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ABSTRACT

This paper deals with the reconstruction of smooth, flexislemet-
rically embedded flat surfaces in 3D, such as a sheet of papdtay
waving in the wind, from a set of 2D projected observationshsas
camera images. To solve the problem, a set of matched featfire
the waving object at different poses is needed, which ane Hpe
plied to the reconstruction algorithm here described. Torepete
algorithm consists of 2 phases, the first obtaining an irégorox-
imation from local features, the second uses this resuletate a
global cost function, trying to achieve a better estimatevdlidate
the algorithm, synthetic data with noise is generated,mstrocted
and compared to ground truth data. Also, a second expericosat
sisting of real images of a sheet of paper is shown.

Index Terms— Machine vision, Isometric Non-Rigid Recon-
struction, Manifold Learning

1. INTRODUCTION

This paper provides a solution to the problem of reconstigdso-
metrically embedded flat surfaces in 3D from a set of paytiedili-
brated images where only intrinsic parameters are knowe. prb-
posed algorithm is inspired from manifold learning tectueis| and
can be used in this setting as well.

The motivating application here is to infer the structura abn-
rigid isometric surface observed in multiple images. Thanegle
provided is to reconstruct a waving sheet of textured pagrea flag)
observed in multiple images.

Prior work in a similar area, inferring the 3D embedding fram
observed image assuming the surface model to be knowndieglu
[1] which provide a closed form solution to the problem ofiseg
tering a camera observation to an a-priori known model eihbed
in 3D. Also in [2] the authors propose to learn the statistitedior-
mation model of deformable surfaces and use the gained kdlosl
to recover 3D structure from a single camera, usable eveown |
texture settings. Other work include [3] which propose tineste
smooth image wraps (not necessarily isometric) by miningziom-
pound energy while inferring a smoothing parameter as Welbur
knowledge, this is the first work that attempts to learn théeulying
surface from multiple camera observations.

In a seemingly unrelated branch of non linear dimensionedi
duction, manifold learning attempts to infer low dimensibstruc-
ture from very high dimensionality data (see for exampleffd]a
survey). Here the problem has a different description, wlaerem-
bedded object is assumed to be completely known a-priorirep:
resented in such high dimensionality as to be awkward toldeece
the need to describe the same object (with little loss ofrinfiion)
in a lower dimensional space sometimes with some addedatbara
istics such as linearity. Here the concepts of isometry andosh
embedding [5] are often used to justify the methods.

The paper is structured as to first provide a mathematical de-
scription of the problem in section 2, then describes a fathod
to obtain an initial suboptimal solution in section 3. Thell op-
timization is described in section 4. Finally, results arevjred in
section 5 and conclusions are drawn.

2. MATHEMATICAL FORMULATION
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Fig. 1. HereZ' : R* = R? are nonlinear embedding isometries
andC® : R® = R? are camera projections. Image tangent vectors
are represented by};, while w;; is the corresponding reconstructed
tangent vector.

Mathematically the 2-D flat manifoldR?) is approximated by
a cloud of point feature® = {q; € R*}. A set of K embedding
isometric functions (here loosely defined as functions tanot
change the intrinsic distance between points, see [5] fooiemig-
orous definition)Z* : R? — R? yield 3-D point cloudsZ*(Q) =
{Z"(q;) : @; € Q}. These 3-D point clouds are assumed to be ob-
served by cameras, yielding the observatigts = C* o 7%(Q),
whereC* is the camera projection function (see figure 1.a). Note
that camera motion is an isometry hence can be absorb&d by
lowing C* to be seen as the projection to a canonic camera at the
origin.

From these observations, the shape estimation problent-is fo
mulated: estimate the 2D point clog?l from multiple observations
P*. It can be formulated using orthographic cameras, scald-or
graphic cameras or other cameras, but it is assumed thabthe p
correspondence between ea®h is known. This is considered to
be a different problem and is not dealt with here. Also, thipgr
assumes all points are visible in all images.

Assuming the point cloud is dense enough so that a locally pla
nar approximation is possible, the extrinsic distance argles be-
tween neighboring points is approximately preserved byigbme-
triesZ*. Note that this is always true for the intrinsic distance, bu
for the extrinsic distance it is only true if the consideresings are
contained in a planar submanifold. This is the approxinmattzat



will be exploited to allow reconstruction of the objectsn& gen-
eral isometry functions are hard to characterize, the knpvap-
erties of their push-forwards (in a loose sense, their Ud¢isies”)
will be exploited instead. The key observation is that wi&rs an
isometry then the corresponding push forward at a pgjrfhere de-

appears folded in an image, some intrinsically far pointghiseem
close together. The converse holds more information thoaglong
as there is a single image observing a pair of points as nogeiar
each other they’ll be excluded as neighbors. So a simpleitigo
for neighbor estimation might be summarized as: a pair ofitgoi

noted as[’“qw) is represented as a Stiefel matrix (i.e. two columnsare considered neighbors as long as they're observed imatiés
of a3 x 3 orthogonal matrix) in any orthonormal base. Hence, 2Dwithin a certain ball, which can vary from image to image, &oth
tangent vectors oR? at the same point are sent to 3D vectors bypoint to point. These balls can be chosen to make sure amertai

matrix multiplication by this Stiefel matrix. The push foavd of the
observation function is here represented®y. By composition, the
transformation of tangent vectors at a paigtto tangent vectors in
the observed image is given bya< 2 matrix S¥ = C* o 7%, ..
When the cameras are orthograpli¢ = [I>x2 0] these
S¥ matrices ar@ x 2 submatrices of larger orthogonalx 3 ma-
trices (i.e. a Stiefel matrix without the bottom row). Hefaréh
these particular matrices will be designated as Sub-&tidféng the
Cauchy Interlacing Theorem [6], these matrices can be cteiaed

minimum number of neighbors exist for each point.

Please note that the output of this algorithm does not gteean
that all returned points are actual neighbors, but it seenpsdvide
good results, especially as the number of images increaseisniz-
ing the chance of a “collapsed” area of the surface in eveggim
In this paper, the results were obtained by imposing that pamt
have 8 neighbors.

3.2 Bilinear Factorization. As shown in [7], bilinear factorization
is a powerfull tool used to solve many engineering problerms.

as the set o2 x 2 matrices with the largest singular value equal to apply the factorization method, the constraints will be penarily

1: SS =
X
These matrices will play an important role in the next sexgio
The objective will be to solve the following optimizationgtr-
lem, where the notatiofyj] means thejth neighboring index point
of ¢ (there should not be any confusion from dropping the the
notation): k

Vils] Wilj]

[S :} € S@(3)} = {Sax2 : omax(S) = 1}.

{SQ><25

—_— —_———
min Ei,j,kH(P@] - Pf) _5;60? (CI[j] - qi)H2 @

st. OF eSS, qi e R?, {s¥} € camera model set

which roughly states that at eaéth point in thekth image, there
must exist a Sub-Stiefel matrix describing its neighbgis Please
see figure 1.b for a visual description of the variables. Hére
orthographic cameras the third constraint should/be= 1 (as de-
scribed above), for scaled orthography it should refae= s? Vk €

{1...K'} and for a less constrained camera (even more than a para-

perspective camera) these parameters aresfreeR.

Considering the objective function and set of constraihts t
problem is not trivial to solve even in the simplest orthqudria cam-
era case. The approach taken is to first obtain a “good endlagbt
defined) approximation and then use an iterative optinonagigo-
rithm to improve the solution.

3. SUB-OPTIMAL SOLUTION TO ISOMETRIC
RECONSTRUCTION OF FLEXIBLE MANIFOLDS
This section provides a way to compute an initial approxiomator
the problem in equation (1). The full problem is broken inesav
much simpler subproblems, chained together to obtain tla g
sult. This paper describes an approach that is applicatdeveral
types of cameras, and degrades gracefully in the presencagsf.

To describe how an approximate solution is obtained the-prob,

lem is broken into 4 chained sub-problems, described iddadly in

the next sub sectiond: Discover local neighbors from the observed

images, that is, for each build the index sef[j]}; 2. Use bilinear
factorization to freeze some degrees of freedom in probtEm3(
Impose the shape consistency constramyt ~ q; — q; where the
approximation is properly defined in the next sectiofs;impose
the model consistency constrai® ¢ SS by freezing the remain-
ing degrees of freedom not previously used.

relaxed, which also allows the’ to be fused with th@®* matrices,
yielding the much simpler problem:
. A 2
min 32, ;4[| @f) = PF) — Ofwig ||

3 2
st. Of € GL(2), wy; € R’ @

When all neighbors of all points are seen in every imagesmng
variables pointwise in observation, model and shape neatric

Vz’ = 01 = : W,’ = [Wi[l] o Wi[ni]}
Vf[(l] VZK["i] ok

wherev};, = p{;; — p; as in problem (1) and; is the number of

neighbors of point, allows the problem to be rewritten, decoupled
at each point:

Z min Vi-— OZWZHQ
- st C)Z c R2KX2, Wi c R2><n7;

Here rank factorization techniques apply directly, yietfia pair of
O; andW; matrices for each point. Since the solution is not unique
(for any matricesG; € GL(2), O;G; ! andG,; W are also solu-
tions), there are some degrees of freedom that still need fixéd.
These will be used to approximate the discarded constraints

®3)

3.3 Shape ConsistencyThis section will use the degrees of free-
dom left in matriced=; to approximate, in a later defined sense, the
constraintsw;[;; = qp;; —q: that were relaxed between problem for-
mulations 1 and 2. Up to now, the solution is not anchored atsp
consisting only of sets of “free” vectors. Furthermore stheectors
are not consistent with each other, in the senseshat# —w;;
whenever both vectors exist and thaf, # w; + w;r whenever
these 3 vectors exist (i.e. whenever the correspondingtpaire
neighbors).

Defining the surface neighbor vector matrices as
Qi=[au —qi; 92— i, - Any] — Gi)

(notice the neighbdf] notation). Imposing shape consistency means
finding matricesG; and pointsq; such thatG,W; — Q; ~ 0.
The left side is clearly linear on a larger matrix containaigpoints
Q = [a:1 gz ... gn] and matrice<;, hinting at the possibility of
existing matricesA; andX = [Q, G1, G2 ... Gn] such that the

3.1 Neighbor Estimation. The formulation presented hints at the previous equation can be written XA, ~ 0. These matrixes in

need to find local neighbors. This problem is not trivial sinbe
actual distances between points is not known, only the mtistée-
tween camera projected points. The problem is that if théaser

fact exist.
There’s an additional property that needs to be understdod.
stems from the fact that if a matriX is given that satisfieX A; =



0, then any pre-multiplication of this by another matfi is also

a solution: GXA; = 0. This means that the problem is ill de-
termined, and that the best that can be done is provide ai@olut
up to a global linear transformation. There is also a trig@lltion
which consists of making the lines @ constant (i.e. all points
the same) and=; = 0, implying that matricesA; have a kernel
with eigenvectof11x ', 01x2n]” . This trivial solution must be ex-
cluded by allowing only solutions on the orthogonal compatof
this constraint. With this in mind, an optimization problean be
formulated as

H 2

min >, ||XAi||GL(2)
2x3N T 4
st. XeR , X[lixn Oixen]” =0

Here the norm subscript is used to hint that this must BEL.42)

left-invariant function. This problem reduces to a spaigerealue
problem of a sparse symmetric matrix when a standard leftrinv

ant function with a simple solution that serves the purpesgsed:

X A2 = tr {AiTXT (xx7)~! XAi}. Using the property
of the trace function {tAB) = tr(AB), the change of variables

Y = (XX”)""?X, and the fact that the function BIL(2) left
invariant, the problem results in a sparse eigenvalue probl
min  tr{YAY"} .

s.t. YYT :I,YER2X3N,Y[11><N 01><2N]T:0 ( )
This is exactly the formulation problem of the second anddthi
eigenvalue of a symmetric matriA = >°. A;A with a least
eigenvector known to b1 x v 01x2n]7 (as is the case). This can
be obtained efficiently with available software taking imtccount
the sparsity of matriA (see for example [8]).

SinceY is obtained fromX by left multiplication by a matrix,
and since the cost function is left invariaX;” = Y™ is a solution
to the original problem. MatriX™ contains all matriceQ* andG;
as desired. MatriXQ™ contains an initial embedding of the points,

up to aGL(2) transformation that will be computed next. From here

on it is assumed that the comput€ have been merged inO;
andW;.

3.4 Camera Model Consistency.Bear in mind that there is still
a globalG € GIL(2) ambiguity which, along with the merged
constants inD; will be used to “straighten the axes” by imposing
the still ignored camera acquisition model. The idea is tocefor
aG € GL(2) matrix that forces the matricd®; G /s¥ to minimize
some sort of distancé(-) to the Sub-Stiefel matrix set. Due to the
characterization given previously, we know that #{s) should de-
pend on the maximum singular value of its argument, but dtiear
this (and the fact that it should be a distance function)ehemo
naturally given choice of function, the best that can be donear-
row the choice is impose desired properties for the solutidhe
following optimization problem is proposed, to force a skgiwen

can now be visualized, allowing intuition and a clearer idéhow
hard it is to solve. Unfortunately sometimes it shows 2 déffd local
minima. Despite this shortcoming, when used to solve thelpm
at hand it does produce seemingly good results without maoh ¢
cern over which local minimum is used (usually the minimavengy
close together, indistinguishable when the function isiggebally).

Sinceomax is @ smooth function of its matrix argument almost
everywhere (it is non-smooth when both singular values qualg,
gradient vector and Hessian are computable for every fomdti-
volved. It is relatively straightforward to implement a New-like
method on the projective space (see for example [9]) witi prihor
care to avoid the non-smoothness. Note that the minimizeulgh
only be at the non-smoothness with probability 0 (unlesi$icat
examples are used).

Since the maximum eigenvalue function is invariant to fote,
this cost function provides a solution up to a global rotatidhis is
to be expected since no global referential has been imposed.

Looking back, up to this section a set of matri@feg (already
multiplied by G ~! computed in the previous section) have been
computed. These matrices are known up to a glebatatrix. When
equation (2) was written, the variable§ were fused with theD*
matrices:0F = OF/s¥. These are the matrices that need to be as
close to Sub-Stiefel as possible:

min - Y, & (05* G/sf)
st. G e GL(2), {sf} € cameramodel set

When simple orthographic cameras are uséd= 1) the problem
assumes the exact form as problem 6. Interestingly, the sacke
used to describe the problem as an optimization problemdjeer
tive space can be re-used to allow use of more complicate@rzam
models. When scaled orthographic cameras are uéed,s? hence

there’s a unique scale factsf for each image:

H 2 k* k
. Zkidss (oi G/s)
st s"eR
st. GeGL(2)

The only change is that there’s an additional scale amlyiguithe
final reconstruction (adding to the global rotation matrixhis is
expected when using scaled orthography.

If the camera model is the least constrained posszif)leg R,
the problem is trivial, with solution’ = ¢,,..(OF*). SinceG is
not used, this is the global ambiguity. Hence the solutiotaioled
in the previous section is the best that can be hoped for.

4. GLOBAL OPTIMIZATION
From the beginning the objective has been to obtain a salditio
problem 1. While the previous section has provided an inisa
proximation to this problem, it does so through a series rop#fi-
cations. This section now proposes to take the previousisoland

matricesS; to be as close as possible to the Sub-Stiefel set by righactually achieve a (possible local) minimizer for the pesbl Since
multiplication by a commoiG (there are strong group theoretic and the problem is not smoott§§ is not a smooth manifold), it is hard

statistical arguments to use this function):
min 3", log? (omax (Si G)) ©)
st. G eGL(2)

whereomax(-) returns the largest singular value.

to implement even a gradient descent method. Here we prdpose
take a much simpler approach based on coordinate cyclihgngo
a conceptually important sub-problem in the process.

Taking into account that the previous section obtained@fpr
mate solution®¥*, q; ands’, the proposal is to iteratively obtain

This problem can be reduced to an optimization problem in thea better estimate for one set of these variables, while kgepk re-

real projective planeRP?, which makes it significantly easier to
solve, since itis a compact two dimensional differentiablmnifold,
definitely within the reach of branch and bound algorithmsaith-
ing better is possible. Maybe equally important is that tecfion

maining ones fixed. Since of these 3 sets@f¢ are the only ones
that do not obey the constraints (the previous section qoyyci-
mated them), this is the set of variables that shall be usstatothe
iterative process.



4.1 Solving for OF. Grouping the problems variables in indgx
similarly to what was done in problem 3, and fixing all varidl
exceptOF, the subproblem to be solved is
min 3, [[VE - oW
K (7)
st. Of €SS
where heréW* = s*W, absorvess¥ andW; is recomputed from
the currentg;. Notice that the terms are not related, hence this cal
be broken into many subproblems, each involving a sifdffema-
trix. This problem will be known as thz x 2 Sub-Stiefel Procrustes
problem. Although not presented here, its solution can Heaed
to finding the real roots of a 6 degree polynomial, obtainedugh
a “once for all time” (data independent) computation of al@rer
basis from Algebraic Geometry.

4.2 Solving for q; and s¥. The cost function is linear in each of
these variables hence they can be iterated using simplesigaare
regression techniques.

5. RESULTS
Two experiment sets are shown, one with synthetic noisy, da¢a

other with hand clicked real images. In both cases the 8 slose
In the synthetic image case (see figures

neighbors were used.
and 3) a set of 18 images were generated similar to the onesisho
with a significant amount of gaussian noise added (standarigd
tion about half the intergrid distance). These images wee fed to
the algorithmin 2 runs, one where only 6 images were useatties
using all 18 images. The results were then rotated and riattipy

a scalar (global ambiguity of using scaled orthographiceras) to
best fit the ground truth data. Notice that the final recorsivaos
are close to the ground truth image, without any noticedasng.
As expected, the number of images helps reduce the amouaisaf n
in the reconstruction.

(a) half cylinder (b) sine wave (c) swiss roll

Fig. 2. Input data wrapped around different shapes. The set eantai
18 images similar to the ones shown.

Fig. 3. Result of the algorithm (red crosses) after applying 5 glob
iterations. Ground truth (without noise) is provided inélecircles
for comparison.

In the real image case, 7 images were obtained, using a laptop

webcam, at different distances from a waving sheet of pajigr w
an easily identifiable printed pattern. The images were trerd
clicked and the points were fed to the algorithm. The residtained
are shown in figure 4. Note that globally the reconstructippears
to have a slight pinch in the middle probably due to some Inidlsé

distortions applied to the sheet of paper; with hand madertiisns
the central part is usually the most curved.

.I‘ £ i
(a) Acquired image.
Fig. 4. Results of applying the algorithm to 7 camera acquired im-
ages.

LER

(a) Results obtained.

6. CONCLUSION
An algorithm for reconstructing flat surfaces from image8Dfiso-
metric embeddings of flat surfaces is described. The alguoriton-
sists of two separate phases, first obtaining an approxigudtion
and then improving it with a global algorithm. Validation svaro-
vided, demonstrating that the algorithm produces the drpee-
sults.

In the future we hope to improve the global algorithm, by inte
grating second order information using neighboring Subf&tma-
trices. This would help correct the pinching effect seenoims re-
sults, at a higher computational cost. Making the algoritark
with only partially visible data is also a priority.

Due to space requirements, some ideas were left withouf,proo
to be included in a followup paper in preparation.
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