
Autonomous docking of a tracked wheels robot to its tether cable using
a vision-based algorithm

Fausto Ferreira and Rodrigo Ventura

Abstract— Search and Rescue (SAR) Robotics has been
gaining an increasing interest in recent years. In spite of that,
there are still many challenges to be addressed in terms of
autonomy level. RAPOSA is a semi-autonomous, tracked wheels
robot, designed for SAR operations. This paper presents an
autonomous docking algorithm. The docking is performed to a
docking station that provides both power and a wireless access
point. The docking station consists on a small, lightweight
pyramidal structure at the end of a flexible cable, allowing
the robot to continue operating while attached to this cable.
The autonomous docking is mainly based on both vision,
whenever possible, and dead reckoning (odometry) that was
also developed specially for this work. The results show the
effectiveness of the proposed algorithm, even in the presence of
difficult environmental conditions.

Keywords: Search and Rescue Robotics, Autonomous Dock-
ing, Vision based control

I. INTRODUCTION
In scenarios of natural catastrophes, a quick response by

rescue teams is essential, but not always possible due to
the hazards to human teams (e.g., buildings near collapse).
Search and Rescue (SAR) robots able to operate in these
contexts can act rapidly [1], for instance to gain situation
awareness, and to provide voice contact with victims.

RAPOSA is one example of a semi-autonomous robot
designed for these situations [2]. The main features of this
robot are motor articulation between its main body and
a frontal arm, the two-side tracked wheels, the wireless
communications with or without the cable (access point at
the end of the cable), and the possibility of operating the
robot even if it flips down. The tethered option includes
both wireless communication and power. The robot has three
vision cameras: two in the frontal arm, pointing forward in
the direction of the body, and one in the back, to aid docking
operations.

This paper is organized as follows. In the next sec-
tion the odometry is discussed. Then, the related work on
autonomous docking is reviewed. The description of the
autonomous docking is presented next, followed by the ex-
perimental results. This paper closes with some conclusions
and future work.

II. AUTONOMOUS DOCKING

Several methods for automatic docking can be found in the
literature. The use of computer vision has some advantages:

This work was partially supported by FCT (ISR/IST plurianual funding)
through the POS Conhecimento Program that includes FEDER funds.

Fausto Ferreira and Rodrigo Ventura are with Institute for Systems
and Robotics / Instituto Superior Técnico, 1049-001 Lisbon, Portugal
{fferreira,yoda}@isr.ist.utl.pt.

on the one hand, it is a passive sensor eliminating the need
of an emitting source, and on the other hand, other sensors
like ultrasonic ones or infrared are not as accurate. In this
work, only one camera is used to provide feedback to the
control algorithm. Color segmentation, together with some
geometric considerations, are used to perform the docking.

A. Related work

The first successful attempts to an autonomous mobile
robot recharge were in the late 40’s with the Elsie and Elmer
the so called ”Machina Speculatrix” by Walter [3]. These
turtle-shaped robots had a light following behavior into a
hut that contained the battery recharger and a light bulb.
In the last decade, there were several docking strategies
for recharging purposes, as well as other purposes. In [4]
a Nomad XR4000 used a IR beacon, a sonar, and a Sick
laser range finder to dock to a recharging station. More
recently, a Radio-Frequency IDentification (RFID) docking
was presented in [5]. Among the ones that use computer
vision, in [6] it is described a docking system for marsupial
robots with an imprinting biological inspired mechanism.
Vision and a laser range finder were used in [7] for a Pioner
2DX. In [8], the Nomad has an omnidirectional camera and
uses 3 non-collinear landmarks and their bearings to drive
autonomously to the docking station. In [9], a circle on
a wall is used to aid the docking. Another example of a
docking purely relying on vision is described in [10] but it
involves comparing features to a model stored in database.

B. Docking system

The docking system is composed by two parts: the grab-
bing mechanism (inside the robot) and the cable. The cable
is flexible but at the end it has a solid pyramidal structure
designed to provide a fixed inclination of it while laying
on the ground (Fig. 1). To perform the docking the robot
should lower its back and enter the metal guide with a certain
orientation. Fig. 2 shows the docking socket at RAPOSA’s
back, with the camera visible inside the robot. In its back
part, there are two sliding doors that grab and pull the
pyramid into the robot (an effect of bi-conical shape at
the end). The effectiveness of this solution from the design
point of view was address before in [11]. Nevertheless, it is
important to note that this system allows real-time operation
because it provides power and communications from the
docking station.

Comparing with the state-of-the-art, with the exception
of [6], most of the publications on this subject use a visual
target as an auxiliary tool to make the docking possible.

Fig. 1. Docking pyramid

In [6], the robot moves towards the mother robot but the
marker is relatively large (larger areas are easier to detect)
and it is always visible. In RAPOSA, the situation is more
complex because the docking station enters the robot by the
hole that is used by the back camera to look for it. Moreover,
the optical center of the camera is not mounted at the height
of the station and the robot has to lower its back part in
order to dock. So, control in the y-axis is also done. It could
not be found any other work that controls in 3D the robot
to enter the docking station recurring only to vision.

C. Solution proposed

The goal is to start the autonomous docking algorithm
from the moment that the pyramid is visible by the back
camera. The algorithm ends with the fastening of the sliding
doors. Due to the location of the camera and the insertion
hole size, the useful Field of View (FOV) is approximately
25◦. To minimally add visible marks to aid the vision algo-
rithm, the bi-conical metal guide was painted with orange,
and some edges of the pyramid were painted with blue (Fig.
2). This allows to both detect the cable end, and to estimate
the relative orientation of the pyramid to the robot.

Fig. 2. Left: docking socket with the back camera visible inside the robot.
Right: docking pyramid with the blue edges and the orange metal guide.

1) Docking regions: Fig. 3 depicts a top view of the
geometry of the problem. The robot is assumed to have the
pyramid within the FOV of its back camera. The relative
angle α that the pyramid axis makes with the robot position
is crucial to the docking process: when this angle is small, the
robot is able to dock in a straightforward fashion, by going
forward1 while performing small adjustments. Otherwise, an

1In fact, the robot moves backwards relative to its front, since the robot
docks its back with the docking station. We will, however, adhere to the
word forward to avoid confusion.

alignment maneuver is necessary to bring it aligned with the
pyramid axis, thus reducing α to a small value. The strategy
followed to tackle this problem consists in dividing the space
around the pyramid in angular sectors, relative to the pyramid
axis, as shown in Fig. 4.

Fig. 3. Top view of the geometry of the problem: the horizontal axis is
aligned with the pyramid, at the top left corner of the figure, while the robot
is shown at the bottom right corner, with the pyramid in the FOV of the
back camera.

Four regions were defined: region I, where the robot
approaches the docking station going forward, while using
visual servoing to make small adjustments to compensate
for drifts in the alignment; region II, where the robot can
detect both colors to estimate the angle α, thus performing
a maneuver to place the robot within region I (and then
use the region I strategy to perform the final approach);
region III, where it is not possible for the robot to dock
successfuly by lack of visual information, and a deadzone
too close to the robot for it to operate without coliding with
the pyramid. If α ≥ 73◦ while in region II, the estimated
α is incorrectly estimated, due to visual ambiguity, however
it can be proved that the manoeuver performed in region II
always re-positions the robot in region II with α < 73◦.
The distinction between region I and II is not a straight
line. A tolerance was introduced within a certain distance
range, after preliminary experimentation, to accommodate
for odometry errors that prevented the manoeuver in region II
to conduct the robot to region I.

Fig. 4. The defined regions around the pyramid (top view).

2) Mathematical description: All the computation is
based on the pin-hole model of the camera and on the
perspective projection. The angle α is estimated from the
detected blue rectangle (pyramid corners) and orange ellipse

(ball at the pyramid end). The distance is estimated based
on the geometric properties of the detected blue regions,
whenever the robot is not aligned with the pyramid. Oth-
erwise, it can use simply the orange ellipse area because the
ellipse will maintain its shape as long as the robot moves
in the direction of the pyramid. The blue color is not used
here because occlusions occur for some distance range, while
the orange is essential and enough for little misalignments.
From the side view of the robot (Fig. 5), one can get by
trigonometric relationships:

g

f
=
h′

d
, (1)

where f denotes the focal length of the camera, d is the
distance between the focal point and the vertical passing
through the top blue vertex of the pyramid, g is the height
of the blue rectangle detected in pixels, while h′ is an
approximation of the length of the blue edge. While h is
the real length of the edge, this approximation h′ ' h has a
reasonable small error (max 1.5%). So, (1) is approximated
here by

g

f
' h

d
. (2)

Fig. 5. Side view from the docking pyramid and its corresponding
projection

From the top view (Fig. 6), the geometric relationship to
estimate c is given by

c

f
=
a′ + b′

f
=
a+ b

d′
. (3)

However, since d′ cannot be accurately estimated, we use
the relation

c

f
=
a′′ + b′′

d
' a+ b′′

d
, (4)

while assuming a′′ ' a. The variables a and b′′ are given by

a = m sin(α), (5)

b′′ =
h

2
cos(α), (6)

where m is the distance between the midpoint of a blue edge
and the center of the ellipse and α the angle to be estimated.

Using (4) and (2), we can obtain

sin(α) =
chm

g(m2 + (h
2)2)

± (7)√
(ch

g m)2 − (m2 + (h
2)2)((ch

g)2 − (h
2)2)

(m2 + (h
2)2)

.

As any quadratic equation, (7) has always 2 solutions (ig-
noring singularities). So, one has to chose one of them. If

Fig. 6. Top view from the docking pyramid and its corresponding projection

one equals the term (ch
g)2 − (h

2)2) to 0, c
g is 0.5 meaning

that the distance from the ellipse center to the edge end is
half the width of the edge. This situation occurs at 0◦ so
it implies sin(α) = 0 which requires choosing the minus
sign on the solution of the quadratic equation. For continuity
reasons, the solution used will be always with the minus
sign. Even though, there are still 2 possible solutions. The
inflexion point corresponds to about 73◦ which means that
the angles estimated will be in the range [0, 73]◦ (for both
sides). For angles greater than that inflexion point there is an
estimation error. Although, the robot will always get closer
to the pyramid and will enter a position where α < 73◦

eliminating the error after one step for initial angles lower
than 110◦ which is also the maximum angle for which the
robot can see both colors without occlusions. When the robot
is not aligned (non-small α), there is the need to align it. To
do so, and taking in consideration the geometry formulation
in Fig. 3, the robot rotates −β at a first step (relative to
referential where the robot is looking straightforward to the
pyramid), travels the distance d and then rotates ϕ. This will
position the robot at a distance δ of the pyramid aligned with
it.

3) Vision algorithm: The high level vision algorithm
could be generically described in 3 steps:
• color based image segmentation
• shape based landmark extraction
• landmark recognition
For the color based segmentation, the color space chosen

was HSV (Hue, Saturation, Value). A color is specified by
a volume in this space, defined by the intersection of one
interval for each axis H, S, and V. These slices offer a more
robust detection performance, since RGB is very sensitive to
lighting [12]. Still, lighting changes prevent the use of fixed
and unchangeable thresholds to define the bands of H, S and
V components. So, it is given to the user the possibility of
adjusting the thresholds in real time. The use of HSV allows
for an intuitive tuning, contrasting with adjustment in RGB
that could be fastidious.

For the shape based analysis, several metrics are used both
for elimination and for choosing the best candidate among
several ones. For the orange color there is an ellipse fitting
for all the orange blobs and then some ellipses are filtered
out first by area and then by ratio between axes. For the
blue color, the process is similar. But here, the fitting of the
rectangle is not by the circumscribed rectangle of minimal

area but by its bounding region. This is so because using the
bounding region is better in the presence of a bad detection
(or occlusions) as shown in Fig. 7.

After this, other geometric constrains are used to eliminate
pairs of rectangles and ellipses that cannot correspond to
the physical dimensions of the object. There is a maximum
deviation both for height and width scaled to the detection
distance. There is also an area ratio criterion between the el-
lipse and the rectangle. A tracking of the ellipse is done: any
pair with an ellipse out of a ball of 20 pixels (configurable)
around the previous ellipse is ignored. After all these filters,
if there is more than one possible pair, the same criteria are
used but this time tighter. In this way, one is more sensible
to noise but in the case of a bad detection where there is
only one pair, there is no risk of eliminating it by too strict
constrains. Fig. 7 is an example of a well chosen candidate
among 3 possible ones.

Fig. 7. On the left, the original image. In the middle, the candidate pairs
after the filtering operation. On the right, the chosen candidate by the metrics
explained in the main text.

After detecting the best orange and blue candidates re-
gions, one of 7 states is chosen. Each state determines a
specific course of action, as described in the next section. The
choice of the state is performed as follows. After choosing
the best pair, the state is chosen between 1 or 2 according
to the angle and distance. If the robot is too close to the
pyramid, the estimation of the angle is not accurate and then
state 1 is chosen. That implies the deadzone mentioned. For
angles bigger than 15◦ and/or distances bigger than 34cm,
state 2 is chosen. If there is no pair at the end of the detection,
then the state is chosen by the orange ellipses detected at a
first option. The best ellipse is chosen (by the same criteria)
and depending on the distance, state 1, 3 (big distance) or 6
(small distance) is chosen. In the case of no detected ellipse,
if there is any blue rectangle state 4 is chosen, otherwise
state 5 is the one used. When the robot is at either states
6 or 7, further state choices are inhibited, i.e., it remains in
that state until the corresponding behaviour finishes (namely,
the completion of a docking or a rotation). The end of state
7 is detected based on a predictor to prevent the loss of the
ellipse (in the case that the robot has to rotate all the FOV)
due to the delay on the control cycle. The predictor uses
the difference between the present and the previous frame to
predict where the robot will be in the next one.

D. Motor schema

For each state, the velocities are computed in different
ways. The arm position is also controlled but only at the

end of state 1 near the docking pyramid. In all other states,
the arm is kept at a constant position.

For region I, states 1 and 6 are used. In state 1, the
linear velocity is constant when the robot is above a certain
distance (' 1m). Below that distance, linear velocity is given
by Klinear

√
Aellipse, where Aellipse is the ratio between

the ellipse area at 1m (offline reference image) and the
ellipse area at the current frame, and Klinear is a gain. The
square root is used to make the velocity approximately linear
with the distance, because the area of an ellipse decreases
quadratically with the distance. The angular velocity is given
by −Kangular xdeviation, where Kangular is a gain, while
xdeviation is the shift in pixels in the x-axis from the image
center.

The arm position is set at the end of state 1 to
−Karm ydeviation, where Karm is a gain, while ydeviation is
the shift in pixels in the y-axis from the image center. At the
same time that the arm starts to move, the lights are turned
on. This is because the state 6 is used when the area detected
is higher than a certain threshold (correspondent to 0.3m).
In this situation the lights help the detection nearby. In this
final state (6), the velocity is kept constant at a low value
until a certain amount of time. After this, the robot stops and
starts closing the bi-conical metal guides (see section II-B).

For region II, RAPOSA cannot keep visual contact with
the pyramid at all times, and thus it has to rely on odometry
(see section II-E). Odometry is used only whenever the
pyramid is out of the robot FOV. Visual odometry is not
advised due to the low quality of the images.

The rotation based on vision corresponds to state 7. The
first step of the algorithm for region II is a pure rotation
of −β. Whenever the angle −β lies within the FOV of the
image, the first step in region II will use only state 7, using
visual servoing alone. When it is not, the angle to rotate is
divided in two segments: the first part is limited by the FOV
(state 7) and the second part is an odometry based rotation.
The velocities used in state 7 have a low constant value so
it can track the ellipse during the rotation. But, if the robot
looses the ellipse for some moments, it stops. If the number
of sequenced frames without identifying again the ellipse is
too high, it exits state 7 and recomputes a new state.

To reduce the odometry error, an odometric calibration is
done, where the origin is reset after the end of state 7 with the
angle rotated in that state. The inverse controller technique
is used then in state 2. The velocities resulted from the
controller are saturated and scaled, and different tolerances
are used for each step mentioned at the end of subsubsection
II-C.2. The xref and yref of Fig. 3 are the references for
traveling distance d. The use of a bi-dimensional controller
is justified by the possibility of correcting some orientation
error in the middle step of going straight distance d. The
last rotation is not done based on vision due to the blurring
noise. It is preferable to rotate based on odometry and then,
after the robot is stopped, if it does not identify the pyramid,
rotate slowly until it finds it again.

This rotation is not performed always to the same side, but
rather to the side opposite to the one in the previous rotation.

Moreover, instead of endlessly rotating if no landmark is
found, the robot switches direction after a certain angle lower
than 360◦. While no landmark is found, this angle is doubled
after each switch, so that is starts scanning a small angular
range, and increases this range progressively.

E. Odometry

Odometry was not already implemented in the robot, so
there was the need to develop it. It is extremely unadvised
in the literature to use dead reckoning in this kind of tracked
vehicles [13], [14]. Although RAPOSA is a differential drive
vehicle, it is a particular case of it named skid steering. In
skid-steer vehicles, there is always a large slippage whenever
the vehicle turns. In RAPOSA, the center of rotation also
changes, depending on the position of the frontal arm. One
possible solution to estimate a more accurate kinematic
model could be to use the approach described in [15], but it
would need additional external sensors that are not feasible
to introduce in RAPOSA.

Considering the classic unicycle kinematic model (Fig. 8),
the equations relating the vehicle velocity and the speed of
each wheel are the following:

V = h
ωr + ωl

2
=
Vr + Vl

2
(8)

ω = h
ωr − ωl

d
=
Vr − Vl

d
(9)

where V and ω are respectively the linear and angular
velocities, Vr and Vl denote the right and left wheel speeds,
h is the wheel radius (assumed equal to both wheels), and d
is the distance between the wheels. As it is described in [13],
the distance d, in the case of a tracked wheel vehicle, lies
within an interval between dmin and dmax (see Fig. 9). This
distance is not actually fixed, depending for instance on the
ground physical properties. However, in this implementation
it was empirically estimated and considered a constant.

Fig. 8. Kinematic model of a unicycle vehicle.

Fig. 9. Range of the d distance for the case of RAPOSA.

Low level issues, such as non-accurate access to each
wheel velocity, together with an analog drift introduced a
significant error margin to the odometry measurement.

F. Results

In order to compare the results of this work with others,
the benchmark used in [6] and shown in Fig. 10 was chosen.
These points are the starting points for the robot and in each
point the robot is pointing towards the docking station.

Fig. 10. The grid of points used in both works.

However, this grid of points is not completely comparable.
Their robot had a FOV of 70◦ but for reliability reasons
they defined an area with a maximum of 60◦(for each side).
RAPOSA’s FOV is 25◦ so using a region of about 120◦ is a
more demanding challenge. The results for this grid of points
are presented in Table I, showing the mean time to dock, the
mean velocity (vmean), the standard deviation (σ), and the
percentage of successful dockings (%success). The number
of trials was 4 for all the points.

Points 1 and 3 are not presented here because the robot
was not able to dock in any of the trials. These points are
inside the deadzone discussed previously, and so this was
expected to occur. For point 4 it was not possible to dock in
one of the trials.

It is clear that for the 0◦ angle the standard deviation
is kept very low (less than 2.5s) but the mean velocity
increases. This can be understood under the light of the
motors schema presented: recall that the velocity is linearly
proportional to the distance except when it is too far or when
it is too close, where it is kept constant at a moderate speed

TABLE I
RESULTS AS A FUNCTION OF THE ANGLE.

Angle (◦) Points Mean Time
to Dock (s)

σ (s) vmean

(cm/s)
%success

2 19.41 2.04 1.7 100
0 5 24.29 2.41 2.1 100

9 37.88 2.04 3.5 100
14 46.06 2.48 4.3 100

30 8,10 45.08 3.98 3.0 100
13,15 51.10 5.24 3.9 100
4,6 92.77 25.18 0.5 87.5

60 7,11 73.00 30.72 1.82 100
12,16 68.34 12.18 2.9 100

or very low speed, respectively. This fact explains the results,
since for points 9 and 14 the robot will move at a constant
speed in the beginning, decreasing its speed only after a
while. In point 2 the weight of the low speed mode is greater,
thus explaining a lower mean velocity. For the 30◦ angle,
the situation is the same for the mean velocity (increasing
here σ). The reasons here are different, since for a higher
distance, the movement is softer and more reliable because
vision is used longer, and the generated trajectory has smaller
rotations. Using vision produces less error at the end of state
2, which contributes to a faster convergence towards region I.
Moreover, for a greater distance, the angle estimation error is
smaller because the approximations used have smaller errors.
For the 60◦ angle, the analysis for the mean velocity is
the same than for the 30◦ angle. The standard deviation is
much larger than before even though at 2m is significantly
lower than for the other distances. Softer movements and
low estimation error explain that fact. The worst situation
occurs for points 4 and 6 in terms of mean velocity. The
lower vmean makes sense, after considering the fact that the
robot has to move backwards and that increases the traveled
distance.

The grid of points used in the experiments above could
not explore all the possibilities of the algorithm, including
the recovery of the estimation error in one step for angles
lower than about 110◦. So, other points were tested including
angles of 80◦, 90◦ and 110◦. For all these points, the robot
successfully although sometimes with too much time ranging
from 1min till almost 4min for distances of about 1.5m.
The minimum iterations on region II was 2 as expected and
the maximum was 4. The problem was not with the angle
estimation after the first iteration. The problems are mostly
related with the odometry and with the noise in states 3,
4 and 5. Remember that when there is an estimation error,
the robot might not be aligned after the first iteration, and
might enter one of those states (3, 4 or 5). The robot could
manage to identify correctly the pyramid but sometimes took
longer because it entered state 3 or 4 with other objects
before finding the pyramid. The maximum distance was also
tested at 0◦ angle. After adding a point at 2.5m with 100%
of docking success, other distances were tested. At 2.7m the
robot performed well, at 2.8m it docked successfully only
in 75% of the trials, and at 3m it does not dock at all. At
3m it is not possible to extract enough information from the
image received. For other angles, the maximum distance is
the 2m radius discussed previously. Finally, the robustness
to experimental conditions was tested and the robot was able
to dock in an outside environment even though the odometry
was not corrected for that soil. Fig. 11 shows a very noisy
example for which the robot docked. Even for an angle
different of 0◦ (about 25◦) it managed to dock in less than
80s even though there are big differences in the terrain.

III. CONCLUSION AND FUTURE WORK

An autonomous docking algorithm for a SAR robot was
presented in this paper. This mechanism employs vision most
of the time, recurring to the odometry only when deemed

Fig. 11. An example of the color detection and segmentation in outdoor
environment.

necessary. Results have shown a good performance. Future
work includes improvement of the odometry, which being a
tracked wheels robot it becomes a non-trivial task, as well
as improvement of the color segmentation, so that the need
to adjust manually the HSV bands thresholds, e.g. because
of lighting conditions, can be eliminated.

REFERENCES

[1] R. Murphy, J. Casper, J. Hyams, M. Micire, and B. Minten, “Mobility
and sensing demands in usar,” in IECON-2000: 26th Annual Confer-
ence of the IEEE, vol. 1. Industrial Electronics Society, 2000, pp.
138–142.

[2] C. Marques, J. Cristvo, P. Lima, J. Frazo, I. Ribeiro, and R. Ventura,
“Raposa: Semi-autonomous robot for rescue operations,” Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on, pp.
3988–3993, Oct. 2006.

[3] W. G. Walter, The Living Brain. New York: W. W. Norton, 1953.
[4] K. T. Seungjun Oh, Alexander Zelinsky, “Autonomous battery recharg-

ing for indoor mobile robots,” in Proceedings of Australian Conference
on Robotics and Automation (ACRA2000), 2000.

[5] M. Kim, H. W. Kim, and N. Y. Chong, “Automated robot docking
using direction sensing rfid,” 2007 IEEE International Conference on
Robotics and Automation (ICRA 2007). Proceedings., pp. 4588–4593,
April 2007.

[6] B. Minten, R. Murphy, J. Hyams, and M. Micire, “Low-order-
complexity vision-based docking,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 6, pp. 922–930, December 2001.

[7] M. C. Silverman, D. Nies, B. Jung, and G. S. Sukhatme, “Staying
alive: a docking station for autonomous robot recharging,” IEEE
International Conference on Robotics and Automation, 2002. (ICRA
’02). Proceedings., vol. 1, pp. 1050–1055 vol.1, May 2002.

[8] R. Wei, R. Mahony, and D. Austin, “A bearing-only control law
for stable docking of unicycles,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.,
vol. 4, pp. 3793–3798 vol.3, Oct. 2003.

[9] R. Luo, C. Liao, K. Su, and K. Lin, “Automatic docking and recharg-
ing system for autonomous security robot,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005. (IROS 2005).,
pp. 2953–2958, Aug. 2005.

[10] U. Kartoun, H. Stern, Y. Edan, C. Feied, J. Handler, M. Smith,
and M. Gillam, “Vision-based autonomous robot self-docking and
recharging,” World Automation Congress, 2006. WAC ’06, pp. 1–8,
July 2006.

[11] C. Marques, J. Cristovão, P. Alvito, P. Lima, J. Frazão, M. I. Ribeiro,
and R. Ventura, “A search and rescue robot with tele-operated tether
docking system,” Industrial Robot, vol. 34, no. 4, pp. 332–338, 2007.

[12] V. L. B. Bascle, O. Bernier, “Learning invariants to illumination
changes typical of indoor environments: Application to image color
correction,” International Journal of Imaging Systems and Technology,
vol. 17, no. Issue 3, pp. 132–142, Oct. 2007.

[13] H. R. Everett, Sensors for mobile robots: theory and application.
Natick, MA, USA: A. K. Peters, Ltd., 1995.

[14] R. Siegwart and I. Nourbakhsh, Introduction to Autonomous Mobile
Robots. Bradford Book, 2004.

[15] J. Martinez, A. Mandow, J. Morales, A. Garcia, and S. Pedraza, “Kine-
matic modelling of tracked vehicles by experimental identification,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings., vol. 2, pp. 1487–1492, Oct 2004.

