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Abstract—This brief presents a new observer synthesis method-
ology for a class of kinematic systems with application to the
estimation of linear motion quantities of mobile platforms (po-
sition and linear velocity), in three dimensions, that: 1) presents
globally exponentially stable (GES) error dynamics, which are
also input-to-state stable (ISS) with respect to angular quantities;
2) minimizes the � induced norm from a generalized disturbance
input to a performance variable; 3) provides a systematic design
procedure, based upon robust control theory results, that allows
for the use of frequency weights to shape the dynamic response
of the observer. A practical application is presented, in the field
of ocean robotics, that demonstrates the potential and usefulness
of the proposed design methodology and simulation results are
included that illustrate the observer achievable performance in
the presence of both extreme environmental disturbances and
realistic sensors’ noise.

Index Terms—Estimation, navigation, robotics, time-varying ob-
servers, underwater vehicles.

I. INTRODUCTION

T HE design of Navigation and Positioning Systems plays
a key role in the development of a large variety of mo-

bile platforms for land, air, space, and marine applications. In
the domain of marine research, for instance, the quality of the
navigation data is a fundamental requirement in applications
that range from ocean sonar surveying to ocean data acquisi-
tion (salinity, temperature, etc.) or sample collection (microbial
organisms, sediments, etc.), as the acquired data sets should be
properly georeferenced with respect to a given mission refer-
ence point. For control purposes, other quantities such as the at-
titude of the vehicle and/or the linear and angular velocities are
also commonly required. This brief presents the design and per-
formance evaluation of a time-varying globally exponentially
stable (GES) observer for a class of kinematic systems with ap-
plication to the estimation of linear quantities in Integrated Nav-
igation Systems for mobile platforms.

To tackle this class of problems several approaches have been
proposed in the literature. In [1] a GES nonlinear control law is
presented for ships, in 2-D, which includes a nonlinear observer
to provide the state variables of the vehicle. This observer re-
lies on the vehicle dynamics but, as discussed in [2], it does not
apply to unstable ships. In [2], a solution to an extended class of
ships is proposed requiring only stable surge dynamics. In [3], a
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globally exponentially stable (GES) observer for ships (in 2-D)
that includes features such as wave filtering and bias estimation
is presented and in [4] an extension to this result with adaptive
wave filtering is available. An alternative filter was proposed in
[5] where the problem of estimating the velocity and position of
an autonomous vehicle in 3-D was solved by resorting to special
bilinear time-varying complementary filters. A passivity-based
controller-observer design for robots with degrees-of-freedom
is proposed in [6] and a sliding mode observer for robotic ma-
nipulators is reported in [7]. The development of nonlinear ob-
servers for Euler–Lagrange systems has been addressed in [8]
and [9]. More recently, a pair of co-working nonlinear Luen-
berger GES observers for aerial unmanned vehicles (AUVs), in
3-D, was proposed in [10], which also elaborates on the desta-
bilizing Coriolis and centripetal forces and moments. However,
this last approach assumes, among others, limited pitch angles.
A nonlinear observer for a single degree-of-freedom decoupled
underwater vehicle model can be found in [11], where the au-
thors also present experimental results. General drawbacks of
the previously mentioned results include the absence of system-
atic tuning procedures and the inherent limitations of the vehicle
dynamic models, which are seldom known in full detail and may
be subject to variations over time.

The main contribution of this brief is a new observer design
methodology for a class of kinematic systems with application
to the estimation of linear quantities (position, linear velocity,
and ocean current) in Integrated Navigation Systems that:

1) presents globally exponentially stable error dynamics
which are also input-to-state stable with respect to angular
quantities;

2) minimizes the induced norm from a generalized distur-
bance input to a performance variable;

3) provides a systematic design procedure based upon the
latest robust control theory results, that allows for the use
of frequency weights to shape the dynamic response of the
observer.

At the core of the proposed methodology, there is a time-varying
orthogonal coordinate transformation that renders the observer
error dynamics linear time invariant (LTI). The problem is then
formulated as a virtual control design problem which is solved by
resorting to the standard output feedback control synthesis
technique. This method was preferred since it minimizes the
induced norm from a generalized disturbance input to a perfor-
mance variable, which allows for the use of frequency weights
in the design to shape the frequency response of the observer.

The general observer setup presented in the brief is suitable
for the estimation of a large variety of linear motion quantities
in Strapdown Integrated Navigation Systems for different types
of vehicles and robotic platforms, depending on the sensor suite
that is considered. For aerial, ground, or surface marine vehicles
typical solutions arise from the use of the Global Positioning
System (GPS), Doppler radars, and/or accelerometers, coupled
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with Attitude and Heading Reference Systems (AHRS). For
underwater vehicles Ultra-Short Baseline (USBL) accoustic po-
sitioning systems, Doppler velocity logs, and/or accelerometers
lead to similar navigation solutions. An application of the pro-
posed observer design technique is presented to estimate linear
quantities in Integrated Navigation Systems for underwater vehi-
cles. To describe the vehicle tridimensional motion the proposed
observers rely on pure kinematic models. This class of models,
expressed in the inertial coordinate system, has been widely
used by the Navigation community, see [12] and the references
therein. The present solution departs from previous approaches
as it considers the rigid-body kinematics expressed in body-fixed
coordinates, which is particularly suitable for direct application
in strapdown navigation systems. This brief builds on previous
work by the authors that can be found in [13] and [14], where
a globally stable ocean current observer was designed to feed a
nonlinear sensor-based integrated guidance and control law.

This brief is organized as follows. The theoretical results be-
hind the proposed solutions are developed in Section II, in-
cluding the observer design methodology and the derivation of
several important properties. A relevant application in the field
of ocean robotics, namely the estimation of unknown ocean cur-
rents, is presented in Section III, and simulation results are in-
cluded that illustrate the achievable performance in the presence
of extreme environmental disturbances and realistic noise of the
sensors. Finally, Section IV summarizes the main contributions
of this brief.

II. THEORETICAL BACKGROUND

This section presents the design of an observer for a class of
kinematic systems and the derivation of several properties of
the proposed solution. The class of kinematic systems is intro-
duced in Section II-A. Afterwards, the observer is developed in
Section II-B. Section II-C presents some properties of the pro-
posed solution. Throughout this brief the symbol denotes
an matrix of zeros, an identity matrix with dimension

, and a block diagonal matrix. When
the dimensions are omitted the matrices are assumed to be of
appropriate dimensions.

A. System Dynamics

Consider the class of dynamic systems

(1)

where are the system
states, is the system output, ,
are known smooth functions of time, is also a smooth
function of time, , represents nonzero
scalar constants, and is a skew-symmetric matrix that veri-
fies , with denoting the cross product, and that
satisfies , where is a rotation matrix.
The time dependence of , and will be
omitted in the sequel for the sake of simplicity.

The following assumption is considered.
Assumption 1: The values of and are available to

be used in the observer. Moreover, is bounded for all , i.e.,

The problem under discussion in this section can be stated as
follows.

Problem Statement: Consider the class of dynamic systems
(1) verifying Assumption 1. Design a state observer that mini-
mizes the impact of sensor noise and external disturbances on
the state estimates.

B. Observer Design

This section presents the observer design for the class of sys-
tems introduced in Section II-A. First, the observer structure is
imposed, leaving enough degrees of freedom to allow the design
of a control mechanism to drive the observer error to zero. Af-
terwards, a coordinate transformation is applied to the resulting
observer error dynamics that renders them LTI. The control of
the observer error follows resorting to the standard output
feedback control synthesis technique, yielding the final observer
dynamics.

Consider an observer with the following structure:

(2)

where

are virtual control variables that will be used to stabilize the
observer error dynamics, with . Notice
that, apart from the output injection term , this
structure is an exact copy of the nominal system. The reasoning
behind the introduction of this term will become clear later in
this brief.

Let , denote the state estimation
errors. Hence, from (1) and (2), it follows that the observer error
dynamics can be written as

which are inherently time-varying. Next, this extra complexity
is overcome through the use of an appropriate orthogonal time-
varying coordinate transformation. To that purpose, define

as

(3)

where and is the coordinate trans-
formation matrix defined as
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Notice that (3) is a Lyapunov transformation [15] as follows:
• is continuous differentiable for all ;
• under Assumption 1 both and are bounded

for all , where , with

• .
In the new coordinate space the observer error dynamics can

be written as

(4)

where

...
. . .

. . .
. . .

...
...

. . .
. . .

...
. . .

and . Applying the same coordinate trans-
formation to the virtual control input of the observer error dy-
namics yields , that allows to rewrite (4) as

(5)

which is a linear time invariant system. Thus, with the coordi-
nate transformation (3) the observer error dynamics are rendered
LTI. The introduction of the term is now evident.

Naturally, not all the error states are available for feedback.
In fact, and according to (1), only is accessible. Thus, to
complete the observer error dynamics, define as output

(6)

where . Notice now that the LTI system (5)–(6)
is both controllable and observable. Therefore, any control de-
sign methodology for linear time invariant systems can be em-
ployed to stabilize the observer error dynamics, in particular the

output feedback control synthesis. The employment of this
design technique permits the natural use of frequency weights to
shape both the exogenous and the internal signals. To that pur-
pose, consider the block diagram depicted in Fig. 1, where the
linear observer error dynamics are shown together with weight
matrix transfer functions . In the figure,

and represent the generalized
disturbance and performance vectors, respectively. Notice that
the models for the disturbance inputs and sensor noise live in
the transformed space. The same applies to the performance
weights.

Define , where
, denotes the states of the state space realizations of the

frequency weights . Then, the augmented
plant can be written, in a compact form, as

(7)

where the definition of the various matrices is omitted as it is
evident from the context. The standard design setup and nomen-
clature in [16] is adopted and it is assumed that the control

Fig. 1. Generalized LTI observer error dynamics.

problem is well-posed. Let denote the closed-loop op-
erator from the generalized disturbance vector to the general-
ized performance vector . Then, the solution of the output
feedback control problem for the augmented plant (7) yields a
stabilizing compensator

(8)

that minimizes . Combining (2) with (8) finally
yields the time-varying realization of the observer in the orig-
inal coordinates

(9)
where .

C. Properties

In this section several properties of the proposed observer
are presented and discussed. The proofs are presented in the
appendix for the sake of readability. First, the asymptotic sta-
bility of the observer error dynamics is stressed in the following
theorem.

Theorem 1: Consider the nominal dynamic system (1). Then,
under Assumption 1, the error dynamics of the proposed time-
varying observer (9) are globally exponentially stable.

The proposed observer is designed resorting to the
output feedback control methodology, which naturally displays
a certain optimality property. In order to derive it, consider the
generalized observer error dynamics depicted in Fig. 2. The
main differences between this generalized plant and the one de-
picted in Fig. 1 are: 1) the generalized disturbances go through
the transformation and 2) the generalized performance
vector takes into account the system states and the control signal
after the transformation . In spite of these transformations,
the magnitude of the signals is preserved—only the direc-
tionality is affected over time. Let .
Notice that , with dynamics given by

where
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Fig. 2. Generalized observer error dynamics.

, and . The perfor-
mance vector can be written as

where and . The general-
ized output is given by

where and . The
following theorem addresses the optimality of the proposed so-
lution.

Theorem 2: Under the conditions of Theorem 1, the proposed
observer minimizes the induced norm from to , assuming
that is a finite energy signal, i.e., is square integrable.

It is important to remark that the observer structure was pre-
viously imposed and did not arise naturally from the solution of
an optimization problem. Nevertheless, good performance can
be achieved by minimizing the induced norm from to
in the augmented error dynamics depicted in Fig. 2, as it will be
clearly demonstrated in the next section.

The exponential behavior of the observer error dynamics is a
very important property. Nevertheless, there exist GES systems
that, in the presence of disturbances, even arbitrarily small van-
ishing signals, are driven to infinity [17]. The following result
characterizes the system with respect to perturbations in ,
and .

Theorem 3: Suppose that , and in (9) are replaced by
disturbed variables , and

, where , and are the disturbances, respec-
tively, and assume that the state remains bounded for all time.
Then, under the conditions of Theorem 1, the observer error is
locally ISS, with as input.

III. POSITION AND CURRENT OBSERVER

A. Problem Statement

The application detailed in this brief revisits the problem
described in [14]. Consider an underwater vehicle equipped
with an acoustic positioning system like an ultra-short baseline
(USBL) sensor and suppose that there is a moored buoy in the

Fig. 3. Mission scenario.

mission scenario where an acoustic transponder is installed.
Fig. 3 depicts the scenario just described. The linear motion
kinematics of the vehicle can be written as

where is the position of the origin of the body-fixed coor-
dinate system described in the inertial coordinate system

is the rotation matrix from to , that verifies
is the linear velocity of the vehicle relative to , ex-

pressed in body-fixed coordinates, and is the vehicle angular
velocity, also expressed in body-fixed coordinates. Assume that
the buoy where the transponder is installed is subject to wave
action of known power spectral density that affects its posi-
tion over time, and suppose that the position of the transponder
with respect to the vehicle is available, in body-fixed coordi-
nates as measured by the USBL sensor installed on-board. Sup-
pose also that the body angular velocity and the rotation ma-
trix are available from an Attitude and Heading Reference
System (AHRS). Finally, suppose that the vehicle is moving in
deep waters (far from the wave action), in the presence of an
ocean current of constant unknown velocity, which expressed
in body-fixed coordinates is represented by .

The problem considered here is that of estimate the velocity
of the current and the position of the transponder with respect to
the vehicle. Further consider that the velocity of the vehicle rel-
ative to the water is available from the measures of an on-board
Doppler velocity log. In shallow waters, this sensor can be em-
ployed to measure both the velocity of the vehicle relative to
the inertial frame and relative to the water. However, when the
vehicle is far from the seabed the inertial velocity is usually un-
available. By estimating the ocean current velocity, an estimate
of the velocity of the vehicle relative to the inertial frame is im-
mediately obtained.

B. Proposed Solution

Let denote the position of the transponder relative to
and denote the velocity of the vehicle relative to the fluid,
both expressed in body-fixed coordinates. Since the transponder
is assumed at rest (in the absence of environmental disturbances)
in the inertial frame, the time derivative of is given by

(10)
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On the other hand, as the velocity of the fluid is assumed to be
constant in the inertial frame, the time derivative of this quantity
expressed in body-fixed coordinates is simply given by

(11)

Notice that the vehicle velocity relative to the inertial frame sat-
isfies .

Clearly, the problem of estimating the velocity of the fluid
falls into the class of problems addressed in the brief, with

and . Thus, it is possible to design an observer as detailed
in Section II. The simplicity of the model (10)–(11) arises from
the fact that the linear motion of the vehicle is expressed by a
pure kinematic description, which is exact and has been widely
used by the scientific community in the design of aided Naviga-
tion Systems. The novelty of the proposed solution arises from
expressing the rigid-body kinematics in body-fixed coordinates,
which allows the derivation of (10)–(11).

Note that, in this case, the position of the transponder changes
with time as the latter is assumed to be mounted in a buoy
moored close to the sea surface, subject to strong wave action.
Nevertheless, the buoy wave induced random motion can be
modeled as an external disturbance on the USBL positioning
system expressed on the inertial frame, and its description em-
bedded in the frequency weights as presented in Section II. As
closed-loop design objective consider the rejection of the in-
duced wave disturbances from the position measurements to the
position and current velocity estimates, as well as the noise in
the position and relative velocity measurements.

The disturbances induced by the 3-D wave random field in
the position of the buoy are modeled using three second-order
harmonic oscillators representing the disturbance models along
the , and directions,

where is the dominating wave frequency along each axis,
is the relative damping ratio, and is a parameter related to the
wave intensity, see [3] and [18] for further details. The sensor
frequency weight matrix transfer function was chosen
as

Notice that a direct term was included, not only to satisfy design
requirements (nonzero sensor noise), but also to model the noise
on the USBL, which was assumed Gaussian with standard devi-
ation of 1 m. In the simulation, the dominating wave frequency
was set to 0.90 rad/s and the relative damping ratio to

.
Although there is no model uncertainty, as the observer nom-

inal model that corresponds to the kinematics of the linear mo-
tion is exact, the weight was set to
to model possible state disturbances steaming, e.g., from the

Fig. 4. Singular values of the closed-loop system.

Fig. 5. Position and current velocity observer block diagram implementation.

relative velocity sensor. Since this is a pure disturbance rejec-
tion control problem, the performance weights were selected as

. Finally, the virtual control input weights were
chosen as to properly tune the
input-output behavior of the closed-loop system.

Fig. 4 shows the singular values of the linear closed-loop
transfer functions from the position error measurements in the
inertial frame, signal in Fig. 2, to the position and current ve-
locity estimate errors in the inertial frame, and , respec-
tively. The diagram shows that the performance requirements
are met by the resultant closed loop system, which is evident
from the band rejection characteristics of the notch present in
both singular value diagrams.

The structure of the resulting observer is depicted in Fig. 5,
where the output feedback compensator is of order 18.

C. Simulation Results

To illustrate the performance of the proposed solution a sim-
ulation was carried out with the observer installed on-board the
underwater vehicle SIRENE, see [19].

In addition to the disturbances induced by ocean waves and
the noise on the USBL positioning system, in the simulation the
measurements of the vehicle velocity relative to the water were
also assumed to be corrupted by Gaussian noise with standard
deviations of 0.01 m/s. The AHRS was assumed to provide the
roll, pitch, and yaw Euler angles, corrupted by Gaussian noises
with standard deviation of 0.03 for the roll and pitch and 0.3
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Fig. 6. Trajectory described by the vehicle.

Fig. 7. Time evolution of the position of the buoy (in the inertial frame).

for the yaw, and the angular velocity corrupted with Gaussian
noise with standard deviation of 0.02 /s.

The trajectory described by the vehicle is shown in Fig. 6 and
the actual position of the buoy, expressed in the inertial frame,
is depicted in Fig. 7. As it can be seen, the buoy wave induced
random motion is confined to intervals of about 10 m of ampli-
tude, which corresponds to extreme weather conditions.

The observer was initialized with zero on all estimates but the
position of the buoy, which was initialized with the first mea-
surement provided by the USBL positioning sensor. The time
evolution of the observer estimates is presented in Figs. 8 and
9. The position of the buoy if there were no ocean waves is also
shown, as well as the actual velocity of the fluid, all expressed
in body-fixed coordinates. From these plots the performance of
the observer is evident—only the initial transients are notice-
able. Since the observer works in body-fixed coordinates, the
estimate of the ocean current changes with the attitude of the
vehicle. In order to better evaluate the results, Fig. 10 presents
the evolution of the estimate of the ocean current transformed
back to the inertial frame. Clearly, the observer estimate con-
verges to the actual value of the ocean current, which was set in
the simulation to (m).

Fig. 8. Actual (dashed-dotted lines) and estimated (solid lines) buoy position.

Fig. 9. Actual (dashed-dotted lines) and estimated (solid lines) ocean current
velocity.

Fig. 10. Ocean current velocity estimate in inertial coordinates.

The evolution of the observer error variables is shown in
Fig. 11. The initial transients arise due to the mismatch of
the initial conditions of the states of the observer and can be
considered as a warming up time of 180 s of the corresponding
Integrated Navigation System. The observer error variables are
shown in greater detail in Fig. 12. From the various plots it can
be concluded that the disturbances induced by the waves, as
well as the sensors’ noise, are highly attenuated by the observer,
producing very accurate estimates of the velocity of the current
and the position of the buoy.

The estimated trajectory of the buoy, as seen from the ve-
hicle, that is, expressed in body-fixed coordinates, is depicted in
Fig. 13(a), where the trajectory that would be described by the
buoy at rest is also shown. For comparison purposes, the non-fil-
tered position of the buoy as measured by the USBL sensor is
plotted in Fig. 13(b). Once again, the figures clearly show the
performance achieved by the proposed solution.
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Fig. 11. Time evolution of the observer error variables.

Fig. 12. Detailed evolution of the observer error variables.

Fig. 13. Trajectory of the buoy as seen from the vehicle. (a) Estimated trajectory. (b) Non-filtered trajectory.

IV. CONCLUSION

This brief presented an observer design methodology for a
class of kinematic systems with particular application to the

estimation of linear quantities (position, linear velocity, and
ocean current) in Integrated Navigation Systems. At the core
of the proposed methodology there is a time-varying orthog-
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onal coordinate transformation that renders the observer error
dynamics LTI. The problem was then formulated as a virtual
control problem which was solved by resorting to the standard

output feedback control synthesis technique, thus mini-
mizing the induced norm from a generalized disturbance
input to a performance variable. The resulting observer error
dynamics are GES and ISS with respect to the variables of
interest. A case study of practical interest in marine applications
was presented that demonstrates the potential and usefulness of
the proposed observer design methodology. Simulation results
were offered that illustrate the achievable performance in the
presence of extreme environmental disturbances and realistic
measurement noise. Other applications can be devised in the
design of navigation systems for other mobile platforms such
as aerospace or ground vehicles.

APPENDIX

PROOFS

Proof of Theorem 1: It has been established before that,
with the proposed observer design, the closed-loop observer
error dynamics in the transformed coordinate space are globally
asymptotically stable and, since they are linear time invariant,
the convergence is exponentially fast. Now, using the fact that
a Lyapunov coordinate transformation is employed, it follows
that the original observer error, , also converges exponentially
fast to zero [15].

Remark 1: The previous result can also be established using
the Lyapunov function

(12)

with

where

and is the positive definite solution of the Lyapunov equation

where

Proof of Theorem 2: Suppose that , where de-
notes the set of real-valued finite energy signals, and consider
the closed-loop systems from to and from to . Let ,
associated to the control input , be the minimum that
satisfies

and , associated with the control input , be the minimum
that satisfies

Notice that is the control signal resulting from the
output feedback control synthesis.

Choosing , it is easy to show that

Since

it is immediate that

from which one concludes that . On the other hand,
choosing , it is easy to show that

Since

it is immediate that

from which one concludes that . Since and
it must be with . Thus,

the proposed time-varying observer minimizes the induced
norm from to .

Proof of Theorem 3: Suppose that , and in (9) are
replaced by disturbed variables , and

, where , and are the disturbances,
respectively. Then, the dynamics of the observer can be written
as

and the error dynamics as

or, in a compact form, as

(13)

where the definition of follows from
the context. This function is continuously differentiable and,
assuming that remains bounded for all , and as is
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also assumed to be a bounded function of , it follows that,
in some neighborhood of the origin, the Jacobian matrices

and are bounded, uniformly in
. Since, in addition to that, the system

has a uniformly asymptotically stable equilibrium point at
the origin, then (13) is locally input-to-state stable with

as input [20, Lemma 5.4].
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