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Abstract— This paper describes a general framework for the
study of multiple vehicle, time-coordinated path following (TC-
PF) control problems. An example is the situation where a
group of vehicles is tasked to maneuver and arrive at pre-
assigned final positions at the same time in a collision-free
manner, while reducing some optimality criterion. The time of
arrival is not fixed a priori, and the vehicles must negotiatetheir
speeds along the spatial paths that they follow in order to arrive
simultaneously and avoid collision. The general framework
adopted leads to integrated solutions to TC-PF problems that
unfold in three steps: 1) Generation of Deconflicted Trajectories
for a group of vehicles, 2) Path Following for each vehicle along
its assigned path, and 3) Coordination of the relative motion of
the vehicles along their paths, so as to guarantee deconfliction
and meet desired temporal constraints such as equal times of
arrival. The last step is accomplished by varying the speed of
each vehicle about the nominal speed profile computed in step
1, based on the exchange of information with its neighbors. The
paper formulates the problem mathematically, offers a general
framework for its solution, and illustrates the efficacy of the
proposed methodology in simulation with dynamic models of
Autonomous Underwater Vehicles (AUVs).

I. I NTRODUCTION

This paper introduces a general framework for the study of
a class of multiple vehicle control problems that will hence-
forth be referred to asTime-Coordinated Path Following(TC-
PF). The motivation for this work stems from the practical
need to develop controllers enabling a group of vehicles to
maneuver cooperatively under tight spatial, temporal, and
energy constraints.

As an application example, consider the scenario where
multiple autonomous marine vehicles - that have been
launched and are scattered in the ocean - must execute a co-
operative mission underwater, adopting a desired geometrical
formation [10]. To this effect, and while still at the surface,
the vehicles must maneuver from their initial positions and
reach formation at a desired speed, at the diving site. Only
then can the underwater mission segment start. Because
the vehicles may be operating in a restricted area and in
the vicinity of support ships, the initial go-to-formation
maneuver must be executed in such a way as to avoid
collisions (that is, in a deconflicted manner). Furthermore,
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the vehicles must arrive at their target positions at the same
time. This procedure is in striking contrast with the rather
unpractical attempt to make each vehicle go independently to
its target position and loiter there, a task that would be hard
to do in the presence of current disturbances and minimum
speed requirements for adequate control authority. Another
example is the case where the times of arrival of the vehicles
at their targets must be separated by specified clearance
intervals. Related application examples are also important
in the areas of space, air, and land robotics.

The TC-PF control problem incorporates in its formulation
strict spatial and temporal constraints. Therefore, its solution
requires that a number of tools be brought together to deal
with trajectory planning, path following, and cooperative
vehicle control in an integrated manner. To better appreciate
the scope of the problem at hand, the reader is referred
to relevant work on multiple vehicle trajectory planning
available in the literature. See for example [16], [18] where
the authors describe how a set of trajectories are generated
such that a number of vehicles will maneuver and arrive
at their final destinations without collision, should they
follow the assigned trajectories perfectly. Clearly, the need
arises to adopt other strategies for the problem at hand.
Notice also that trajectory planning algorithms are mainly
centralized, computationally demanding, and require high
communication bandwidth among the vehicles for proper
multiple vehicle trajectory tracking, that is, to accurately
track curves that are defined in space and parameterized
by time, explicitly. In fact, should one of the vehicles
deviate considerably from its planned spatial and temporal
schedule (due to environmental disturbances or temporary
failures), replanning becomes necessary. Multiple vehicle
control schemes that rely on open-loop,“pure planning”
strategies of this type have another weak point because
they rely on trajectory tracking and, as is well known, the
latter has performance limitations that cannot possibly be
overcome by any controller structure [2].

To deal with the above problems, the present paper relies
on path following rather than trajectory tracking techniques.
By exploiting this central idea, a general framework is devel-
oped that yields an efficient solution to TC-PF problems. The
solution proposed consists of three steps: First, extending
the methods exposed in [12], deconflicted trajectories are
generated for a group of vehicles. At the end of this step,
the trajectories obtained are conveniently re-parametrized by
a variable that we callvirtual time, leading to a set of spatial
paths, together with the corresponding nominal vehicle speed
profiles along them. The second step involves the design
of path following algorithms to steer each vehicle along
its assigned path, while tracking the corresponding speed
profile. Here, absolute time does not play any role. Finally,
the last step aims to coordinate the relative motion of the



Fig. 1. Architecture of Time-Coordinated Path Following

vehicles along their paths, so as to guarantee deconfliction
and meet desired temporal constraints such as equal times
of arrival. This is done by varying the speed of each vehicle
about the nominal speed profile computed in the first step,
based on the exchange of information with its neighbors.
The information exchanged is related to the virtual time
referred to above. The resulting scheme lends itself to a
rigorous formulation and avoids replanning except for the
situation where, due to strong disturbances, the vehicles
deviate considerably from the paths or fail to meet required
temporal constraints.

The mathematical set-up that we adopt is sufficiently
general to allow for the consideration of very large classes
of algorithms for trajectory generation, path following, and
coordinated-path following. For background material on
these topics, the reader is referred to [22], [12], [9], [20],
and [6], [7], respectively.

Notation. | · | denotes the standard Euclidean norm of a
vector inR

n, ‖u‖I is the (essential) supremum norm of a
signal u : [0,∞) → R

n on an intervalI ⊂ [0,∞), and
f ◦ g(.) = f(g(.)) is the composition of functions. In what
follows, I = {1, ..., n}, pγi

di
=

∂pdi

∂γi
, anda⊕ b = max{a, b}.

II. T IME-COORDINATED PATH FOLLOWING

This section introduces the TC-PF control architecture for
a group ofn dynamically decoupled vehicles represented by
general systems of the form

ẋi = fi(xi, ui, ωi), yi = gi(xi, νi), pi = hi(xi), (1)

wherexi ∈ R
ni denotes the state of vehiclei, ui ∈ R

mi

its control input,yi ∈ R
pi its measured noisy output,ωi

an input disturbance, andνi measurement noise. The output
pi ∈ R

qi is the position of vehiclei in an Inertial frame.
The methodology proposed for TC-PF control unfolds in

three basic steps that correspond to the three subsystems in
Figure 1, described as follows:
• Deconflicted generalized path generation. Feasible time
trajectoriespdi

(t); i ∈ I are generated that guarantee de-
confliction in time with spatial clearancēE > 0, that is
‖pdi

(t) − pdj
(t)‖ > Ē, ∀t > 0, ∀i, j ∈ I, i 6= j, and

simultaneous arrival of the vehicles at their final destinations.
Having generated the desired trajectories parameterized by a
single variablet, for each vehiclei ∈ I we define a desired
feasible spatial path aspdi

(γi) : R → R
qi parameterized by

a free variableγi ∈ R to be defined later and a generalized
path by

pdi
(γi) := col

(

pdi
(γi), p

γi

di
(γi)

)

. (2)

A generalized path includes the spatial path itself as well the
nominal speed profile of the vehicle along it.
• Path-following. The path following subsystemi is a
dynamical system whose inputs are the desired generalized
path pdi

(γi), a correction speed̃vdi
signal from the time-

coordination system described next, and local measurements
yi. Its outputs are the variableγi and the vehicle’s control
signal ui, computed so as to makepi reach and follow
pdi

with the assigned speed. Notice that the dynamics of
the parameterizing variableγi are defined internally at this
stage and play the role of an extra design knob to tune the
performance of the path following control law.
• Time Coordination. A dynamical system whose inputs are
local measurementyi, the desired generalized pathpdi

, the
path-variablesγi andγj ; j ∈ Ni, whereNi denotes the set
of vehicles that vehiclei communicates with. Its output is
the correction speed signalṽdi

which is used to synchronize
vehicle i with its neighbors.

A. Deconflicted Generalized Path Generation

A typical trajectory generation problem aimed at obtaining
equal times of arrival can be stated as follows. Consider
a fleet of n vehicles described by (1). For each vehicle,
compute a feasible trajectory, satisfying a given optimality
criterion and extending from a known initial positionP0i

to a given final positionPfi
, such that all the trajectories

are deconflicted in time, end at the same time, and satisfy
a given number of constraints1. Should the problem have
a solution, the trajectory planning algorithm produces a
nominal trajectorypdi

(tp) to be followed by vehiclei,
parameterized bytp ∈ Tf := [0, tf ] where tf denotes the
length of the maneuver. For the sake of clarity, we refer to the
time parametertp as virtual-time. This is done to distinguish
it from the real timet that unfolds during the execution of
a mission. We now make the key observation that virtual-
time can be simply viewed as a variable that parameterizes
the spatial paths derived from the trajectories above and can
therefore be identified with the path parametersγi; i ∈ I
introduced before. These paths, together with the resulting
vehicle speed assignments (specified as functions ofγi), are
all that is required for path following, which will dictate how
γi actually evolves in time.

Assumption 1.We assume the functionspdi
(.) are Lips-

chits onTf with constantL, that is,

‖pdi
(ta) − pdi

(tb)‖ < L|ta − tb|; ∀i ∈ I, (3)

and that the trajectories are deconflicted in time to satisfy

‖pdi
(ta) − pdj

(ta)‖ > Ē; ∀ta ∈ Tf , ∀i, j ∈ I; i 6= j. (4)

�

Lemma 1:Let pdi
(.) satisfy Assumption 1 and defineδ =

(Ē − E)/L for arbitrarilyE < Ē. If |ta − tb| ≤ δ, then

‖pdi
(ta) − pdj

(tb)‖ > E, ∀i, j ∈ I; i 6= j, ∀ta, tb ∈ Tf .

�

Lemma 1 can be interpreted as follows: to guarantee the
minimum spatial clearance ofE, the mismatch|ta − tb| of
virtual-time variables must not exceedδ.

1Examples include the physical limitations of the vehicles,often described
as acceleration constraints. The initial and final desired speeds, as well as
regions to be avoided, are also considered as constraints.



Definition 1: We denote byZd the set ofn-tuple pd =
(pd1

(.), ...,pdn
(.)), wherepdi

is defined by (2) andpdi
(tp)

are feasible trajectories that satisfy Assumption 1, together
with the initial and final constraintspdi

(0) = P0i
and

pdi
(tf ) = Pfi

, respectively for alli ∈ I, wheretf denote
the simultaneous time of arrival. �

B. Path Following

Definition 2: (see [1]) Consider a set ofn vehicles with
dynamics (1). We say that a controllerΣPFi; i ∈ I given by

ΣPFi : ẋPFi = FPFi(xPFi, yi,pdi
, ṽdi

), (5a)

ui = HPFi(xPFi, yi,pdi
, ṽdi

) (5b)

solves robustly the output path-following problemif, for
every generalized pathpdi

taken fromZd, there exist an
error signalei and functionsσeω, σ

e
ν , σ

e, σeṽdi
∈ K∞, such

that for bounded signalsωi, νi, andṽdi
, all the states of the

closed-loop system (1) and (5) with the exception ofγi(t) are
bounded, the path-following errorsei(t) := pi(t)−pdi

(γi(t))
and the speed errorseγ̇i

(t) := γ̇i(t) − 1, ∀i ∈ I satisfy the
detectability condition

|ei(t)| ⊕ |eγ̇i
(t)| ≤ σe(‖ei‖[0,t]), ∀i ∈ I (6)

andei is input-to-output stable (IOS) with respect toωi, νi,
and ṽdi

, that is,
|ei(t)| ≤ σeω(‖ωi‖[0,t])⊕σ

e
ν(‖νi‖[0,t])⊕σ

e
ṽdi

(‖ṽdi
‖[0,t]). (7)

�

For detailed defintions of ISS and IOS, see [11], [21]. In
Section III-B we give the example of a path following
controller for a fully actuated AUV subjected to water current
disturbances.

C. Time Coordination

Let the position of vehiclei at time t be given by
pdi

(γi(t)), whereγi is a variable that parametrizes the path
pdi

(.). The trajectory generation at Step 1 guarantees the
following two facts: 1) if ∀t > 0, γi(t) = γj(t), then
vehicle i and vehiclej will remain deconflicted; 2) vehicle
i will follow its trajectory as planned ifγi(t) = t and
the initial time is set to0. In the non ideal case where
due to disturbances the vehicles deviate from the planned
trajectories, one can guarantee that the vehicles will be at
leastE meters apart whenever|γi(t) − γj(t)| < δ for all
t > 0 and all i, j ∈ I.

Using the above observations, we seek closed-loop dy-
namics forγ̇i to achieve the following two objectives:

1) The errors|γi − γj | must remain sufficiently small to
guarantee quasi-simultaneous time of arrival, and to
ensure collision-free maneuvers. In addition,|γi − γj |
must converge to zero in a disturbance-free situation.

2) In the absence of disturbances, the dynamics ofγi must
verify γ̇i = 1, so as to recover the planned trajectories
and optimality is retained. Notice that the mission will
be “near optimal” in the presence of disturbances.

To meet the objectives above, for each vehicle the nominal
speed profile is perturbed by a corrective speedṽdi

that
is function of the errors|γi − γj |. These adjustments are
done by exchanging coordination information (virtual-time
variablesγj) among vehicles using the supporting commu-
nication network. The problem of synchronizing|γi−γj | has

close affinity to agreement problems, consensus algorithms,
and multi-agent cooperation. See [4], [14], [17] and the
references therein. The tools required to study these problems
are diverse and include graph theory [3], [19]. In practice,
some assumptions must me made with respect to the con-
nectivity of the underlying communication graph to ensure
adequate behaviour of the synchronization system. Another
issue of considerable importance is the impact of the rate of
communications on the convergence rates of appropriately
defined error variables. In this paper, we will not examine
this issue in detail. See [7], [4], [1] and the references therein
for details.

Definition 3: Consider a set ofn vehicles with dynamics
(1) and a generalized pathpd ∈ Zd. We assume the vehicles
exchange information over a communication network with
sufficient rate, the graph of which is supposed to satisfy cer-
tain connectivity properties. In particular, vehiclei receives
variablesγj(tk) from vehiclesj ∈ Ni, whereNi denotes
the set of neighboring vehicles of vehiclei at time tk. Let
γ̃i = [γi − γj ]j∈Ni

, ξ̄ = col(ξ, ṽd), and ṽd := [ṽdi
]i∈I . We

say that a set of time-coordination controllersΣCCi, i ∈ I
ΣCCi : ẋCCi = FCCi(xCCi, yi,pdi

, γ̃i(tk)), (8a)

ṽdi
= HCCi(xCCi, yi,pdi

, γ̃i(tk)); tk ≤ t < tk+1

(8b)

solvesrobustly the time-coordination problemif there exist
functionsσξ, σξν , σ

ξ
γ , σ

ξ
e ∈ K∞, constantǫ > 0, and a coor-

dination error signalξ that satisfy the detectability property

max
i∈I;j∈Ni

|γi(t) − γj(t)| ≤ σξ(‖ξ‖[0,t)) < δ, (9)

where δ is defined in Lemma 1, and the input-to-output
practical stability property

‖ξ̄‖ ≤ σξν(‖ν‖[0,t]) ⊕ σξe(‖e‖[0,t)) ⊕ ǫ, (10)

whereν := [νi]i∈I , ande := [ei]i∈I . �

D. Time-Coordinated Path Following

We now address formally the TC-PF control problem.
Theorem 1:Consider the closed-loop systemΣCL con-

sisting ofn vehicles with dynamics (1) and feedback control
system (5) and (8). Suppose that each path following con-
troller ΣPFi and coordinated controllerΣCCi solve robustly
the output path-following problem and the time-coordination
problem, respectively, that is, inequalities (6)–(7), (9)–(10)
hold. Suppose further that

σeṽd
◦ σξe(r) < r, ∀r > r0. (11)

Then, the overall closed-loop system solves robustly the TC-
PF problem, that is, there exist functionsσē, σēω, σ

ē
ν ∈ K∞,

a positive numberǫ, and a signal error̄e such that for
bounded signalsω := [ωi]i∈I and ν := [νi]i∈I , all the
states of the closed-loop systemΣCL with the exception
of γ(t) := [γi]i∈I are bounded, the path-following errors,
speed errors, and coordination errors satisfy the detectability
condition
max
i∈I

(

|ei(t)|⊕|eγ̇i
(t)|⊕max

j∈Ni

(γi−γj)
)

≤ σē(‖ē‖[0,t]) (12)

and ē is input-to-output stable with respect toω andν, i.e.,

|ē(t)| ≤ σēω(‖ω‖[0,t]) ⊕ σēν(‖ν‖[0,t]) ⊕ ǫ. (13)

�

Proof is omitted. See [11] for an applicaiton of the small-gain
theorem.



III. I LLUSTRATIVE EXAMPLE : TC-PFOF MULTIPLE
AUV S

In this section, we provide a specific solution to the sub-
problems discussed before. For simplicity of exposition, we
adopt a simple 2D kinematic model for fully actuated AUVs
where the inputs are linear velocity and angular rate [13],
[5].

A. Generation of suboptimal deconflicted trajectories

This section describes a solution to the problem of com-
puting 2D deconflicted trajectories for multiple AUVs that
satisfy the properties in Definition 1.

We denote bypri
(τi) = (x1i

(τi), x2i
(τi))

T a desired path
to be followed by AUV i, parameterized by the virtual arc
τi ∈ [0, τfi

], whereτfi
is the total virtual arc length between

P0i
andPfi

. Following [22], we let the coordinatesx1 and
x2 be represented by algebraic polynomials of degreeN of
the form

xk(τ) =
N

∑

i=0

ak,iτ
i; k = 1, 2, (14)

where, for ease of notation, we have dropped the vehicle
index. The degreeN of the polynomialsxk(τ); k = 1, 2
is determined by the number of boundary conditions that
must be satisfied. In the sequel, we will let the prime
sign ′ stand for ∂/∂τ and ′′ for the second derivative
operator. Further, dot signṡ− and−̈ denote the first and the
second time derivatives. Givenτf and terminal constraints
xk(0), x′k(0), x′′k(0), xk(τf ), x

′
k(τf ), and x′′k(τf ), for k =

1, 2, the coefficients ofN = 5th order polynomial are easily
computed from













1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 τf τ

2

f τ
3

f τ
4

f τ
5

f

0 1 2τf 3τ
2

f 4τ
3

f 5τ
4

f

0 0 2 6τf 12τ
2

f 20τ
3

f























ak,0

ak,1

ak,2

ak,3

ak,4

ak,5











=











xk(0)
x
′

k(0)
x
′′

k(0)
xk(τf )
x
′

k(τf )
x
′′

k(τf )











.

(15)
It is important to notice that the parameterization (14)

completely determines the AUV’s spatial profile, that is, a 2D
path that satisfies all boundary conditions by construction. It
now remains to address the time related requirements which
include deconfliction in time and simultaneous arrival. To
deal with this situation and avoid collisions, we need to label
each point on the pathi with a time tag. This is equivalent
to definingτ̇i or, equivalently, defining speed profiles of the
AUV i; i ∈ I along the paths, sincėpri

= τ̇ip
′
ri

. We define
ηi(τi) = dτi

dt . With the above definitions, the temporal and
spatial derivatives ofpri

satisfy
ṗri

= ηip
′
ri

p̈ri
= ηiη

′
ip

′
ri

+ η2
i p

′′
ri
.

(16)

For the purposes of this paper it is sufficient to chooseηi to
be an affine function ofτi, that is,ηi(τi) = η0i

+
ηfi

−η0i

τfi

τi
with η0i

= ‖ṗri
(0)‖, and ηfi

= ‖ṗri
(tf )‖, where tf is

selected as an optimization parameter. Letvmin, vmax and
amax be predefined bounds on the vehicle’s velocity‖ṗri

‖
and acceleration‖p̈ri

‖. By integratingτ̇i = ηi(τi), the virtual
arcτi and timet are related through the following equations

τfi
=

{

η0i
tf , ηfi

= η0i
ηfi

−η0i

ln(ηfi
/η0i

) tf ηfi
6= η0i

(17)

τi
τfi

=

{ t
tf
, ηfi

= η0i

η0i

ηfi
−η0i

(

(
ηfi

η0i

)
t

tf − 1
)

. ηfi
6= η0i

(18)

To formally introduce deconfliction in time constraints, we
define the time stamped trajectorypdi

(t) := pri
(τi(t)),

where τi(t) is given by (18). Having fixed the final time
tf , the total arc lengthsτfi

are computed using (17) and
the spatial pathspri

(τi) and speed profileṡpri
are given by

(15) and (16), respectively. We employ a direct method of
calculus of variation to determine the optimal simultaneous
arrival time tf . We assume the optimal arrival timetf must
lie inside a pre-defined interval[t1, t2]. The mathematical
problem of interest can now be stated formally as that of
computing

toptf = arg min
tf∈[t1,t2]

n
∑

i=1

wiJi (19)

subject to (4) for deconfliction in time, and
vmin ≤ ηi(τi)‖p′ri

(τi)‖ ≤ vmax,
ηi(τi)‖η′i(τi)p

′
ri

(τi) + ηi(τi)p
′′
ri

(τi)‖ ≤ amax,
(20)

∀τi ∈ [0, τfi
], wherewi; i = 1, ..., n are positive weights.

The criterion Ji may be taken as the total energy con-
sumption along a trajectory. We let

∫ τfi

0
‖p′ri

(τ)‖3ηi(τ)
3dτ ,

in the examples presented here. The rationale for this cost
function stems from the fact that the instantaneous power
required for vehicle maneuvering is proportional to the cube
of speed. This constrained optimization problem over a single
optimization parameter can be solved in real-time using any
zero-order optimization technique (see [22]).

Notice that a Lipschits constant for functionspdi
(.) can be

computed asL = vmax = maxt∈[0,tf ] ṗdi
(t). The outcome

of this step is a set of trajectoriespdi
(.) from which ann-

tuple generalized pathpd ∈ Zd is generated.

B. Path following: single AUV

Consider an AUV depicted in Figure 2, together with a
spatial pathΓ parameterized bypdi

(γi) obtained using the
method described in Section III-A. In the figure,P is an
arbitrary point on the path to be followed andQ is the center
of the mass of the vehicle. Associated withP , consider the
Serret-Frenet{T}. The center of massQ can be expressed
either aspi in the inertial reference frame{U}, or as(xe, ye)
in {T}. Define two frames with their origin at the center of
mass of the vehicle: i) thebody-fixed framedenoted{B}
with its x-axis along the main axis of the body, and ii) the
flow framedenoted{F} with its x-axis along the vehicle total
velocity whose magnitude is denoted byvi. Further letψT
and ψF denote the angle from{T} to {U} and from{F}
to {U}, respectively. The yaw angle of the vehicle will be
denotedψB, andri = ψ̇B is the angular speed of the vehicle.
We will consider water currents as disturbances acting on the
vehicle. We letvc andψc denote the speed and orientation,
respectively, of the water current in the inertial frame. The
desired speed profile is given byvdi

(γi) = ‖pγi

di
(γi)‖, and

ṡi = vdi
γ̇i wheresi is the signed curvilinear abscissa ofP

along the path. Simple computations lead to the kinematics
of the vehicle in the error coordinates(xei

, yei
, ψei

) as






ẋei
= (yei

cci
− 1)vdi

γ̇i + vi cosψei
+ vc cosψcT

ẏei
= −xei

cci
vdi
γ̇i + vi sinψei

+ vc sinψcT

ψ̇ei
= ri − cci

vdi
γ̇i + β̇i

(21)
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Fig. 2. Frames and error variables

whereψei
= ψF − ψT , ψcT = ψc − ψT , βi = ψF − ψB is

the angle of side-slip, andcci
is path curvature at pointP .

See [8] for the details of the derivation. As seen from (21),
the equations of motion are driven byvi, ri and termγ̇i that
plays the role of an extra control signal.

Lemma 2: [Path Following] Consider AUV i with the
equations of motion (21) together with the path(pdi

, pγi

di
)

to be followed. Let
vi = vdi

+ ṽdi
(22a)

ri = cci
vdi
γ̇i + ζ̇i − k3(ψei

− ζi) − k3yei
viσi − β̇i (22b)

whereζi = arcsin(
−k2yei

|yei
|+d1

), σi =
sinψei

−sin ζi

ψei
−ζi

and let the
dynamics ofP on the path be governed by the feedback law

γ̇i = (1 +
ṽdi

vdi

) cosψei
+
k1

vdi

sat(xei
) (23)

wherek1 > 0, 0 < k2 < 1, k3 > 0 andd1 > 0. If the speed
correction term̃vdi

satisfies lower bound̃vdi
≥ vm− vdi

for
somevm > 0, andvc is small enough, then the PF control
defined by (22)–(23) solve robustly the output path following
problem defined in Section II-B, where the following IOS
relations hold,

|ei| ≤ σ1(‖vc(t)‖[0,t]) (24a)

|eγ̇i
| ≤ σ2(‖vc(t)‖[0,t]) ⊕ σ3(‖ṽdi

‖[0,t]). (24b)

for path-following errorei and speed tracking erroreγ̇j
. �

Proof is omitted.

C. Time-coordinated path following

The AUVs will adjust their speed according to|γi − γj |
to keep the latter variable small and drive it to zero in
the absence of disturbances. This requires a communication
network for the exchange of information among AUVs. We
avail ourself of some results on graph theory. See [3]. We
will assume that the underlying communication graph is
UQSC (uniformly quasi-strongly connected). See [15] for
the definition of UQSC. We now state the main result of this
section.

Theorem 2:[Time-coordinated path-following] Consider
n AUVs and n-tuple trajectoriespd ∈ Zd generated in
Section III-A. Assume each AUV is equipped with the path
following algorithm of Lemma 2 and the communication
graph is UQSC. For any rate of communication losses and
sufficiently smallk1/kc, the speed correction control law

ṽdi
=

vdi

| cosψei
|
(1−kc sat(

∑

j∈Ni

γi−γj))−vdi
, ∀i ∈ I (25)

solves robustly the time-coordinated path following problem
defined in Section II-D, with0 < kc < 1. Namely, the speed
correction remains bounded,ṽdi

(t) ≥ vmin(1 − kc) − vdi
,

and |ē| ≤ σēvc
(‖vc(t)‖[0,t]) for some σēvc

∈ K, where
ē = maxi∈I{|ei|, |eγ̇i

|} ⊕ ξ is a TC-PF error andξ =
maxj∈Ni,i∈I |γi − γj |. �

Proof is omitted.

IV. SIMULATION RESULTS

As an illustrative example, we consider the problem of
deconflicted simultaneous arrival of two AUVs in 2D space.

A. Deconflicted path generation

Vehicle 1 starts atx1(0) = (0, 0)T [m] with velocity
v1(0) = (0.5, 0)T [m/s] and zero acceleration. Vehicle 2
starts atx2(0) = (0, 5)T [m], with the same velocity and
acceleration. The aim is to generate deconflicted trajecto-
ries that end atx1(tf ) = (10, 10)T [m], and x2(tf ) =
(15, 10)T [m] for vehicle 1 and 2, respectively, for a terminal
time 30s≤ tf ≤ 60s. We also require that the final velocities
be (0.75, 0)T [m/s] and the accelerations be zero. A set of
admissible polynomials of order 5 fortf ∈ [30, 60]s was
computed; the optimal simultaneous time of arrival istoptf =
46.5s.

B. Simulations

The performance of the algorithm developed is illustrated
in this section with the help of numerical simulations. The
control gains in (22) and (25) are set tok1 = 5, k2 = 1,
k3 = 0.34, d1 = 1, and kc = 0.5, in SI units. The
first simulation (see Figure 3) was performed for the ideal
situation where there are no disturbances. In this case, as
planned, both AUVs arrive at their final destinations attf =
46.8[s] (close totoptf ), and the maneuver is deconflicted. The
second set of simulations show the effects of a water current
with speedvc = 0.1[m/s] and orientationψc = π[rad] in
the inertial frame. See Figure 4 where the labels along the
paths indicate times of arrival of the AUVs at the marked
positions. Although it takes longer for the AUVs to arrive
at the final destinations, they both arrive at almost the same
time tf = 56[s]. Figures 5 and 6 show the time-coordination
error and the AUVs distance from each other, respectively, as
a function of time. Notice that the coordination error grows
in the case of water current, but not so much as to lead to
a collision. Figures 5 and 6 include two other tests as well,
to further demonstrate the effect of disturbances. When no
time-coordination is performed, the spatial clearance goes
down to 0.6[m] and temporal coordination error raises to
6.5[sec]. When the communication channel is lost90% of
time, the clearance is still acceptable,2.9[m], and the time-
coordination errors increase to3.65[sec].

V. CONCLUSION

The paper developed a general framework for the study of
multiple vehicle, time-coordinated path following (TC-PF)
problems. With the framework adopted, the solution unfolds
in three steps: 1) Generation of deconflicted paths, together
with the corresponding nominal vehicle speed profiles along
them, 2) Path following for each vehicle along its assigned
path, and 3) Coordination of the relative motion of the
vehicles along their paths, so as to guarantee deconfliction
and equal times of arrival. The paper formulated the problem
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mathematically, offered a general framework for its solution,
and illustrated the efficacy of the methodology proposed
through simulation with dynamic models of autonomous
underwater vehicles. Future work will aim at accommodating
logic based communications.
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