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Abstract. We introduce a multi-robot/sensor cooperative object detection and
tracking method based on a decentralized Bayesian approach which uses particle
filters to avoid simplifying assumptions about the object motion and the sensors’
observation models. Our method is composed of a local filter and a team fil-
ter. The local filter receives a reduced dimension representation of its teammates’
sample belief about the object location, i.e., the parameters of a Gaussian Mixture
Model (GMM) approximating the other sensors’ particles, and mixes the parti-
cles representing its own belief about the object location with particles sampling
the received GMM. All particles are weighted by the local observation model
and the best ones are re-sampled for the next local iteration. The team filter re-
ceives GMM representations of the object in the world frame, from the sensor
teammates, and fuses them all performing Covariance Intersection among GMM
components. The local estimate is used when the sensor sees the object, to im-
prove its estimate from the teammates’ estimates. The team estimate is used when
the sensor does not see the object alone. To prevent the fusion of incorrect esti-
mates, the disagreement between estimates is measured by a divergence measure
for GMMs. Results of the method application to real RoboCup MSL robots are
presented.

1 Introduction

A team of robots cooperatively tracking an object becomes a team of sensors, each
making observations to build a perception of reality that can be improved by the oth-
ers. Multisensor fusion addresses the problem of combining all the information from
multiple sensors in order to yield a consistent and coherent description of the observed
environment. The problem itself comes from the fact that the sensors information is
always uncertain, usually partial, occasionally incorrect and often geographically or
geometrically incomparable with other sensor views [1].

A sensor model describes the uncertainty associated with each sensor observation
and location allowing to extract relevant information. The models are often nonlinear
resulting in non-Gaussian posterior distributions. However, a parametric (e.g. Gaussian)
approximation of sensors information is usually a better choice given the low compu-
tational power and low communications bandwidth it requires. This is achieved at the
cost of a limited representation of the sensors belief. On the other hand, non parametric
discrete approximations, such as Particle Filters, are able to capture arbitrarily complex
uncertainty, but are intractable when it comes to communicating the state distribution
due to the necessity of transmitting a large sample-based representation.



Each sensor is part of a network node which has local computational power and
is able to communicate with nearby nodes. In RoboCup, recent rules to forbid com-
munications with exterior computers push the research towards decentralized sensor
network topologies or centralized based topologies with a dynamic leader node [2].
Several teams have taken the decentralized way for a fully multi-agent approach [3]
[4] [5] [6]. However, the implementations described rely mostly on parametric sensor
models. We propose a decentralized approach based on a probabilistic framework from
non-parametric sensors, where communication constraints must be taken into account.

This paper introduces a a cooperative perception model based on particle filters and
a framework for representing and measuring disagreement of sensor information based
on Gaussian Mixture Models. Our soccer robots (RoboCup Middle Size League (MSL)
ISocRob team) are equipped with an omnidirectional camera with limited resolution
that hardly provides a global view of the field. Our main motivation is to take real
advantage of this team of mobile sensors scattered across the field, in order to provide a
broader view while locating and tracking the ball. We are further motivated in benefiting
from a multisensor system upon the challenges constantly imposed by RoboCup MSL
such as the global localization in a symmetric environment or the tracking of the (yet to
come) arbitrary color ball.

The paper is organized as follows. In Section 2 we review related work. Section
3 describes the implementation of a shape-based 3D tracker for the ball using a sin-
gle camera. Section 4 presents a compact sensor information representation based on
Gaussian Mixture Models (GMMs) and introduces a decentralized Bayesian approach
to multisensor fusion that takes advantage of distributed particle filters and GMM mod-
eling. In Section 5 we present experimental results to validate the presented methods.
Section 6 outlines our conclusions.

2 Related Work

Most of the previous work focus on merging the ball localization estimates provided
by several sensors to one consistent estimate among the team of robots. Lau et al. [7]
calculate the mean and standard deviation of all ball estimates for discarding outliers
and then assumes the ball information of the teammate closest to it. Ferrein et al. [8]
describe a weighted mean of the estimates according to the distance from the robot to
the ball and a time factor denoting how long ago the robot has seen the ball for the last
time. On a more probabilistic approach, Stroupe et al. [9] represent ball estimates as a
two-dimensional gaussian in canonical form, allowing to merge them by multiplication,
and use a Kalman filter to predict the ball position. Pinheiro and Lima [10] implemented
a multi-Bayesian team of robots as a direct application of the sensor fusion method in-
troduced by Durrant-Whyte [1]. This approach detects sensors disagreement based on
the Mahalanobis distance and achieve a team consensus faster. Other approaches also
accounted for merging weighted gridcells from ball occupancy maps [11], Monte Carlo
(ball) localization [12] or a combination of Kalman filter with Markov localization [13].
However, although mentioned in some approaches, none of these take into considera-
tion the robots own localization uncertainty, frequently assuming a highly accurate self-
localization method. This is problematic because fusion usually takes place in the global



reference frame for the team, therefore local estimates must be transformed to global
estimates before fusion, and the sensor localization uncertainty plays a major role in
this. Pahliani and Lima [14] proposed a new cooperative localization algorithm that re-
duces the uncertainty of both self-localization and object localization. This method tries
to overcome the performance of two popular algorithms for fusing sensor observations:
Linear Opinion Pool and Logarithmic Opinion Pool. The implementation although, is
based on multi-robot Markov Localization and assumes one can distinguish and locate
different team-mates, which is a complex task given the current RoboCup environment.

On other domains, Rosencrantz et al. [15] introduced a scalable Bayesian tech-
nique for decentralized state estimation with distributed particle filters using a selective
communication procedure over the particle set. On the other hand, instead of selecting
which particles to communicate, Upcroft et al. [16] demonstrated the validity of ap-
proximating a particle set using Gaussian mixture models or Parzen representations in
Decentralized Data Fusion (DDF) systems. However, at every given network node, all
sensors are treated as equals, i.e., there is one data association proccess that is impartial
to whether the current node is actually tracking the target or not. This means that we
are implicitly assuming that the result of the fusion process is more relevant than the
local sensor observations. Therefore, we present an approach where each node builds its
perception from other sensor nodes observations, and yet relys on a fusion estimation
proccess for critical situations, i.e., when the the target is out of the sensor range.

3 Ball Detection and Tracking

Our ball tracking observation model is based on Taiana et al. [17]. A 3D model of the
ball is used to calculate it’s 2D contour projected on the image. The expected ball con-
tour on the image is computed from its 3D shape projection on the 2D image plane.
The ball has rotational symmetry which reduces the problem dimension for there is
no need to consider the object orientation. Given a 3-dimensional position, the projec-
tion model tell us how the ball contour is going to look like in the image. However,
to track it, one needs to estimate the ball’s location with respect to the robot. For that
we use a particle filter to represent the ball’s state space regarding position and ve-
locity xt = [x, y, z, ẋ, ẏ, ż]T . We start by assuming a simple Markov process for the
underlying dynamics of the ball specified by a transition probability, from here and
henceforth denoted as motion-model, p(xt|xt−1), and that for every time step t > 1 a
new observation zt about the state xt is made. Given the observation history at time t
by Zt = [z1, ..., zt] our goal is to estimate the posterior distribution p(xt|Zt) for each
time step. This can be done recursively over Prediction and Update steps:

Prediction : p(xt|Zt−1) =
∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (1)

Update : p(xt|Zt) ∝ p(zt|xt)p(xt|Zt−1) (2)

where p(xt−1|Zt−1) is the previous estimate and p(zt|xt) is the observation model.
At a given moment in time t, the particle filter represents the probability distribution
of the state as a set of N weighted samples {x(i)

t , w
(i)
t }

N
i=1 , such that the posterior is



approximated by an empirical estimate:

p(xt|Zt) ≈
N∑
i=1

w
(i)
t δ(xt − x(i)

t ) (3)

where δ(.) is the Dirac delta function. The estimation of the best state is computed
through a discrete Monte Carlo approximation of the expectation:

x̂t
.=

1
N

N∑
i=1

w
(i)
t x(i)

t (4)

Prediction computes an approximation of p(xt|Zt−1) by moving each particle accord-
ing to the ball motion model. We assume a constant velocity model where the motion
equations correspond to a uniform acceleration during one time step:

xt =
[
I (∆t)I
0 I

]
xt−1 +

[
(∆t

2

2 )I
(∆t)I

]
at (5)

where I is the 3× 3 identity matrix, ∆t in general represents the sampling time, and at
is a 3×1 white zero mean random vector corresponding to an acceleration disturbance.

In the Update step, the particle’s weights are updated according to the computed
likelihood p(zt|x(i)

t ) for each hypothesis, from the observation model. We follow Ta-
iana’s [17] approach to compute the likelihood as a function of similarities between
color histograms. We compute two YUV histograms for the inner and outer boundaries
of the ball 2D projection contour and apply the Bhattacharyya [18] similarity metric.
In order to track arbitrary color balls, we do not define a reference color model for the
inner boundary and rely strictly on its mismatch to the outer boundary, that is the object
to background dissimilarity. This is well suited given the RoboCup scenario, where the
background is mostly the field color and the ball color, no matter what, will always
have to contrast with it. The motion model described in Eq. (5) remains valid as long
as we express the state of the ball in terms of the world reference frame W which, as
opposed to the robot reference frame R, is inertial. As so, the robot pose must be taken
into account in the observation model in order to project a 3D point M onto the im-
age plane. This means that, at every time step, the coordinates expressed in the world
reference frame WM = [WX,W Y,W Z, 1] must be transformed to the robot reference
frame RM = [RX,R Y,R Z, 1] by means of a transformation matrix, which comprises
a rotation matrix RRW and a translation vector RtW :

RTW =
[
RRW

RtW
0 1

]
(6)

The particles that have a higher weight are replicated in the Resampling step, and the
rest of the particle set is discarded. To prevent the loss of diversity in the particle popu-
lation, we use a low variance resampling technique.

We initialize our tracker by uniformly spreading a fixed number of ball hypothesis
on the ground, in a 5 meter radius circle surrounding the robot. This enable us to reduce
the search state space, as we assume the ball is on the floor, and constrains the detection
according to the camera resolution.



4 Cooperative Perception in Mobile Sensor Networks

4.1 Information Representation

In order to communicate the ball location and the sensor uncertatinty to other team-
mates one cannot transmite the entire particle set that approximates the posterior in Eq.
(3). The conversion of our sample-based non-parametric representation to a continuous
distribution requires the use of methods such as kernel density estimation, but in order
to achieve efficient communication a parametrization of the probability density function
is, in fact, mandatory. A mixture model provides this type of representation and can also
be viewed as a type of kernel method [19]. If the kernel function of the mixture model
is Gaussian, the distribution is expressed as a Gaussian Mixture Model (GMM) of the
form:

P (x) =
N∑
k=1

wkG(x|µk, Σk) (7)

where x are the observations of the random variable X, wk are positive weights such
that

∑N
i=k wk = 1, G is a Gaussian probability density (Gaussian mixture component)

with mean µk and covariance Σk, and N is the total number of mixture components.
For the GMM to be of practical importance both for data fusion and communications,
the density estimation technique, which will lead to the parametrization of the mixture
model, must be computationally fast and accurate.

The Expectation Maximization (EM) algorithm is an efficient iterative method to
the general approach of the maximum likelihood parameter estimation in the presence
of missing data. Our main intuition while using EM is to alternate between estimating
which sample from our sample-based representation belongs to which mixture com-
ponent (missing data) and estimating the unknown parameters Θk = (wk, θk), where
θk = (µk, Σk), for each of those components. Each iteration of the EM consists of an
expectation (E-step) and a maximization step (M-step). In the E-step we compute the
expected likelihood for the complete data Γ (also known as Q-function) as the condi-
tional distribution of the missing data Y , given the current settings of parameters Θ and
the observed incomplete data X. So, using Bayes’s rule, for each mixture component k:

p(yi = k|xi, θk) =
p(yi = k, xi|θk)

p(xi|θk)
=

p(xi|yi = k, θk)p(yi = k|θk)∑N
k=1 p(xi|yi = k, θk)p(yi = k|θk)

(8)

where N is the total number of mixture components and p(xi|yi = k, θk) is, in our
case, the multivariate Gaussian probability density function. One should also note that
the probability of an observation being part of the kth component p(yi = k|θk) is
actually its relative weight wk in the mixture model. In the M-step we re-estimate the
mixtures parameters Θ by maximizing the Q-function (see [19],[20] for the in-depth
derivation). From here we can compute a new approximation Θ′ for each component k:

µ′k =
∑M
i=1 xip(yi = k|xi, θk)∑M
i=1 p(xi|yi = k, θk)

, Σ′k =
∑M
i=1 p(xi|yi = k, θk)(xi − µ′k)(xi − µ′k)T∑M

i=1 p(xi|yi = k, θk)
(9)



where M is the number of total observations. The relative weight of each Gaussian
mixture is given by:

w′k =
1
M

M∑
i=1

p(yi = k|xi, θk). (10)

4.2 Cooperative Sensor Model

The decentralized sensor fusion typical approach is to build one single estimate of the
target, regardless of whether it’s being tracked by the local sensor or not, and always
assume that in the worst case we filter out our individual local estimate and use the other
robot fused estimate. We propose a different approach that consists of not taking other
sensors beliefs for granted, and instead use them as if they were observations gathered
by the local sensor (virtual observations).

From the previously described particle filter based perception framework in Section
3, we present herein a cooperative perception model that copes both with a local sensor-
distributed estimate of the object and a fused team estimate, deals with the correlation
between common information and can be used to improve self-localization. The model,
based on sequential Bayesian filtering representation, is illustrated in Fig. 1.

Fig. 1. Decentralized Mobile Cooperative Sensor Model (adapted from [16])

In the Local Filter, observations are made and used to compute the likelihood of the
sensor model, which is then multiplied by the prior belief in the Update step. Both the
local prior (before observation), predicted from the local posterior (after Update) over
the previous state, and the team prior, predicted from the received posterior distributions



of the teammates, are concurrently computed at each robot. This way, the other robots
information will only influence the prior belief and the posterior will be determined ac-
cording to the local sensor measurement model. In the update step, we sample from the
prior distribution, denoted in particle filters as the proposal distribution bel(xt), and our
goal is that the weighted particle set approximates the posterior, denoted as the target
density bel(xt). Upon resampling, the particles are distributed according to the poste-
rior:

bel(x[m]
t ) = ηp(zt|x[m]

t )bel(xt) (11)

where p(zt|x[m]
t ) is the probability of measurement zt under the mth particle x[m]

t . The
target density is then transformed in a compact GMM representation and passed on to
the other robots. When it is received, new samples will be drawn from it contributing for
the proposal distribution. The ability to sample is not given for arbitrary distributions,
however, since our distributions can actually be decomposed in a sum of Gaussians, we
can draw a random vector X = (x1, x2, ..., xn)T from each bivariate component k with
mean µk and covariance matrix Σk from:

x[n]
k = Akv

[n] + µk (12)

where v are n independent samples drawn from N(0, I2) and Ak is the Cholesky de-
composition of Σk, such that Σk = AAT . For each new particle x[n] we then calculate
the importance factor w as described in the ball tracking Update step, Section 3. As
such, samples generated from received GMMs that do not follow the local observation
model will have a low likelihood and will be discarded on resampling.

In the Team Filter we receive GMM representations of the ball’s posterior in the
world frame. Regarding information fusion, the Covariance Intersection (CI) filter yields
consistent estimates to the problem of combining different Gaussian random vectors
with unknown correlation between them. This can be extended to a GMM Covariance
Intersection algorithm as in [16], by performing CI between each of the mixture com-
ponents. The fusion between the ith component of a GMM and the jth component of
another GMM will result in a Gaussian mixture with N ×N components, such that:

Σ−1
ij = γΣ−1

i + (1− γ)Σ−1
j (13)

µij = Σij(γΣ−1
i µi + (1− γ)Σ−1

j µj) (14)

wij =
1
N

(γwi + (1− γ)wj) (15)

where 0 ≤ γ ≤ 1 is a weighting parameter to minimize the determinant of the result.
This parallel team estimate is to be used only in critical conditions when the target is
out of the sensor field of view.

When associating data in distributed systems, an incorrect association decision leads
to an incorrect fusion estimate, therefore ones needs to have the ability to measure
agreement among disparate sensors before fusing their observations. A distance mea-
sure between Gaussian distributions can be defined as Kullback-Leiber distance [21],



Bhattacharyya distance [18] and others. However there’s no analytical solution of com-
puting these measures to evaluate the distance between Gaussian mixture models. There-
fore, we take Beigi et al. [22] approach to measure distances between collections of dis-
tributions in speech recognition, and define our measure of divergence between GMMs
as:

D(G1, G2) =

∑N
i=1W

1
i +

∑N
j=1W

2
j∑N

i=1 ci +
∑N
j=1 cj

≤ ξ (16)

and assume there is agreement if D(G1, G2) ≤ ξ, where ξ is a positive threshold. Con-
sider the matrix of distances between N ×N mixture componentes:

T =


d11 d12 ... d1N

d21 d22 ... d2N

... ... ... ...
dN1 dN2 ... dNN

 (17)

W 1
i is the minima of the elements in the row times the row number ci. Likewise, W 2

j

is the minima of the elements in the column times the column number cj . We can
compute dij from the above metrics for Gaussian distributions. We choose to apply the
Bhattacharyya distance for multivariate Gaussian distributions.

4.3 Improving Self-Localization

Our current self-localization method is a combination of Monte Carlo Localization with
gyrodometry and line points extraction. However, one of the issues that affects MCL
performance is the difficulty to recover from failures. One typical recover approach
consists in gradually augmenting the proposal distribution by systematically adding
more and more particles until better observation likelihoods can be obtained. Two major
drawbacks can put this approach at risk. One is the large amount of computational
power required to draw and test samples from an augmented proposal distribution that
can comprise the entire state space. The other drawback is the inability to deal with
local maxima that are present in symmetric environments, such as the RoboCup field.

Instead, one can now see the problem as feature-based map localization with known
correspondence, that is p(rt|f it , cit,m), where rt is the robot pose and ft denotes a given
feature that has a correspondence ct in a list of landmarks m. Let’s consider the ball as
a landmark m1. If some other robots are localized and tracking the ball, the coordi-
nates m1,x and m1,y of our landmark in the world frame of the map are given by the
Team Filter estimate. If the lost robot is tracking the ball relative to its local coordinate
frame (Local Filter), it can make new guesses of its own whereabouts for it now knows
it may be on a circle around the landmark. These new guesses represent new poses
that incorporate the sensor measurement p(f it |cit, rt,m) . We can assume the robot is
completely lost and therefore the prior p(rt|cit,m) is uniform. This assumption leads to:

p(rt|f it , cit,m) = ηp(f it |cit, rt,m)p(rt|cit,m)

= ηp(f it |cit, rt,m)
(18)

from where we concluded that sampling from p(rt|f it , cit,m) can, in this particular case,



(a) (b)

Fig. 2. Parametrization of the Ball Tracking particle set using Expectation Maximization. Particle
set in green, and the respective Gaussian mixture components in black. (b) Density function.

be achieved from p(f it |cit, rt,m). As so, we only add a limited amount of new sample
poses that derive from a common target observation to the MCL proposal distribution.

5 Experimental Results

All experiments were made online, on a Intel Centrino 1.6 GHz processor, in real game
situations. To achieve maximum processor performance, the implementation was done
in C++ with extensive use of Intel Performance Primitives (IPP) for optimized vector
and matrices operations and Intel Math Kernel Library (MKL) for statistics procedures.

5.1 Generating Compact Information Representations

In this experiment we tested the particle set approximation with EM. The purpose was
to test the algorithm efficency and determine a good number of Gaussian components
that would suit an aceptable EM convergence time. We ran our EM implementation
with a different number of mixture components for the same scenario and registered the
average run time of the algorithm in Table 1. As so, we choose to use GMMs with 4
components for it is enough to capture a good approximation of the particle set (Fig. 2)
in an aceptable time. All the processing was made online with 1200 particles.

Table 1. Average execution time while computing GMMs with our EM implementation for 12000
particles, concurrently with other modules used to play soccer

Number of mixture components 1 2 4 10
Time taken [seconds] 0.0246 0.0690 0.1131 0.1924



5.2 Fusing Data

In this experiment three robots are able to localize the ball, while a fourth robot (the
goalkeeper) cannot (see Fig. 3). The robots tracking the ball compute their GMM ap-
proximation and broadcast it to others. As the goalkeeper receives the teammates GMM
estimates, it first tests it to see if there’s agreement, and if there is, it proceeds to com-
pute a team estimate by fusing the GMMs with CI.

Although its able to track the ball, robot4 is not able to localize itself correctly on
the field (Fig. 3a). As such, it broadcasts GMM approximation of its erroneous ball
localization belief, since it is corrupted by its self localization belief (Fig. 3b).

We show the results of the fusion estimate made by robot1 (Fig. 3g, 3h), which
is not able to see the ball at all. The decision on which GMMs to fuse is based on the
disagreement measurement Eq.(16) with ξ = 30. The computed distances between each
of the received GMMs are shown is Table 2.

Table 2. Distance measurements between the GMMs received by robot1

D(G2,G3) 9.6880

D(G3,G4) 200.5146

D(G2,G4) 162.7252

6 Conclusions

We presented a cooperative sensor fusion model based on a particle filter perception
framework, for mobile robots operating in dynamic environments. We aim at taking
advantage of a team of sensors to detect the ball on the field at all time.

For that we implemented a 3D shaped-based ball tracker that comprises a realistic
dynamic motion model. The system is based on particle filters and also comprises an
observation model that allow us to compute the likelihood of a ball hypothesis, given the
ball shape model, the projection model for the omnidirectional camera and an acquired
image. To acquaint for the robot motion in the tracker we take the robots pose into
consideration in the observation model.

We presented a framework for representing and measuring disagreement of sensor
information based on Gaussian Mixture Models. This representation allows to capture
arbitrary complex uncertainty from nonlinear observation models, yet it’s parametriza-
tion is simple and takes no overhead in communications. We implemented the Expecta-
tion Maximization algorithm for GMM parameter estimation to approximate the sample
based ball posterior distribution.

The implemented cooperative perception model takes advantage of the GMM rep-
resentation in two distinct forms. One is to improve the local ball particle filter in a
distributed fashion way by injecting new particles drawn directly from the received
GMMs. The other is to compute a ball team estimate directly from the received GMMs
target distribution with Covariance Intersection if there’s GMM agreemeant, when the
the ball cannot be detected by the local sensor.
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(e) (f)
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Fig. 3. GMM Data Fusion with Disagreement. (a) Top field camera view. (b) Robot4 tracks the
ball and broadcasts its GMM, but is not well localized. (c-f) Robots 2 and 3 track the ball, com-
pute their GMMs and broadcast them. (g-h) The goalkeeper (robot1) tests received GMMs for
disagreement and computes GMM CI only for those that are in agreement.


