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ABSTRACT 

Simultaneous localization and tracking (SLAT) in sensor 

networks aims to determine the positions of sensor nodes 

and a moving target in a network, given incomplete and 

inaccurate range measurements. One of the established 

methods for achieving this goal is to maximize a likelihood 

function (ML), which requires initialization with an ap-

proximate solution to avoid convergence towards local ex-

trema. In this paper a Euclidean Distance Matrix (EDM) 

completion problem is solved to obtain initial sensor/target 

positions. The likelihood function is then iteratively opti-

mized through either a Majorization-Minimization (MM) or 

Newton method. To reduce the computational load, an in-

cremental scheme is proposed whereby each new target po-

sition is estimated from range measurements, providing ad-

ditional initialization for ML without the need for solving an 

expanded EDM completion problem. The performance of 

these methods is assessed through simulation. 

1. INTRODUCTION 

This work addresses the problem of tracking a single target 

from distance-like measurements taken by nodes in a sensor 

network whose positions are not precisely known. The goal 

is to estimate the position of all the sensors and the target, 

given only partial or no a priori information on the spatial 

configuration of the network. The ability to track a target is a 

key component in several scenarios of wireless sensor net-

works, and avoiding the need for careful calibration of sensor 

positions is practically relevant.
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In [1], [2] SLAT is formulated in a Bayesian framework that 

resembles the related and well-studied problem of Simulta-

neous Localization and Mapping (SLAM) in robotics. The a 

posteriori probability density function of sensor/target posi-

tions and calibration parameters is recursively propagated in 

time as more target sightings become available. In [1], these 

observations are true range measurements obtained through a 

combination of transmitted acoustic and radio pulses, 

whereas in [2] range and bearing information is estimated 

from camera images. Range can also be estimated from the 

Received Signal Strength (RSS) of radio transmissions [3], 
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although these are less reliable than the direct measurements 

used in [1]. 

Algorithm initialization issues are only very briefly consid-

ered in [1], [2], but the underlying assumption is that the ini-

tial position estimates should be sufficiently close to the true 

spatial configuration to avoid convergence to undesirable 

local extrema. In this paper, an EDM completion problem is 

proposed to initialize the iterative ML algorithm with little a 

priori knowledge of sensor/target positions. A similar idea 

for localization and tracking based on EDM has independ-

ently been discussed in [3], although the authors pursue a 

distinct method for approximately solving the completion 

problem. Related EDM-like approaches have also been 

adopted previously for localization of static sensor network 

nodes [4], [5].  

This paper focuses on plain ML estimation, rather than 

MAP/Bayesian estimation used in [1], [2]. A basic iterative 

optimization approach using the MM or Newton methods is 

first developed for batch estimation, i.e., when all measure-

ments are processed simultaneously. A time recursive method 

is then obtained by estimating each target position as the cor-

responding range measurements become available, and then 

re-optimizing the expanded ML cost function with a few 

iterations of the batch method. This recursive approach only 

requires EDM initialization at the first time step, which is 

computationally less complex than processing all target 

measurements. We use a technique proposed in [6] to obtain 

a cost function for incremental target position estimation 

which, despite being non-convex, can be globally optimized 

using efficient numerical tools. 

The main technical contribution of this paper is the proposed 

time recursive ML estimation method. Our derivations of the 

MM and Newton methods for maximizing the likelihood 

function with EDM initialization have also not appeared in 

the literature, although a similar MM method is given in [7] 

using a slightly different cost function and majorization ap-

proximations. 

The paper is organized as follows. In section 2, the SLAT and 

EDM completion problems are introduced. Sections 3 and 4 

develop the MM and Newton methods for iterative likeli-

hood maximization, respectively. Section 5 develops the time 

recursive method using incremental estimation of target posi-

tions. Numerical results for two distinct simulation scenarios 

of batch and time recursive approaches are presented in Sec-



 

tion 6. Finally, Section 7 summarizes the main conclusions 

and discusses directions for future research. 

2. PROBLEM FORMULATION AND EUCLIDEAN 

DISTANCE MATRIX COMPLETION  

2.1 Problem Formulation  

The network comprises sensors at unknown 

tions ���, ��, … , ��	 
 ��, a set of reference sensors (an-

chors) at known positions ���, ��, … , �
	 
 ��, and target 

positions  ���, ��, … , ��	 
 ��. A central processing node 

has access to range measurements between each target posi-

tion and all sensors and anchors, namely, ��� � ��� � ��� ���� and  ��� � ��� � ��� � ���, where  ���, and ��� de-

note noise terms and. A practical system that provides such 

range measurements is used, e.g., in [1]. If errors are Gaus-

sian, independent and their variances are identical, maximiz-

ing the likelihood for the full batch of observations is equiva-

lent to minimizing the cost function 

���� � ∑ ���� � ��� � ������,� � ∑ ���� � ��� � ������,� . 
(1) 

The full set of unknown sensor and target positions is con-

catenated into column vector x, the argument of �. Due to the 

nature of this problem the function � is invariant to global 

rotation, translation and reflection in the absence of anchors. 

In our simulations  � 3 anchors are used, which is enough 

to remove those ambiguities and to obtain a well-posed op-

timization problem. Although the localization problem is 

formulated here in �� the proposed algorithms could handle 

any embedding dimension by appropriate number of anchors. 

As in many other ML problems, the function � is in general 

nonconvex and multimodal, hence iterative optimization 

algorithms have to be initialized sufficiently close to the 

global minimum to avoid convergence towards local mini-

mizers. In this work a suitable initial point is obtained 

through EDM completion. 

2.2 Euclidean Distance Matrix Completion 

A partial pre-distance matrix C is a matrix with zero diagonal 

entries and with certain elements fixed to given nonnegative 

values; the remaining elements are considered free. In this 

particular setup the fixed elements are the squared observed 

distances, "�� � ���� . The nearest EDM problem is to find an 

EDM that is nearest in the Frobenius norm to matrix C, when 

the free variables are not considered. The geometry and 

properties of EDM (a convex cone) have been extensively 

studied in the literature [8], [9]. The nearest Euclidean dis-

tance matrix problem is formulated as 

#$%$#$&� '()�" � *�'+�  ,,-./�01 12 * 
 3*4 "2%�                             (2) 

where W is a mask matrix with zeros in the entries corre-

sponding to free elements of the pre-distance matrix C, and 

ones elsewhere, and ) denotes the Hadamard product. Prob-

lem (2) is equivalent to a semidefinite program (SDP), which 

can be solved by standard convex optimization software. 

2.3 Estimation of Sensors and Target Positions 

Define a matrix Y whose columns hold all sensor, anchor and 

target coordinates, globally translated so that their average is 

located at the origin. Then the Gram matrix 565 can be ob-

tained from the EDM matrix D by a linear transformation [8, 

Sec. 8.3], from which spatial coordinates Y are extracted by 

singular value decomposition (SVD) up to a unitary matrix. 

In most cases the SVD will return a coordinate matrix whose 

rank is greater than the embedding dimension (2, in this 

work), so valid coordinates are obtained by truncating the 

SVD to the appropriate rank. 

Anchors are used to estimate the residual unitary matrix Q 

after SVD by solving the Procrustes problem, [10] 

#$%$#$&� '7 � 859'+�  ,,-./�01 12 868 � :  

where the columns of A hold the anchor positions, and 59 

denotes the relevant subset of the columns of the truncated 

SVD output Y. This problem has a closed-form solution. 

Observation noise can significantly disrupt the estimated 

sensor/target coordinates through EDM completion and rank 

truncation, and it was found that much more accurate results 

are obtained by using those as a starting point for likelihood 

maximization. We propose to iteratively minimize the cost 

function (1) using the MM and Newton methods. 

3. METHOD I: MAJORIZATION-MINIMIZATION 

The key idea of MM is to find, at a certain point �;, a simpler 

function that has the same function value at �; and anywhere 

else is larger than or equal to the objective function to be 

minimized. Such a function is called a majorization function. 

By minimizing the majorization function we obtain the next 

point of the algorithm, which also decreases the cost function 

[11]. Define 

<����� � ��� � ��� and =����� � ��� � ���, (3) 

and assume that sensors and targets are not at the same posi-

tions, i.e.,  �� > ��, �� > ��. Expand (1) as 

���� � ∑ �<������ � 2���<����� � ���� ��,� � ∑ �=��� ��� ��,�2���=����� � ���� �.  
Since f and g are convex functions there holds <����� @ <����;� � A6<����;��� � �;�, 
hence, ���� B ∑ �<������ � 2���<����;� � 2���A6<����;��� ��,��;� � ���� � � ∑ �=��� ��� � 2���=����;� ��,�2���A6=����;��� � �;� � ���� �.                              (4) 

Thus, the proposed majorization function on the right side of 

(4) is quadratic and easily minimized. The MM iteration is 

�;C� � �D=#$%E ∑ �<������ � 2���A6<����;��� ��,�∑ �=��� ��� � 2���A6=����;���.�,�    

To find the solution, rewrite (3) as <����� � �4����, where 

the linear operator 4��  extracts from x the difference �� � ��. 

The same process is applied to the function =����� ���� � F��� with suitably defined F�, yielding the gradients 



 

A<����� � GHIJGHIE�GHIE�   and Ag����� � LIJ�MNCLIE��MNCLIE� . 
Therefore, the new point is obtained by solving the linear 

system: 

OP 4��6 4���,� � P F�6F��,� Q �;C� � P ����,� A<����;� 

� P ����,� A=����;� � P ��6�,� F� . 
4. METHOD II: NEWTON ALGORITHM 

Newton’s algorithm with an appropriate line search applied 

to a convex function f ensures <��;C�� R  <��;� except 

when �; is an optimal point. A search direction at the point � 

is found from the gradient and Hessian of f as ∆� � �A�<���T�A<���. 
The step length in that direction can be calculated using 

backtracking line search as follows. Start with δ � 1 as a 

step length and check if Armijo’s rule holds: <�� � δ∆�� B <��� � αδA<���6∆�, 
where α 
 �0, 0.5�. If not, reduce δ by half and recheck. If it 

holds, then the next iterate is � � � � δ∆�. Continue until 

the stopping criterion holds [8]. 

Using the output of EDM completion as the initial estimate 

to Newton’s method is expected to start sufficiently close to 

the optimal point to benefit from the algorithm’s well known 

asymptotic quadratic convergence. Again, the objective 

function is (1), written here with the notation defined in the 

previous section 

���� � ∑ ��4���� � ������,� � ∑ ���� � F���  � ������,� .  
(5) 

Since the function is not convex Newton’s method may fail 

to work properly. Therefore, the search direction should al-

ways be tested to confirm that it is in fact a descent direc-

tion, i.e., A<���6∆� R 0. If not, the negative of the gradient 

is used instead as a search direction, ∆� � �A<���. This 

does not sacrifice the asymptotic speed of Newton’s method 

and provides improved robustness in convergence. 

The gradient of (5) is 

A���� � ∑ 2��4���� � �����,� GHIJ GHIE�GHIE� � ∑ 2���� ��,�
F��' � ���� LIJ�MNCLIE��MNCLIE� . 

The Hessian is given at the bottom of this page. 

5. TIME RECURSIVE POSITION ESTIMATION 

Suppose a batch of observations has been processed, and a 

new target position y is to be estimated. We could repeat the 

previous approach by redefining the new batch as the old one 

concatenated with the new set of observations. However, this  

 

is computationally expensive due to the EDM step. Also, 

previous estimated positions would be ignored. Thus, to alle-

viate this, we propose a simple methodology to obtain a good 

initial point, which avoids the EDM step. It consists of fixing 

the previous positions at their estimated values and only es-

timating the new target position. More precisely, we mini-

mize  

ψ�[� � P�'�� � ['� � �����
� � P�'�� � ['� � �����

� , (6) 

where, [ is the new target position and �� , ��denote the 

Euclidean distances between the new target and the sen-

sors/anchors. Note that in (6) we are trying to match squared 

distances. Squaring the range measurements results in non-

zero mean noise (with non-Gaussian distribution) unless the 

noise variance is very small. However, minimizing (6) is 

easy, as it can be reformulated as a Trust Region Problem, 

[6]. After an optimal target position is obtained, we return to 

the cost function (1) and apply MM or Newton to refine all 

the estimates. This incremental or time recursive procedure 

can be applied to either new targets or sensors. 

6. RESULTS AND COMPARISONS 

6.1. Results of EDM Initialization for MM or NEWTON 

Based Refinement 

The results will be demonstrated in two scenarios. The first 

scenario is a randomly generated one, which contains 22 

unknown positioned sensors and 3 anchors. The batch is 

processed at a central node after 8 target positions are ga-

thered. In other words, 30 positions are to be estimated in this 

batch. Localization performance degrades gracefully as noise 

increases. However, assuming real scenarios, the error in 

distance measurements is considered to be unbiased and dis-

turbed by white Gaussian noise with a standard deviation of 

15 cm for ranges between 0-4 m. 

Figure 1 – True and estimated constellations. The red diamonds are 

the real sensor positions, the blue diamonds are the real target posi-

tions and the blue stars are 3 anchor positions. The green circles are 

the estimated positions by EDM only, the black * are the estimated 

positions by EDM-MM. 

Fig. 1 shows the true constellation and estimated constella-
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tion using only EDM or EDM concatenated with MM Algo-

rithms of the first scenario. EDM concatenated MM Algo-

rithm gives better estimation on positions compared to EDM 

only Algorithm. 

To verify the improvement of MM or NEWTON over plain 

EDM solutions, we compute the objective function in (1) at 

each iteration. In Fig. 2, which plots the objective function 

value versus the number of MM and Newton iterations, it is 

observed that after eight MM iterations or five Newton itera-

tions, the value of ���� drops rapidly and significantly. This 

demonstrates that MM or Newton’s methods improve the 

overall localization results. 

 
Figure 2 – ���� versus iteration number of MM and Newton. 

We randomly generated a network of 20 sensors and 7 target 

positions to examine the accuracy of the methods. Monte 

Carlo simulation was used to find the mean and the variance 

of the positions estimated by EDM-MM for this sensor net-

work. The accuracy of the EDM-MM method is clearly seen 

in Fig. 3.There is no uncertainty ellipsoid for the three anchor 

nodes, as their position are known. 

 
Figure 3 – Calculated mean and variance of estimated positions. The 

red circles are the real positions of sensors and target. The black + is 

the mean of the positions and the blue ellipsoids show the uncertain-
ity around the mean values. 

The second simulation scenario is created in such a way that 

most sensors are placed over two parallel lines, and the target 

moves along the middle line. Since measured distances are 

approximately the same along the trajectory for the real sen-

sor and its mirror image with respect to the trajectory axis, 

ambiguities have more impact. Distinguishing and estimating 

the sensor and target positions becomes harder. For instance, 

in Fig. 4, sensors 1, 2 and 3 and their mirror images mostly 

obtain the same range measurements. Hence, at the end of 

the optimization algorithms estimated positions may come at 

reflected positions, which is the case in Fig. 4. Nevertheless, 

the advantage of giving the output of EDM completion to 

MM or Newton is more obvious in this scenario. 

 
Figure 4 – True and estimated constellations. The red diamonds are 
the real sensor positions, the blue diamonds are the real target posi-

tions and the blue stars are 3 anchor positions. The green circles are 

the estimated positions by EDM only, the black * are the estimated 

positions by EDM-MM. 

Fig. 5 depicts the behavior of ���� for this scenario. Al-

though the convergence rate of Newton is impressive, MM 

was found to be more robust. 

 
Figure 5– ���� versus iteration number of MM and Newton. 

Both MM and Newton’s method could not reach the optimal 

point for the function in (1) unless a good starting point is 

available. Thus, using the output of EDM completion as an 

initial estimate to the methods is crucial.  

6.2. Results and Comparisons of Time Recursive Initiali-

zation for MM or Newton Based Refinement 

A sensor network of 17 unknown positioned sensors, 3 anc-

hor and 7 target positions are randomly generated to test the 

time recursive or incremental initialization algorithm. 

24 positions are estimated in the first batch with EDM-MM 

method. Next, a new target range measurement is obtained 

by the sensors and a new position is estimated by fixing the 

previously estimated positions while minimizing (6). The 

newly estimated target position and all positions estimated in 
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the first batch are given as an initial point to start MM or 

Newton algorithms to further refine those positions. As a 

benchmark, EDM-MM is applied to the expanded batch with 

the same 24 positions plus the new target position. The beha-

vior of ���� in these two approaches is shown in Fig. 6. The 

time recursive-MM approach takes advantage of previously 

estimated positions to start with a lower cost than EDM-MM 

but reaches the same final error value. 

 
Figure 6– ���� versus iteration number of MM for EDM-MM and 

Incremental-MM approaches (1st target position). 

The two approaches are compared for 10 new target positions 

as well. Fig. 7 shows the behavior of ���� at the last incre-

mental step, 10
th
 target position, of Incremental-MM method 

and of EDM-MM applied to the whole 10 new target posi-

tions. Incremental-MM processes each target position incre-

mentally, which means it repeatedly estimates one target po-

sition by fixing the already estimated positions. However, 

EDM-MM makes a fresh start to the process without using 

the previous knowledge at every new position to be esti-

mated, solving different and increasingly large EDM comple-

tion problems for ML initialization.  

 
Figure 7– ���� versus iteration number of MM for EDM-MM and 

Incremental-MM approaches (10th target position). 

7. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a ML based technique to 

solve a SLAT problem. MM and Newton optimization me-

thods are proposed to maximize the non-convex likelihood 

function, for which a good initialization is required. There-

fore, we have investigated two initialization schemes, batch 

approach and time-recursive approach. After the first batch 

of measurements is obtained, EDM completion is used for the 

first initialization of the sensor network topology. However, 

EDM completion is not scalable, so we select a second initia-

lization scheme for new positions. The time recursive method 

uses the already estimated positions at each time a new posi-

tion is to be estimated; afterwards the newly estimated posi-

tion and the already estimated ones are given as an initializa-

tion to the optimization methods. With this methodology, we 

guarantee a good initialization and a scalable solution for the 

SLAT problem. With these initialization schemes, simulation 

results show that both MM and Newton methods give accu-

rate position estimates. In spite of Newton’s faster conver-

gence rate, the MM method appears to be more robust. 

We used anchors to avoid some inherent ambiguities of the 

sensor/target localization problem using range measure-

ments. As a future work, however, we will examine unambi-

guous formulations of SLAT on quotient spaces. Applying 

the optimization algorithms on those spaces might lead to 

more accurate solutions or algorithms with improved robust-

ness. Another interesting topic would be to develop methods 

for incrementally combining estimates based on different 

blocks of range measurements taken along target trajectory. 
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