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Abstract. In this paper we address reinforcement learning problems
with continuous state-action spaces. We propose a new algorithm, �tted
natural actor-critic (FNAC), that extends the work in [1] to allow for
general function approximation and data reuse. We combine the natural
actor-critic architecture [1] with a variant of �tted value iteration using
importance sampling. The method thus obtained combines the appealing
features of both approaches while overcoming their main weaknesses: the
use of a gradient-based actor readily overcomes the di�culties found in
regression methods with policy optimization in continuous action-spaces;
in turn, the use of a regression-based critic allows for e�cient use of data
and avoids convergence problems that TD-based critics often exhibit. We
establish the convergence of our algorithm and illustrate its application
in a simple continuous space, continuous action problem.

1 Introduction

In theory, reinforcement learning (RL) can be applied to address any optimal
control task, yielding optimal solutions while requiring very little a priori infor-
mation on the system itself. Existing RL methods are able to provide optimal
solutions for many real-world control problems featuring discrete state and ac-
tion spaces and exhibit widely studied convergence properties [2]. However, most
such methods do not scale well in problems with large state and/or action spaces.

Many RL works addressing problems with in�nite state-spaces combine func-
tion approximations with learning methods. Encouraging results were reported,
perhaps the most spectacular of which by Tesauro and his learning Gammon
player [3]. However, as seen in [4, 5], DP/TD-based methods exhibit unsound
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convergence behavior when combined with general function approximation. Con-
vergence of methods such as Q-learning with general function approximation
thus remains an important open issue [6].

If problems with in�nite state-spaces pose important challenges when devel-
oping e�cient RL algorithms, the simultaneous consideration of in�nite action-
spaces adds signi�cant di�culties. Few RL methods to this day address problems
featuring continuous state and action spaces. A fundamental issue in this class of
problems is policy optimization: many RL methods rely on explicit maximization
of a utility function to achieve policy optimization. If the number of available
actions is in�nite, this maximization is generally hard to achieve, especially if we
consider that it is not local but global maximization. This signi�cant di�culty
a�ects many methods with otherwise sound performance guarantees, rendering
such performance guarantees unusable [7].

When addressing problems with large/in�nite state and/or action spaces, two
major approaches have been considered in the RL literature. Regression-based
methods use sample data collected from the system to estimate some target util-
ity function using regression techniques. This class of methods is particularly
suited to address problems with in�nite state-spaces, although more general
applications have been proposed in the literature [7]. Such algorithms can take
advantage of the numerous regression methods available from the machine learn-
ing literature while exhibiting solid convergence properties [7, 8] and have been
successfully applied in many di�erent problems [9�12].

Gradient-based methods, on the other hand, are naturally suited to address
problems with in�nite action-spaces. Such methods consider a parameterized
policy and estimate the gradient of the performance with respect to the policy
parameters. The parameters are then updated in the direction of this estimated
gradient. By construction, gradient-based methods implement an incremental
policy optimization and thus avoid the need for explicit maximization; it is no
surprise that many RL works addressing problems with continuous action spaces
thus rely on a gradient-based architecture [1, 13,14].

However, gradient-based methods are line-search methods and, therefore,
convergence is guaranteed only to local minima. Moreover, �pure� gradient me-
thods usually exhibit large variance and, as argued in [15], make poor use of data.
Actor-critic architectures [16] provide a suitable extension to pure gradient me-
thods. They have been extensively analyzed in several works (e.g., [1,15,17,18])
and found to exhibit several advantages over pure gradient methods (in partic-
ular, in terms of variance and data-usage).

1.1 Contributions and structure of the paper

In this paper, we combine the appealing properties of actor-critic methods with
those of regression-based methods in a new method dubbed as �tted natural

actor-critic (FNAC). FNAC extends the natural actor-critic (NAC) architecture
[1], allowing general function approximation and data reuse. In particular, we
modify the TD-based critic in the NAC and implement a variant of �tted value
iteration using importance sampling.



FNAC thus combines in a single algorithm the potentially faster convergence
of natural gradients [19] and the sound convergence properties and e�cient use
of data of regression algorithms [7]. We also make use of an importance sampling

strategy that allows the reuse of data, making our algorithm very e�cient in
terms of data usage and allowing the analysis of convergence of the algorithm.3

To this respect, it is also worth mentioning that, in many practical problems,
collecting data is costly and time-consuming. In these situations, the e�cient
use of data in FNAC is a signi�cant advantage over other existing approaches.
Finally, it is also important to emphasize that the gradient-based policy updates
readily overcome the most obvious di�culties of stand-alone regression-methods
with respect to policy optimization. Summarizing, FNAC allows for general func-
tion approximation in the critic component, while being able to use all sampled

data in all iterations of the algorithm (unlike most previous methods).
The paper is organized as follows. Section 2 reviews some background ma-

terial on MDPs and policy gradient methods. Section 3 introduces the �tted
natural actor-critic algorithm and its main properties. We evaluate its perfor-
mance in the continuous mountain-car problem in Section 4 and conclude in
Section 5 with some �nal remarks and directions for future work.

2 Background

In this section we review some background material that will be of use in the
remainder of the paper. In particular, we brie�y review the MDP framework [20],
the policy gradient theorem and its application in approximate settings [21] and
the use of natural gradients in actor-critic methods [1, 19].

2.1 Markov decision problems

Given two compact sets X ⊂ Rp and A ⊂ Rq, let {Xt} be an X -valued con-
trolled Markov chain, with control parameter taking values in A. The transition
probabilities for the chain are given by the kernel

P [Xt+1 ∈ UX | Xt = x,At = a] = Pa(x, UX),

for any measurable set UX ⊂ X . The A-valued process {At} represents the
control process: At is the control action at time instant t. A decision-maker
must determine the control process {At} so as to maximize the functional

V ({At} , x) = E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
,

where 0 ≤ γ < 1 is a discount-factor and R(x, a) represents a random �reward�
received for taking action a ∈ A in state x ∈ X . To play it safe, we assume

3 As remarked in [18], such analysis is not immediate in the original NAC algorithm,
since the data used in NAC is generated online from the current policy estimate in
the algorithm.



throughout this paper that there is a deterministic continuous function r de�ned
on X ×A× X assigning a reward r(x, a, y) every time a transition from x to y
occurs after taking action a and that

E [R(x, a)] =
∫
X
r(x, a, y)Pa(x, dy).

This simpli�es the notation without introducing a great loss in generality. We
further assume that there is a constant R ∈ R such that |r(x, a, y)| < R for
all x, y ∈ X and all a ∈ A. We refer to the 5-tuple (X,A,P, r, γ) as a Markov

decision problem (MDP).
Given an MDPM = (X,A,P, r, γ), the optimal value function V ∗ is de�ned

for each state x ∈ X as

V ∗(x) = max
{At}

E

[ ∞∑
k=0

γtR(Xt, At) | X0 = x

]

and veri�es

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy), (1)

which is a form of the Bellman optimality equation.4 The optimal Q-values
Q∗(x, a) are de�ned for each state-action pair (x, a) ∈ X ×A as

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

From Q∗ we can de�ne the mapping π∗(x) = arg max
a

Q∗(x, a) for all x ∈ X .
The control process de�ned by At = π∗(Xt) is optimal in the sense that the
corresponding value function equals V ∗. The mapping π∗ thus de�ned is an
optimal policy for the MDPM.

More generally, a policy is a (time-dependent) mapping πt de�ned over X×A
that generates a control process {At} verifying

P [At ∈ UA | Xt = x] =
∫
UA

πt(x, a)da, ∀t,

where UA ⊂ A is any measurable set. We write V πt(x) instead of V ({At} , x)
if the control process {At} is generated by a policy πt. A stationary policy is a
policy π that does not depend on t.

2.2 The policy gradient theorem

Let πθ be a stationary policy parameterized by some �nite-dimensional vector
θ ∈ RM . Assume, in particular, that π is continuously di�erentiable with respect

4 Notice that the maximum in (1) is well de�ned due to our assumption of compact
A and continuous r.



to (w.r.t.) θ. We henceforth write V θ instead of V π
θ

to denote the corresponding
value function. Also, given some probability measure µ0 over X , we de�ne

ρ(θ) = (µ0V
θ) =

∫
X
V θ(x)µ0(dx).

We abusively write ρ(θ) instead of ρ(πθ) to simplify the notation. The function
ρ(θ) can be seen as the total discounted reward that an agent expects to receive
when following the policy πθ and the initial state is distributed according to µ0.

We wish to compute the parameter vector θ∗ such that the corresponding
policy πθ

∗
maximizes the expected income for the agent in the sense of ρ. In

other words, we wish to compute θ∗ = arg maxθ ρ(θ). If ρ is di�erentiable w.r.t.
θ, this can be achieved by updating θ according to

θt+1 = θt + αt∇θρ(θt),

where {αt} is a step-size sequence and ∇θ denotes the gradient w.r.t. θ. We can
now introduce the following result from [21,22].

Theorem 1. Given an MDPM = (X,A,P, r, γ), it holds for every x ∈ X that

∇θV θ(x) =
∫
X×A

∇θπθ(y, a)Qθ(y, a)da K̂θγ(x, dy),

where K̂θγ is the un-normalized γ-resolvent associated with the Markov chain

induced by πθ.5

The fact that ρ(θ) = (µ0V
θ) immediately implies that

∇θρ(θ) =
∫
X
∇θV θ(x)µ0(dx).

For simplicity of notation, we henceforth denote by µθγ the measure over X
de�ned by

µθγ(UX) =
∫
X

(∫
UX

K̂θγ(x, dy)
)
µ0(dx).

2.3 Policy gradient with function approximation

From Theorem 1 it is evident that, in order to compute the gradient ∇ρ, the
functionQθ needs to be computed. However, when addressing MDPs with in�nite
state and/or action spaces (as is the case in this paper), some form of function
approximation is needed in order to compute Qθ.

5 The γ-resolvent [23] associated with a Markov chain (X ,P) is the transition kernel
Kγ de�ned as Kγ(x, U) = (1−γ)

∑∞
t=0 γ

tPt(x, U) and the un-normalized γ-resolvent

is simply K̂γ(x, U) =
∑∞
t=0 γ

tPt(x, U).



Let {φi, i = 1, . . . ,M} be a set ofM linearly independent functions and L (φ)
its linear span. Let Q̂θ be the best approximation of Qθ in L (φ), taken as the
orthogonal projection of Qθ on L (φ) w.r.t. the inner product

〈f, g〉 =
∫
X×A

f(x, a) · g(x, a)πθ(x, a)da µθγ(dx).

As any function in L (φ), Q̂θ can be written as

Q̂θ(x, a) =
∑
i

φi(x, a)wi = φ>(x, a)w.

This leads to the following result from [21].

Theorem 2. Given an MDP M = (X,A,P, r, γ) and a set of basis functions

{φi, i = 1, . . . ,M} as de�ned above, if

∇wQ̂θ(x, a) = ∇θ log(πθ(x, a)) (2)

then

∇θρ(θ) =
∫
X×A

∇θπθ(x, a)Q̂θ(x, a)da µθγ(dx).

Notice that, in the gradient expression in Theorems 1 and 2, we can add an
arbitrary function b(x) to Qθ and Q̂θ. This is clear from noting that∫

A
∇θπθ(x, a)b(x)da = 0.

Such functions are known as baseline functions and, as recently shown in [18],
if b is chosen so as to minimize the mean-squared error between Q̂θ and Qθ, the
optimal choice of baseline function is b(x) = V θ(x). Recalling that the advantage
function [24] associated with a policy π is de�ned as Aπ(x, a) = Qπ(x, a)−V π(x),
we get

∇θρ(θ) =
∫
X×A

∇θπθ(x, a)Âθ(x, a)da µθγ(dx), (3)

where Âθ(x, a) denotes the orthogonal projection of the advantage function as-
sociated with πθ, Aθ, into L (φ). Finally, recalling that Âθ(x, a) = φ>(x, a)w, we
can compactly write (3) as ∇θρ(θ) = G(θ)w, with G the all-action matrix [1].

G(θ) =
∫
X×A

∇θπθ(x, a)φ>(x, a)da µθγ(dx). (4)

2.4 Natural gradient

Given a general manifold M parameterized by a �nite-dimensional vector θ ∈
RM and a real function F de�ned over this manifold, the gradient ∇θF seldom



corresponds to the actual steepest descent direction, as it fails to take into ac-
count the geometry of the manifold [25]. However, in many practical situations,
it is possible to impose a particular structure on the manifold (namely, a Rie-
mannian metric) and compute the steepest descent direction taking into account
the geometry of the manifold (in terms of the Riemannian metric). This �nat-
ural gradient� is invariant to changes in parameterization of the manifold and
can potentially overcome the so-called plateau phenomenon [25].

As seen in [19], the parameterized policy space can be seen as a manifold that
can be endowed with an adequate Riemannian metric. One possible metric relies
on the Fisher information matrix, and is de�ned by the following matrix [19]

F(θ) =
∫
X×A

∇θ log(πθ(x, a))∇θ log(πθ(x, a))>πθ(x, a)da µθγ(dx).

The natural gradient is given, in this case, by ∇̃θρ(θ) = F−1(θ)G(θ)w. However,
as shown in [1], multiplying and dividing the integrand in (4) by πθ(x, a), we get
G(θ) = F(θ), and the natural gradient comes, simply, ∇̃θρ(θ) = w.6

3 Fitted natural actor-critic

We now use the ideas from the previous section to derive a new algorithm, �tted
natural actor-critic (FNAC). This algorithm takes advantage of several appealing
properties of �tting methods (namely, the solid convergence guarantees and the
e�ective use of data) while overcoming some of the limitations of this class of
methods in problems with continuous action spaces.

3.1 The FNAC architecture

We start by brie�y going through the FNAC architecture, illustrated in Figure 1.

The algorithm uses a set D of samples obtained from the environment, each
consisting of a tuple (xt, at, rt, yt), where yt is a sample state distributed ac-
cording to the measure Pat(xt, ·) and rt = r(xt, at, yt). For the purposes of the
algorithm, it is not important how the samples in D are collected. In particular,
they can all be collected before the algorithm is run or they can be collected in-
crementally, as more iterations of the algorithm are performed. Nevertheless, it
is important to remark that, for the purposes of our critic, enough data-samples
need to be collected to avoid conditioning problems in the regression algorithms.

At each iteration of the FNAC algorithm, the data in D is processed by the
critic component of the algorithm. This component, as detailed below, uses a
generic regression algorithm to compute an approximation V̂ θ of the value func-
tion associated with the current policy, πθ. This approximation is then used to

6 Peters et al. [1] actually showed that F(θ) is the Fisher information matrix for the
probability distribution over possible trajectories associated with a given policy.
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Fig. 1. Detailed FNAC architecture.

estimate an approximation of the advantage function, Âθ, using a linear func-
tion approximation with compatible basis functions. Finally, the evaluation per-
formed by the critic (i.e., the approximation Âθ computed from the data) is used
by the actor to update the policy πθ using a standard policy gradient update.

In the remaining of this section, we detail our FNAC algorithm.

3.2 The actor

The actor component of the FNAC algorithm implements a policy gradient up-
date. As seen in Section 2, this update relies on the natural gradient. The fact
that the natural gradient manages to take into account the geometry of the pol-
icy space may potentially bring signi�cant advantages in terms of performance
of the algorithm (namely, in terms of rate of convergence and ability to over-
come the plateau phenomenon) [25]. Therefore, given the parameterized policy
at iteration k, πθk , the actor component will update the parameter vector as

θk+1 = θk + αk∇̃θρ(θk).
As seen in Subsection 2.4, the natural gradient is given by ∇̃ρ(θk) = wk,

where wk is the linear coe�cient vector corresponding to the orthogonal projec-
tion of the advantage function Aθk in the linear space spanned by the compatible

basis functions, obtained from 2:

φi(x, a) =
∂ log(πθk)
∂θk(i)

(x, a).

Therefore, provided that the critic component yields such an approximation of
the advantage function, the update rule for the actor is, simply, θk+1 = θk+αtwk.

3.3 The critic

The critic of the FNAC algorithm is the element that distinguishes our algorithm
from other gradient-based approaches, such as [1,18]. Although we discuss these



di�erences in detail in the next subsection, it is still worth to brie�y outline the
fundamental di�erences. The algorithm in [18] can be seen as an online version of
the algorithm in [1]. Our algorithm is closest to that in [1] (it is, by construction,
a batch algorithm, although it can straightforwardly be converted in an online
algorithm). However, FNAC allows for more e�cient use of data than any of the
two aforementioned algorithms and is designed so as to accommodate general
regression methods (and, thus, general approximations).

Let D = {(xt, at, rt, xt+1), t = 1, . . . , n} be a sequence of sample transitions
obtained from the MDP when following some policy π0. As seen before, the value
function associated with a general policy π veri�es

V π(x) =
∫
X×A

(
r(x, a, y) + γV π(y)

)
Pa(x, dy)π(x, a)da

or, equivalently,∫
X×A

(
r(x, a, y) + γV π(y)

)
Pa(x, dy)π(x, a)da− V π(x) = 0.

This can be written as∫
X×A

(
r(x, a, y) + γV π(y)− V π(x)

)
Pa(x, dy)π(x, a)da = 0.

We want to approximate V π by a general parameterized family of functions V ={
Vv(x) | v ∈ RN

}
. In other words, we want to compute v∗ such that V π(x) ≈

Vv∗(x). For the policy π0 used to generate the dataset D, we can use the data
in D and solve the following regression problem:

v∗ = arg min
v

∑
t

1
µ̂(xt)

(
rt + γVv(yt)− Vv(xt)

)2
, (5)

where µ̂(xt) is the empirical distribution of state x obtained from the dataset
D.7 We remark that the function Vv∗ thus obtained is the one minimizing the
empirical Bellman residual. However, in order to adequately perform the above
minimization, double sampling is necessary, as pointed out in [4]. In systems
where double sampling is not possible, a correction term can be included in
the regression to avoid negative correlation e�ects [26], rendering the regression
problem equivalent to the solution of the following �tted-VI iteration:

Vk+1 = min
V

∑
t

1
µ̂(xt)

(
rt + γVk(yt)− V (xt)

)2
.

7 The inclusion of the term µ̂(xt) merely ensures that regions of the state-space that
happen to appear more often in the dataset do not have �extra weight� in the regres-
sion. In fact, since the data in D can be obtained by any arbitrary sampling process,
its distribution will generally be distict from that induced by the obtained policy.
The �normalization� w.r.t. µ̂(xt) minimizes any bias that the sampling process may
introduce in the regression. Alternative regularizations are possible, however.



Nevertheless, the computation of V π as described above is possible because the
data is distributed according to the policy π0.

Suppose now that we want to approximate the value function associated with
some other policy πθ 6= π0. The value function for this policy veri�es

V θ(x) =
∫
X×A

(
r(x, a, y) + γV θ(y)

)
Pa(x, dy)πθ(x, a)da.

If we want to use the same data to compute V θ, some modi�cation is needed
since the data in D is not distributed according to πθ. If the policy πθ is known,
the above expression can be modi�ed to yield∫

X×A

(
r(x, a, y) + γV π(y)− V π(x)

)
Pa(x, dy)·

· π
θ(x, a)
π0(x, a)

π0(x, a)da = 0.
(6)

This means that we should be able to reuse the data in D to solve the following
regression problem, similar to that in (5):

v∗ = arg min
v

∑
t

1
µ̂(xt)

πθ(xt, at)
π0(xt, at)

(
rt + γVv(yt)− Vv(xt)

)2
.

Notice that the above regression makes use of importance sampling, by including

the term πθ(x,a)
π0(x,a)

. Notice also that this importance-sampling term is well-de�ned

for all samples (xt, at, rt, yt), since π0(xt, at) > 0 necessarily holds. Notice also
that, as before, the term µ̂(xt) is meant to minimize any bias that the sampling

process may introduce in the regression, and no change is necessary with the
particular policy πθ considered.

Given an estimate Vv∗ of the value function associated with a given policy
πθ, the corresponding advantage function can now be approximated by solving
the following regression problem:

w∗ = arg min
w

∑
t

1
µ̂(xt)

(
rt + γVv∗(yt)− Vv∗(xt)− φ>(xt, at)w

)2
,

where each φi(x, a) is a compatible basis function verifying (2). We remark that
no importance sampling is necessary in the above estimation, as can easily be
seen by repeating the above computations for the advantage function. The re-
gression problem can now easily be solved by setting

M =
∑
t

1
µ̂(xt)

φ(xt, at)φ>(xt, at)

and

b =
∑
t

φ(xt, at)
µ̂(xt)

(
rt + γVv∗(xt+1)− Vv∗(xt+1)

)
,

from where we obtain w∗ = M−1b. We conclude by observing that, with enough
samples, the inverse in the expression above is well de�ned, since we assume the
functions φi to be linearly independent.



3.4 Analysis and discussion of the algorithm

We now discuss several important properties of FNAC and compare it with other
related algorithms in the literature.

We start by remarking that the general regression-based critic and the impor-
tance sampling �regularization� imply that the dataset can be made independent

of the current learning policy. The main consequence of this is that, by requir-
ing minimum regularity conditions from the regression algorithm, the following
result can easily be established:

Theorem 3. Let F(θ) denote the regression algorithm used in FNAC to produce

the estimates Âθ and V̂ θ for an MDPM, given a θ-dependent policy πθ. Then,
if F is Lipschitz w.r.t. θ, and the step-size sequence {αt} used in the actor update

is such that ∑
t

αt =∞
∑
t

α2
t <∞

FNAC converges with probability 1.

Proof. Due to space limitations, we provide only a brief sketch of the proof.
The result arises as a consequence of the convergence results in [18]. In the

referred paper, convergence is established by analyzing a two-time-scale update
of the general form:

wk+1 = wk + αkF (wk, θk)
θk+1 = θk + βkG(wk+1, θk),

(7)

where α = o(βk). By requiring several mild regularity conditions on the under-
lying process, on the policy space and on the set of basis functions, convergence
can be established by an ODE argument. In particular, the proof starts by es-
tablishing global asymptotic stability of the �faster� ODE

ẇt = f(wt, θ),

for every θ, where f is an �averaged� version of F . Then, denoting by w∗(θ) the
corresponding limit point, the proof proceeds by establishing the global asymp-
totic stability of the �slower� ODE

θ̇t = g(w∗(θt), θt),

where, once again, g is an �averaged� version of G. Convergence of the coupled
iteration (7) is established as long as w∗(θ) is Lipschitz continuous w.r.t. θ.

In terms of our analysis, and since our critic is a regression algorithm, it holds
that at every iteration of the actor the critic is actually in the corresponding

limit w∗(θ). Therefore, since our data is policy-independent and we assume our
regression algorithm to be Lipschitz on θ, the convergence of our method is a
consequence of the corresponding result in [18]. ut



Fig. 2. The mountain-car problem: an underpowered car must go up a steep hill.

Another important di�erence that distinguished FNAC from other works is
the e�cient data use in regression methods. To emphasize this point, notice
that after each policy update by the actor, the critic must evaluate the updated
policy, computing the associated advantage function. In previous actor-critic
algorithms [1,15,18], this required the acquisition of new sampled data obtained

using the updated policy. However, in many problems, the acquisition of new
data is a costly and time-consuming process. Furthermore, the evaluation of the
updated policy makes poor use of previously used data.8 In our algorithm, all
data collected can be used in every iteration. Evidently, the importance-sampling
term in (6) will weight some samples more than others in the estimation of each
V θ, but this is conducted so as to take full advantage of available data.

Finally, we remark that, from Theorem 2 and subsequent developments, the
(natural) gradient is computed from the orthogonal projection of Qθ/Aθ into
L (φ). However, as all other actor-critic methods currently available [1,15,17,18],
our critic cannot compute this projection exactly, since it would require the
knowledge of the function to be projected. This will impact the performance of
the algorithm in a similar way to that stated in Theorem 1 of [18].

4 Experimental results

We conducted several experiments to evaluate the behavior of our algorithm
in a simple continuous state, continuous action problem. We applied FNAC to
the well-known mountain-car problem [27]. In this problem, an underpowered car
must go up a steep hill, as depicted in Figure 2. As it has not enough acceleration
to go all the way up the hill, it must bounce back-and-forth to gain enough
velocity to climb up. The car is described by two continuous state-variables,
namely position p and velocity v, and is controlled by a single continuous action,
the acceleration a. The range of allowed positions is [−1.2; +0.5] and the velocity
ranges between −0.07 and 0.07. The acceleration takes values in the interval

8 In incremental algorithms [15, 18], the step-size sequence works as a �forgetting�
factor.



100 200 300 400 500 600 700 800 900 1000
150

200

250

300

350

400

450

500

Iterations

T
im

e 
to

 g
oa

l (
st

ep
s)

Performance vs. learning time

Data set with 104 samples

Data set with 5x103 samples

10
2

10
3

10
4

150

200

250

300

350

400

450

500

550

Data samples

T
im

e 
to

 g
oa

l (
st

ep
s)

Performance vs. data−set size

500 iterations

1000 iterations

(a) (b)

Fig. 3. Average performance of FNAC in the mountain-car problem: (a) Average time
to reach the goal as the number of iterations is increased. (b) Average time to reach
the goal as the size of the dataset is increased. The results depicted correspond to the
average over 100 independent Monte-Carlo trials. Average times of 500 steps indicate
that the car was not able to reach the goal.

[−1, 1]. The car can be described by the dynamic equations:

v(t+ 1) = bound
[
v(t) + 0.001a(t)− 0.0025 cos(3p(t))

]
p(t+ 1) = bound

[
p(t) + v(t+ 1)

]
where the function bound maintains the values of p and v within the limits.
Whenever the car reaches the position limits, its velocity is set to zero. Whenever
the car reaches the top of the hill, its position and velocity are randomly reset
and the car gets a reward of 10. Otherwise, it gets a reward of −1.

We are interested in analyzing how much data and time are required for the
FNAC algorithm to learn a �good� policy. To this purpose, we ran the FNAC
algorithm with di�erent dataset sizes and for di�erent amounts of time. For each
such run, we evaluated the learnt policy, initializing the car in the bottom-most
position of the environment with zero velocity and running the learnt policy up
to a maximum of 500 steps. We then observed the number of steps taken to
reach the goal. Figure 3.a shows the evolution of the average time to goal as we
increase the number of iterations of the algorithm.

It is clear from Figure 3.a that after only 300 iterations the algorithm already
learnt a good policy (one that is able to reach the goal) and, for the case of a
dataset of 104 points, the policy after 600 iterations is practically as good as
the best policy computed. It is important to refer at this point that we used
a simple linear approximator with 16 RBFs spread uniformly across the state
space. The policy was parameterized using a Boltzmann-like distribution relying
on the linear combination of 64 RBF uniformly distributed across the state-
action space. Notice also that, by using a linear approximator, the regression in
(6) can be computed analytically.



We also present in Figure 3.b the evolution of the average time to goal as
we increase the size of the dataset. We tested the performance of the algorithm
with datasets containing 100, 500, 103, 5 × 103 and 104 samples.9 As clearly
seen from the results in Figure 3.b, the size of the dataset greatly in�uences the
performance of the algorithm. In the particular problem considered here, the
FNAC algorithm was able to �nd a �good� policy with 5 × 103 points and the
best performance was attained with a dataset of 104 samples.

5 Concluding remarks

In this paper we presented the �tted natural actor-critic algorithm (FNAC).
Our algorithm uses natural policy-gradient updates in the actor. However, unlike
other natural actor-critic (NAC) algorithms, the critic component of FNAC relies
on regression methods, with several important advantages:

� The use of regression methods allows the estimates of the value-function to
use general function approximation, unlike previous NAC algorithms which,
due to their use of TD-based critics, are limited to linear approximators; 10

� By adding an importance-sampling component, we allow our critic to reuse

all data in all iterations of the algorithm, this being a fundamental advantage
in problems where collecting data is costly or time consuming;

� The reuse of data allows the algorithm to consider datasets which are policy-
independent. This, means that, unlike other NAC methods, the convergence
of the algorithm can be conducted by a simple ODE argument;

It is also worth mentioning that FNAC is amenable to a multitude of di�erent
implementations, fully exploring the power of general �tting/regression methods.

The work portrayed here also suggests several interesting avenues for future
research. First of all, and although not discussed in the paper, an online imple-
mentation of our algorithm can easily be obtained by an iterative implementation
of the regression routines. Our convergence result holds if the relative weight of
each sample in the data-set is stored (in terms of sampling policy).

Also, our initial experimental results illustrate the e�cient use of data of our
algorithm, since FNAC could attain good performance, reusing the same dataset
at every iteration. Currently we are exploring the performance of the algorithm
in more demanding tasks (namely, robotic grasping tasks encompassing high-di-
mensional state and action spaces). It would also be interesting to have some
quantitative evaluation of the advantages of FNAC in face of other methods for
MDPs with continuous state-action spaces. However, a direct comparison is not
possible: in the current implementation of FNAC, the data gathering process is
completely decoupled from the actual algorithm, while in most methods both
processes occur simultaneously, thus impacting the corresponding learning times.

9 We notice that, due to the deterministic transitions, no double sampling is necessary
in this particular example.

10 Notice, however, that Theorem 2 requires Aπ to be linearly approximated, using a
compatible set of basis functions verifying (2).



On a more general perspective, the critic component in FNAC estimates at
each iteration the value function V θ by minimizing the empirical Bellman resid-
ual. Approximations relying on Bellman residual minimization are more stable
and more �predictable� than TD-based approaches [28]. It would be interesting
to further explore these results to gain a deeper understanding of the advantages
of this type of approximation in the setting considered here.

Finally, the simple and elegant results arising from the consideration of nat-
ural gradients suggests that it may be possible to further extend this approach
and make use of higher-order derivatives (e.g., as in Newton-like methods) to
develop policy search methods for RL problems.
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