition matrix associated to

A2(t). The transition matrix and the observability Gramian

are trivially obtained for linear time invariant systems. How-

ever, when that is not the case, the task usually becomes

much more intricate, depending on the complexity of the

system at hand. The present system is linear time-varying

and the transition matrix is not trivially obtained. However,

it is possible to tackle the problem resorting to an appropriate

Lyapunov coordinate transformation, known to preserve the

observability properties of linear systems.

In Section III-A the observability of the system was as-

sessed trough the use of an orthogonal Lyapunov transforma-

tion which rendered the system dynamics LTI. Although the

application of this trick to (8) does not render the dynamics

LTI, it is still useful as it reduces the number of time varying

elements of the new dynamics. Coupled with this, it has been

shown that both v and g − b are observable for a constant

angular velocity. This suggests that no restrictions for full

observability should arise on these two quantities. These two

ideas motivate the coordinate change

x2(t) := T2(t)x2(t), (10)

with

T2(t) :=





R(t) 0 0

0 R(t) −R(t)
0 0 I



 .

Notice that (10) is a Lyapunov coordinate transformation as

• T2(t) is continuously differentiable for all t;

• Both T2(t) and Ṫ2(t) are bounded for all t, where

Ṫ2(t) =





R(t)S(t) 0 0

0 R(t)S(t) −R(t)S(t)
0 0 0



 ;

• det [T2(t)] = 1.

The fact that (10) is a Lyapunov transformation establishes

the equivalence of observability properties between x2 and

x2.

The dynamics of x2 are given by
{

ẋ2(t) = A2(t)x2(t) + B2(t)u2(t)
y2(t) = C2(t)x2(t)

,

where

A2(t) =





0 I 0

0 0 −R(t)S(t)
0 0 0



, B2(t) =





R(t)
0

0



 ,

and C2(t) =
[

RT (t) 0 0
]

. The observability Gramian asso-
ciated with the pair (A2(t), C2(t)) can be written as

W 2 (tf , t0) =









(tf − t0) I
(tf−t0)

2

2
I W

(1,3)

2
(tf , t0)

∗
(tf−t0)

3

3
I W

(2,3)

2
(tf , t0)

∗ ∗ W
(3,3)

2
(tf , t0)









,

where

W
(1,3)

2
(tf , t0) =

(tf − t0)
2

2
R (t0) − R

[2] (tf , t0) ,

W
(2,3)

2
(tf , t0)=

(tf − t0)
3

3
R (t0) − (tf − t0)R

[2] (tf , t0)

+R
[3] (tf , t0) ,

and

W
(3,3)

2
(tf , t0) =

(tf−t0)
3

3
I + R

[2,2] (tf , t0)

− (tf − t0)
(

R (t0)
T
R

[2] (tf , t0) +
[

R (t0)
T
R

[2] (tf , t0)
]

T
)

+R (t0)
T

R
[3] (tf , t0) +

[

R (t0)
T

R
[3] (tf , t0)

]T

.

It is a simple matter of computation to show that W2 (tf , t0)
is invertible if and only if (9) is positive definite since it

corresponds to the Schur complement of the observability

Gramian W2 (tf , t0).
The following theorem is the main result of this section.
Theorem 2: The dynamic system (8) is observable on

[t0, tf ] if and only if

∃
t0 ≤ ti ≤ tf

∀
α ∈ R

: ω (ti) 6= 0 ∧ ω̇ (ti) 6= αω (ti) . (11)

Proof:
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a) Necessity: Suppose that (8) is observable and (11)

is not satisfied. Then, either

∀
t ∈ [t0, tf ]

: ω(t) = 0

or

∀
t ∈ [t0, tf ]

∃
α(t) ∈ R

: ω̇(t) = α(t)ω(t) (12)

are satisfied (or both). If the angular velocity is null for all

t, it has been shown that the system is not observable. If

ω (t0) 6= 0, then it follows, from (12), that either

ω(t) = ω (t0) , ∀t ∈ [t0, tf ] ,

i.e., the angular velocity remains constant on [t0, tf ], or

ω(t) = e
∫

t

t0
α(τ)dτ

ω (t0) . (13)

It has already been proved that if the angular velocity remains

constant the system is not observable. Thus, to prove that

(11) is a necessary condition, it remains to demonstrate that

if (13) is satisfied the system is not observable. Suppose

then that (13) is satisfied. That is equivalent to say that the

body-fixed coordinate frame rotates around a fixed axis of

rotation, possibly with time-varying angular velocity. Thus,

it is possible to write R(t) as

R(t) = R (t0)Ru(t) (14)

where Ru(t) is a rotation about the angular velocity vector,
whose axis does not change. Next, it is shown that for R(t)
given by (14), (9) is not positive definite and thus the system
is not observable. Multiplying (9) on the left and on the right
by ωT (t0) and ω (t0), respectively, gives

ωT (t0) SW
2A

(tf , t0) ω (t0) = ωT (t0)R
[2,2]ω (t0)

− 4
T

ωT (t0)
[

R
[2] (tf , t0)

]T [

R
[2] (tf , t0)

]

ω (t0)

+ 6
T2 ωT (t0)

[

R
[2] (tf , t0)

]T [

R
[3] (tf , t0)

]

ω (t0)

+ 6
T2 ωT (t0)

[

R
[3] (tf , t0)

]T [

R
[2] (tf , t0)

]

ω (t0)

− 12
T3 ωT (t0)

[

R
[3] (tf , t0)

]T [

R
[3] (tf , t0)

]

ω (t0) . (15)

Expanding, for instance, the first term of (15), gives

ωT (t0)R
[2,2]ω (t0) =

=
∫ tf

t0

[

∫ σ

t0
ωT (t0)R

T (σ1) dσ1

][

∫ σ

t0
R (σ2) ω (t0) dσ2

]

dσ.

(16)

Now, note that

R (t)ω (t0) = R (t0) ω (t0) , ∀t ∈ [t0, tf ] (17)

since Ru(t) is a rotation about the angular velocity vector,

whose axis remains constant for all time. Substituting (17)

in (16) it follows that

ωT (t0)R
[2,2]ω (t0) =

T 3

3
‖ω (t0)‖

2
. (18)

Similar procedures yield

ω
T (t0)

[

R
[2] (tf , t0)

]T [

R
[2] (tf , t0)

]

ω (t0) =
T 4

4
‖ω (t0)‖

2
,

(19)

ω
T (t0)

[

R
[2] (tf , t0)

]T [

R
[3] (tf , t0)

]

ω (t0) =
T 5

12
‖ω (t0)‖

2
,

(20)

ω
T (t0)

[

R
[3] (tf , t0)

]T [

R
[2] (tf , t0)

]

ω (t0) =
T 5

12
‖ω (t0)‖

2
,

(21)
and

ω
T (t0)

[

R
[3] (tf , t0)

]T [

R
[3] (tf , t0)

]

ω (t0) =
T 6

36
‖ω (t0)‖

2
.

(22)
Substituting (18)-(22) in (15) gives

ω
T (t0) SW

2A

(tf , t0) ω (t0) = 0.

Thus, the Schur complement (9) is not positive definite,

and, from Proposition 1, it follows that the system is not

observable. This completes the proof of necessity.

b) Sufficiency: Suppose that (11) is satisfied, i.e., there

exists ti ∈ [t0, tf ] such that

ω (ti) 6= 0 ∧

(

∀
α ∈ R

ω̇ (ti) 6= αω (ti)

)

. (23)

Consider the matrix defined as

L2(t) =
[

L
T
20(t) . . . L

T
2q

(t)
]T

,

where
{

L20(t) = C2(t)

L2i(t) = L2(i−1)(t)A2(t) + L̇2(i−1)(t), i = 1, 2, . . . , q
,

and such that C2(t) is q times continuously differentiable

and A2(t) is q − 1 times continuously differentiable. Then,

if there exists ta ∈ [t0, tf ] such that

rank [L2 (ta)] = 9,

the system is observable on [t0, tf ], see [13]. Let q = 3.
Then, straightforward computations yield

L2 (ti) =









R
T (ti) 0 0

−S (ti)R
T (ti) R

T (ti) 0

∗ ∗ −S (ti)

∗ ∗ 2S2 (ti) − Ṡ (ti)









.

Assuming (23), it follows

rank [L2 (ti)] = 9,

which concludes the proof.

The technical condition stated in Theorem 2 is equivalent

to say that the body-fixed frame must rotate and the axis

of rotation must change so that observability is attained.

This behavior is usually known as coning and confirms the

suspicions previously stated.

C. Navigation with known gravity

This section examines the observability of the dynamic

system (6). Before presenting the main result, notice that,

for constant angular velocity the system is always observable.

Thus, one can expect the system to be observable for all ω.

The following theorem establishes this property.

Theorem 3: The dynamic system (6) is observable.
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Proof: In compact form, the dynamic system (6) can

be rewritten as
{

ẋ3(t) = A3(t)x3(t) + B3u3(t)
y3(t) = C3x3(t)

, (24)

where x3(t) =
[

pT (t)vT (t)bT (t)
]T

∈ R
9 is the vector of

states of the system, u3(t) =
[

aT (t)gT (t)
]T

∈ R
6 is the

input of the system,

A3(t)=





−S [ω(t)] −I 0

0 −S [ω(t)] −I

0 0 0



, B3 =





0 0

I I

0 0



,

and C3 = [I 0 0]. Consider the Lyapunov transformation

x3(t) := T3(t)x3(t),

with

T3(t) := diag (R(t), R(t), I) .

Then, the new system dynamics can be written as
{

ẋ3(t) = A3(t)x3(t) + B3(t)u3(t)
y3(t) = C3(t)x3(t)

,

where

A3(t) =





0 −I 0

0 0 −R(t)
0 0 0



 , B3(t) =





0 0

R(t) R(t)
0 0



 ,

and C3(t) =
[

RT (t) 0 0
]

. Consider the matrix defined as

L3(t) =
[

L30(t) . . . L3q(t)
]

,

where
{

L30(t) = C3(t)

L3i(t) = L3(i−1)(t)A3(t) + L̇3(i−1)(t), i = 1, 2, . . . , q
,

and such that C3(t) is q times continuously differentiable
and A3(t) is q − 1 times continuously differentiable. Let
q = 2. Then, straightforward computations yield

L3 (t) =





R
T (t) 0 0

∗ −R
T (t) 0

∗ ∗ I



 ,

which has rank 9. Thus, the system (24) is observable [13].

D. Navigation with dynamic accelerometer bias determina-

tion in the presence of unknown gravity

This section presents the last result of the paper, which

assesses the observability of a navigation system with dy-

namic accelerometer bias estimation. This result is closely

related to the one presented in Section III-B, since the nom-

inal dynamics for navigation with dynamic accelerometer

bias determination can be regarded as an extension of the

dynamics for dynamic accelerometer bias estimation.

Theorem 4: The dynamic system (7) is observable on

[t0, tf ] if and only if

∃
t0 ≤ ti ≤ tf

∀
α ∈ R

: ω (ti) 6= 0 ∧ ω̇ (ti) 6= αω (ti) .

Proof: The proof follows the same steps as the proof

of Theorem 2 and therefore it is omited.

IV. CONCLUSIONS

This paper provided observability results regarding sys-

tems related to the estimation of linear motion quantities

of mobile platforms (position, linear velocity, and linear

acceleration), in 3-D, assuming exact angular measurements.

Four different cases were studied: i) in the first a simple cal-

ibrated sensor suite consisting of an IMU and a positioning

sensor was considered and it was shown that the system

is always observable, even without the knowledge of the

acceleration of gravity; ii) in the second case the problem

of dynamic accelerometer bias estimation was studied and it

was shown that not all trajectories yield observability of the

system state. In particular, it was shown that the trajectories

should be rich enough in what concerns the evolution of

the attitude of the body-fixed frame, namely, the body-fixed

coordinate frame should describe trajectories with coning; iii)

the third situation described in the paper considers a triad

of accelerometers with unknown biases but the gravity is

assumed to be known. It was shown that, in this situation,

the state of the system is always observable; iv) the last

case addressed the most general setup where the triad of

accelerometers may have an unknown bias and the gravity is

also supposed to be unknown. It was shown that the system is

observable if and only if the attitude evolution is sufficiently

rich, in the same sense as the one presented for dynamic

accelerometer bias estimation.
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