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Abstract

To exhibit social competence, an agent ought to pos-
sess the ability of deciding adequate courses of action
when confronted with other agents. In this decision-
making process the agent has to evaluate the behavior
of other agents (and objects) along time in response to
its actions and to act in order to raise the desirability
of the resulting situation. To achieve this desidera-
tum, the acting agent should learn causal relationships
associating its actions to the responses got from the
environment. In this paper the concept of “movie-in-
the-brain” (MITB) mentioned by Damésio (Damésio
1999) was applied to the development and the imple-
mentation of a mechanism capable of establishing such
causal relationships. A very simple example of an agent
supervising a controller of an inverted pendulum illus-
trates the application of the MITB paradigm as a way
of learning cause-effect relations and of improving the
competence of the agent along time. Some interesting
preliminary results are presented and discussed.

Introduction

The choice of a particular course of action by a situated
agent depends on the desirability of the expected final
results. Each time the agent makes a decision (and act),
it should evaluate whether the response got from the
environment corresponds to a situation which evolves
towards the intended objectives. According to Anténio
Damaésio, the mechanism of deciding courses of action
relies on what he calls a “movie-in-the-brain” (MITB):
the agent stores chunks composed by sequences of per-
ceptions and actions, together with a measure of the
corresponding desirability. When a similar situation
appears in the future, the agent can make decisions on
the basis of a pre-existing experience. From the point of
view of developing and implementing intelligent agents,
this mechanism has some interesting advantages and
some drawbacks. On the one hand, the competence of
the agent improves as it collects new experiences, so
the required a priori knowledge is low. On the other
hand, as the MITB relies on learning cause-effect re-
lations, the agent exhibits sometimes a “superstitious
behavior.” Learning, in this case, presupposes a boot-
strapping mechanism rooted on a reactive approach to
action, to be utilized whenever the agent has lack of ex-

perience. It also presupposes to experiment and make,
in certain cases, fatal mistakes.

The complexity of implementing a MITB has led the
authors to the choice of a simple example (the super-
vision of the controller of an inverted pendulum) to
serve as test bed for the experimentation of the MITB
paradigm. Moreover, the MITB was built on the foun-
dations of the DARE architecture for emotion-based
agents. In the next section the DARE architecture is
briefly described. Followed by a section explaining the
proposed memory mechanism. Then the developed im-
plementation is described followed by some preliminary
results, and a comparative study with other models.
Finally, the paper ends with some concluding remarks.

DARE: an emotion-based agent
architecture

The DARE architecture was introduced in (Ventura &
Pinto-Ferreira 1998) and further developed and imple-
mented in (Ventura, Custédio, & Pinto-Ferreira 1998;
Ventura & Pinto-Ferreira 1999; Ventura 2000; Macas et
al. 2001). Applications to control systems were dis-
cussed in (Custddio, Ventura, & Pinto-Ferreira 1999),
and to learning in (Vale & Custédio 2001).

The basic idea of DARE is to process stimuli simul-
taneously under two different perspectives: a cognitive,
elaborative — which allows the agent to understand
what is happening and what it knows about the world,
and a perceptual, immediate — which permits it to
react quickly and decide adequately in circumstances
demanding urgent action. Hence, from the very same
stimulus, two sets of facets are extracted: one, mostly
directed to recognition and reasoning purposes, and an-
other, aiming at assigning degrees of “threat,” “dan-
ger,” “pleasure,” and so on, to the current situation,
constructing what we call a desirability vector (DV).

This kind of system should be bootstrapped by the
incorporation of built-in associations. In fact, there
should exist some stimuli which are essential, innate:
for instance, animals faced with their preys or predators
decide either to attack or run away as a function of the
vector of desirability a perceptual image suggests. This
assignment, should depend on the considered species.

Formally, at a given time instant ¢ the agent is ex-



posed to a stimulus denoted s(t). From this stim-
ulus two images are extracted: a perceptual image
ip(t) = fp(s(t)) and a cognitive image i.(t) = f.(s(t)).
From the perceptual image, a desirability vector (DV)
va(t) = fa(ip(t)) is obtained, whose components repre-
sent the assessment the agent performs across several
dimensions (e.g., valence, relevance, etc.). The built-
in associations that the agent possesses correspond to
the functions f, and f4. The figure 1 illustrates this
architecture.
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Figure 1: Simple sketch of the DARE architecture.

For a given DV, the perceptual layer obtains a reac-
tive response action a,(t) = fap(va(t)). Simultaneously,
as a result of the cognitive processing, which treats the
cognitive image on the basis of pattern matching, an
action a.(t) may be obtained. The action a(t) taken
by the agent is either the perceptual or the cognitive
action depending on the agent’s assessment of the need
to answer quickly to the stimulus.

Motivation and relevance to social
contexts

In general terms the knowledge of a situated agent can
be divided in two broad classes: built-in knowledge that
allows the agent to cope with the environment at a ba-
sic level of competence (e.g. to be able to avoid situa-
tions that endanger its basic survivability), and learned
knowledge acquired with the interaction with the envi-
ronment. In complex and dynamic environments built-
in knowledge does not suffice, given either the complex-
ity or the unpredictability of the environment.

Learning from interaction with the environment is
here understood as gathering cause-effect relationships.
Given a situation the agent is facing, it should be capa-
ble to answer the question “what happens if I do this
action?” Or in other words, the ability to anticipate
the effects of some action.

In order to obtain these cause-effect relationships, a
mechanism was added to the DARE architecture. This
mechanism is based on Damdsio’s work (Damaésio 1999),
where he describes a “movie-in-the-brain” mechanism
as a “rough metaphor [which] has as many sensory
tracks as out nervous system has sensory portals —
sight, sound, taste, and olfaction, touch, inner senses,
and so on.” ((Damésio 1999) page 9).

In this sense, the agent stores sequences of snapshots
of its interaction with the environment in a structure
called movie-in-the-brain (MITB). As this interaction
happens, the agent has no idea of what are the relevant

sequences of snapshots it should store. Therefore, it
stores as many sequences as it can.

Modeling other agents behavior is a very important
feature in social contexts. However, this task can easily
become an intractable task, since they can be arbitrar-
ily complex. Furthermore, an agent has access mainly
to external manifestations of behaviors. The MITB can
play an important role in this context, in the sense of
providing a mechanism for establishing cause-effect re-
lationships. These include the effects on the world of an
agent actions, as well as, an agent responses to world
changes (including any other agent actions). An agent
equipped with the ability to extract these cause-effect
relationships can become able to anticipate possible ef-
fects to known causes.

Taking the scenario of a robotic soccer game as an
example, there are many causes to be loosing a game
for many goals. Since the MITB accumulates all the
details of previous experiences, an agent might be able
to identify patterns, e.g. common situations between
suffered goals, and therefore to avoid them. This can
be accomplished by anticipating the future behavior of
the opponents, and by taking measures against it. The
danger behind the opponent possession of the ball lies
mostly on what can happen afterwards, rather than on
the mere possession.

Implementation of the MITB

Experimental setup

In order to understand how the MITB mechanism could
function, a simple testbed was developed.

The testbed consists of a supervision of a simple con-
trol system. The system to be controlled is a dynamic
model of an inverted pendulum coupled to a movable
car (figure 2). This is a typical textbook problem in
control.

The model for the setup is a non-linear dynamic sys-
tem obtained from the physical considerations. The
state of the system can be described by a four vari-
able state vector x(t) = (z(t),&(t),y(t),y(t)), where
z(t) and &(t) are the translational position and velocity
of the car, and y(t) and g(t) are the angular position
and angular velocity of the pendulum. The state tra-
jectories along time are described by an equation in the
form x(t) = F (x(t),u(t)), where u(t) denotes the force
applied to the car, which is the actuation signal sup-
posed to balance the pendulum, and F' is a function
describing the system dynamics.

The system described above is simulated by a simple
numerical integration (4th order Runge-Kutta method)
of the dynamic equations, where the simulation step is
fixed.

This system is controlled by a simple proportional
controller given by u(t) = K, [yresr — y(t)], where y s
is the desired angular position of the pendulum (e.g.,
vertical position) and K, is a parameter called the pro-
portional gain of the controller. This implicitly assumes
that we are only interested in the vertical equilibrium
of the pendulum, regardless of the car speed. This is in
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Figure 2: On the left, the system used in the testbed,
and on the right, the supervisor setup.

fact a strong simplification, since when the pendulum
is successfully balanced, the car may keep moving.

A control system supervisor (figure 2) is built by
adding a module — the supervisor — which observes
the state of the system, and tunes the controller pa-
rameter. In this case, the supervisor and the controller
constitute the agent, whose stimuli are the system state
and whose actions are the new controller parameter
(proportional gain).

To get a realistic flavor of this setup, picture an agent
watching the pendulum and measuring the objects po-
sitions and velocities by means of its sensors, and trying
to balance the pendulum by exerting a force on the car.
In this metaphor the controller is assumed to be part
of the agent, e.g. a low-level reactive layer.

Supervisor

Fundamentals. For each simulation step the super-
visor is stimulated with the state of the system, which
corresponds to the stimulus s(t) = x(t). Then, ac-
cording to the architecture previously described, the
cognitive and perceptual images are extracted. In this
implementation, the cognitive image equals the state
vector, i.(t) = x(t) (f. is in this case the identity func-
tion), whereas the perceptual one has two components,
ip(t) = fp(x(t)) = (i),i). These components are the
deviation between the pendulum angular position and
the vertical position (equilibrium) i} = y — yres, and
the sum of the absolute speeds of tﬁe car and pendu-
lum @2 = |&| + [g].

The DV components represent basic assessments of
stimuli desirability. In this case there are two compo-
nents, vq(t) = (v3*,v5"?), which denote valence (v3* €
[-1,1], positive if v3® > 0, neutral if v3* = 0, and neg-
ative otherwise) and degree of urgency (vj™? € [0,1], 1
means maximum urgency).

The mappings fq between the i, (perceptual image)
and the vy (DV) are decomposed on two linear piece-
wise functions shown in figure 3.

For each time step the agent stores a memory
frame my(t) = (ic(t),p(t),va(t),a(t)) into the MITB.
The MITB is a sequence of memory frames M(t) =
[mys(t1), my(t2),...], where tp <t for k =1,2,... rep-
resent the time instants in which the agent have received

Figure 3: Profiles of the functions used to obtain the
DV components.

the stimuli, up to time ¢.
In the following, it is always assumed a generic time ¢
and, therefore, ¢ will be dropped for the sake of clarity.

Topographic map. The action selection is based on
a mechanism called topographic maps (abbreviated to
topmap), inspired on an homonymous structure found
in the brain (Churchland & Sejnowski 1992). The bi-
ologically inspired idea of topographic maps has been
used in neural networks (Kohonen 1982), among other
areas. However, in the context of this work, the idea
of topographic maps was taken in a different, simpler
perspective.

The topmap is a function 7(z) € R defined in a
bounded interval £ € [Zmin, Tmaz]- This function is ob-
tained by combining a set of “building-block” functions
1(z) defined and parameterized as follows:

|z—=g]

(@330, A, 7) = A- € Fmaz—=min

where zg, A, and 7 > 0 are parameters. This function
equals A for z = z¢ and decays exponentially with |z —
zo| > 0, with a decaying coefficient 7. The idea of the
topmap is to find the argument z that maximizes this
function, where ¢ functions with positive A contribute
as “attractors” and negative A as “repulsors.”

For a set of contributions <a:(()n),A(”), T(")>, with
n = 1,...,N, a topmap is initialized with zero,
T©)(z) = 0. For each contribution (n), a slighly modi-
fied function (™ (z) is added (pointwise) to 71 (z).
The modification consists of adjusting the ampli-
tude parameter A™ in such a way that 7(")(zo) =
7,[1(:1:(()"); :c(()") , A" (") = A, In other words, to prevent
that many 9 functions centered at some o overload the
topmap. Formally, this modification consists of trans-
forming a contribution ¢(z; m((]"), AM (") into:

¥ (@) = (s ag”, A - T (@f), 7))

The parameters xg, A, and 7 parameterize each con-
tribution individually. However, in this implemen-
tation, all A and 7 are equal. Topmaps are im-
plemented by discretizing the interval [Zmin,Zmaz] in
equally spaced (small) steps in z.



Decision making. Given a MITB containing a repre-
sentation of the agent recent history, the agent performs
the following steps to reach a decision at the cognitive
layer:

1. Match the present cognitive image i. against the
MITB. The metric used in this match is a normal-
ized Euclidian distance. Given two vectors u =
(u1, ...,un) and v = (v1, ..., vn) the distance between
them is given by

1 N Vk U 2

d(u,v) = ,| = _

( ? ) N ; (,Uzn.am _ ’UZ“”)
provided that vf*™ and v{**® are the minimum and
maximum of the k components of all cognitive images
in the MITB.

This metric accommodates for unknown vector com-

ponents scaling, constrained by knowing a priori the

normalization parameters v7*" and vy *®.
This matching process assigns to each memory frame
mj" in the MITB, with cognitive image ¢}, a match
degree given by d(iM,i.).

2. Find local minima of the matching degrees. In this
application, since the changing rate of the system
state is relatively slow when compared with the time
step, the local minima (when looking at the MITB
along the time) seems a reasonable mechanism to
find a tractable small set of cognitive matches. How-
ever, it may not be as appropriate in other domains.
The local minima are a subset of memory frames for
which the matching degree is less or equal than the
ones of the predecessor and the successor (whenever
more than one memory frame satisfy this condition,
just the most recent in time is considered).

3. Pick a sub-sequence after each cognitive match. The
sub-sequence of memory frames following a cogni-
tive match represents the immediate future after the
agent was previously faced with a similar stimulus.
This sub-sequence is also dependent on the actions
the agent took during that corresponding period of
time. This sequence of associations between cogni-
tive and perceptual images, DVs and actions are the
basis for the agent decision making process. There
is a fixed parameter that limits the size of each sub-
sequence.

4. FEvaluate each sub-sequence. For the first frame, the
DV and action are extracted (v} and a'), then the
first next frame for which the DV changes (in vector
distance, with respect to vé) more than a threshold
is searched for (v2 and a?), i.e., |[v3 — v}|| greater
than a threshold. If no such change is found, this
sub-sequence is ignored. The amount of change is
obtained from a weighted sum of the DV components
difference ecr, = >, wi - [(v3)e — (V3)k]-

For this implementation, the weights wy, determine to
what extent the agent take into account the valence
or the urgency components of the DV.

5. Construct action topmaps with respect to the “igno-
rance” and to the “evaluation.”
Two topmaps are constructed: one called ignorance,
T9"(z), representing the degree of ignorance of the
effects of a certain action z = a(t), and another called
evaluation, T¢" (z), representing whether the agent
considers the effects of the action x = a(t) desirable
or not (positive values mean “desirable,” while nega-
tive ones mean “undesirable”).
The “ignorance” topmap is obtained just by com-
bining a ¢ function for the action of each cognitive
match (and local minimum)m and the “evaluation”
topmap is obtained in a similar fashion, but now the
amplitude of the ¢ function depends on the evalua-
tion e.p,.

6. Choose the “appropriate” action. At this stage the
agent has to decide whether to maximize ignorance
(exploration of the environment) or evaluation (ex-
ploitation). First, the ignorance topmap is maxi-
mized: imq, = maxT¥"(z). Then, if i,,,, exceeds

a threshold 77}, the agent chooses to try a different
action (exploration). Otherwise, the agent chooses
the action which maximizes the evaluation topmap:
a. = argmax T (), where T is 79" if 4,4, > TJ, Or

Tevel otherwise.

As explained previously, the agent action a is one
of a, (perceptual) or a. (cognitive), depending on the
urgency of response. In this implementation a threshold
Ty is used, such that if the DV component v;™? > Ty,
the perceptual action is chosen (@ = a,), otherwise, the
cognitive one is chosen (@ = a.). The function f,, that
obtains the perceptual action a,, is 200 if v3* < 0, and 0
otherwise. This function simply turns off the controller
when the valence component of the DV is positive, and
uses a relatively large value otherwise. This results in a
bang-bang kind of control. The objective of this choice
is to show the benefits of the cognitive layer on top of a
perceptual layer that is too simple to handle an inverted
pendulum system.

Experimental results
Perceptual layer only (reactive approach)

In this case the (re)actions are solely result of the built-
in associations, incorporated in the perceptual layer.
The result is a bang-bang kind of behavior where the
agent was unable to prevent the pendulum from falling
for the range of initial conditions (0 to 12°). The fig-
ure 4 shows an example of such a run.

Full architecture (pro-active)

These experiments use the full architecture, i.e., cogni-
tive and perceptual layers. The MITB is empty at the
start of each run. Typically, during the first instants of
time, the agent experiments several actions. After some
time, either the system converges to an action that is
able to successfully balance the pendulum, or lets the
pendulum fall down. Figure 5 shows an example of a
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Figure 4: Perceptual layer only, single run for 6° initial
deviation. The “y” labeled trace represents the angular
position, in degrees (vertical position equals 90°); the
“Kp” represents the controller gain K, which is the ac-
tion a(t) of the supervisor; the values for each of the DV
components v and v}’ are also shown as “DV_val”
and “DV_urg” over horizontal lines denoting the zero of
each component.

run where the agent successfully balances the pendu-
lum.
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Figure 5: Full architecture, single run at the same con-
ditions as in figure 4.

The results of a batch of 151 runs, for the range of
initial conditions previously described, are the follow-
ing: the pendulum fell down 29.8% of the trials, and
settled (within £5° margin) for 35.8% of the trials (in
the remaining 34.4% the pendulum did not settled for
60 seconds); the average settling time was 39.2 seconds,
with a standard deviation of 9.59 seconds.

Persistence of the MITB

For each initial condition, the MITB was first emp-
tied, and then followed by a sequence of ten runs, each
one appending memory frames to the MITB. The idea
consists of observing whether the agent behavior im-
proves as the MITB registers increasingly more expe-
rience. The results are the following, for a batch of
151 runs: the pendulum fell down 30.5% of the trials,
and settled for 56.3% of the trials; the average settling
time was 16.1 seconds, with a standard deviation of

13.6 seconds. Comparing with the previous experience,
the average settling time improved significantly, as well
as the number of runs the pendulum was successfully
settled.

For a given initial condition, the first run equals the
corresponding one in the previous experiments. How-
ever, for the second run, the results tend to worsen sig-
nificantly. Only after several runs the results improve.
One possible explanation for this behavior is that in the
second run the agent tends to try out completely dif-
ferent actions, for the similar situations it encounters,
possibly leading to worse results. However, as experi-
ence is accumulated in the MITB, the agent starts using
that information to choose actions aiming at desirable
situations.

A relevant feature of these experiments is that the
settling time is in general inferior to the ones in the
previous experiments. This shows that accumulated ex-
perience in the MITB contributes positively to a better
performance of the agent.

Comparison with other models

There is a broad range of very different approaches to
control problems. To name a few, Albus (Albus 1996)
proposes a top-down approach, based on the desirable
capabilities of a complete intelligent system, and going
through an hierarchy of mechanisms, down to the low-
level control loops. A radically different approach is
taken by Arbib (Arbib, Schweighofer, & Thach 1994),
for instance, which proposes a biologically based ap-
proach, beginning by understanding the low-level mech-
anisms of sensori-motor coordination, and going up-
wards in terms complexity.

Michie and Chambers (Michie & Chambers 1968)
performed an early work on balancing a pendulum using
an adaptive system. A later work by Barto et al. (Barto,
Sutton, & Anderson 1983) approaches the same prob-
lem using reinforcement learning.

There are several qualitative distinctions between the
above RL approach and the emotion-based one: first,
the later bootstraps using the perceptual layer, con-
taining a minimal ability to attempt balancing the pen-
dulum, while the former is bootstrapped with random
neural weights; second, the MITB stores knowledge in
an explicit fashion, while the neural weights is implicit;
and third, the RL approach learns via an exhaustive
experimentation, while the later attains reasonable per-
formance just after a few steps.

Given the availability of the C code used by Barto
et al (Barto, Sutton, & Anderson 1983) on the web!,
some comparative experiments were conducted. The
RL experiment is based on a sequence of trials, starting
with the (0,0,0,0)7 initial state and ending with the
pendulum falling or the car hitting the walls, while the
emotion-based one was performed as described in the
previous section.

Figure 6 shows the results for 40 trials in terms of
number of steps for which the pendulum does not fall

Yftp://ftp.cs.umass.edu/pub/anw/pub/sutton/pole.c
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Figure 6: Comparative results of the proposed archi-

tecture and the one proposed by Barto et al. (Barto,
Sutton, & Anderson 1983) for 40 trials.

and does not hit the wall for the RL approach. One
first salient feature is that the RL approach requires
about 30 trials until a reasonable performance is at-
tained. This is a consequence of two factors: first, the
neural weights are initialized to a random value, while
in the emotion-based one the perceptual layer provides
a basic tendency to balance the pendulum; and second,
the emotion-based approach is able to put into prac-
tice what it learned in real-time, instead of relying on
external reinforcements or waiting for convergence of
the neural weights. Only after enough trials for the
RL process to converge, it is able to outperform the
emotion-based one.

Conclusions and Future Work

This paper shows some interesting results of an imple-
mentation of the “movie-in-the-brain” idea introduced
by Damésio (Damésio 1999). This mechanism is used
to select courses of action aiming at obtaining desirable
states for the agent. The results show that the agent
has a tendency to try out several actions at the begin-
ning of each run. As the agent accumulates experience
over time, in the MITB, the behavior is more consis-
tent, showing a trend to converge to an appropriate
action, i.e., that successfully balances the pendulum,
in a shorter amount of time, when compared with the
beginning of a run.

However, the computational resources of agents are
usually limited. In order to cope with complex and dy-
namic environments, a MITB as described would result
in an intractable large “movie.” Therefore, a long-term
memory mechanism has to be addressed in the future.
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