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Computer Vision and Robotics Group, Instituto de Sistemas e Robótica,
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University of Dublin, Trinity College, Av. Rovisco Pais, 1,
Dublin 2 - Ireland. 1049-001 Lisboa - Portugal.

Niall.Winters@cs.tcd.ie jasv@isr.ist.utl.pt

Abstract

This paper is concerned with focusing the atten-
tion of an autonomous mobile robot so it can fully
utilize its computation resources in visually navigat-
ing through an indoor environment. Our sole input
data are omnidirectional images obtained from a cata-
dioptric panoramic camera. We present a statistical
method termed Information Sampling for selecting the
most interesting data from this set. These data could
be a single pixel or a number scattered throughout an
image. The main problem addressed is how to deter-
mine which image data points represent highly atten-
tive regions of the environment. Once determined, we
show how to rank the data from most to least signif-
icant and how, using only the best data, Information
Sampling can be applied to determine the qualitative
position of the robot in a topological context. Results
are detailed in the paper.

1 Introduction

We address the question of how to obtain the most
informative data when an autonomous mobile robot is
visually guiding itself through a simple indoor environ-
ment. The aim here to identify and focus upon highly
distinctive regions within the environment, which the
mobile robot should memorize for future reference. In
focusing upon attentive regions the robot makes max-
imum use of its limited computational resources.

Traditionally, research into solving the robot nav-
igation problem concentrated almost exclusively on
geometric solutions. While many worthwhile exper-
iments were undertaken, real world solutions were of-

ten hampered by time constraints. In an effort to over-
come this drawback, the past few years has seen a new
approach emerge which seeks to turn the navigation
problem from the domain of reconstruction to that of
pattern classification or, as it has become known an
appearance-based solution.

1.1 Related Work

Perhaps one of the earliest examples of the use of
appearance-based methods for navigation was devel-
oped by Hong [6] et al. The goal was for a robot to
home to a given destination. Hancock and Judd [4]
developed “Ratbot”, where localization was achieved
by simply matching vertical bars from runtime images
to those acquired a priori. A View Sequence of images
for navigation was proposed by Matsumoto et al. [13].
Zheng [22] presented a system which moved along a
given route under human guidance and autonomously
memorized a side-view of that route. These data were
then used as a basis for route recognition and image
matching was performed in a coarse-to-fine manner us-
ing dynamic programming. Ishiguro [7] used the fre-
quency domain of the Fourier Transform as an image-
based memory of the environment. Unfortunately,
if repetitive structures need to be distinguished, this
method failed. Maeda et al. [12] used the paramet-
ric eigenspace approach to image matching [14]. They
noted that if one takes a single image from a stan-
dard camera, multiple matches could be obtained in
environments where similar images appear a distance
apart. Thus, robot position cannot be reliably de-
termined. Their proposed solution to this problem
is to employ an active vision strategy and take an-
other image close to the current one by moving the
robot, or the camera, and projecting this image into



the eigenspace. The disadvantage here is that when
building the eigenspace multiple images have to be
taken at each location, thus increasing the complexity
of the approach.

In order to compress large amounts of image data,
appearance-based systems are usually (but as can be
seen from the related work, not exclusively) built using
Principal Component Analysis. Construction of such
a system involves computing the eigenvectors (some-
times called eigenimages) of an a priori set of images.
The variance of this set is captured by its first few
eigenvectors. This low dimensional subspace [14], also
known as an eigenspace, forms an orthonormal basis
into which each image from the a priori set is pro-
jected. Once this eigenspace has been built, real time
recognition of an unknown image is achieved by pro-
jecting it into the eigenspace and using a simple dis-
tance measure to find its closest match to the previ-
ously projected points.

It is clear that previous research undertaken in this
area represented a “global approach” to the localiza-
tion problem, in that entire images were used for match-
ing. No attempt was made to extract attentive re-
gions from the input images. In the field of object
recognition, several authors have noted problems with
global matching approaches [15, 2]. Instead of pro-
jecting the entire image they proposed dividing each
image into a number of smaller windows which they
termed eigen windows. Eigenspace analysis was then
applied to each window. Their basic idea was that
even if a number of the windows were occluded, the
remaining ones would contain enough information to
perform the recognition task. A major problem with
this approach is that it requires storage of a very large
number of image windows. For example, if one had
an a priori set of 1000 images of size 256× 256 pixels,
and each window was 8 × 8 pixels in size, then one
would require 1,024 windows to represent an image or
1,024,000 to represent the entire a priori set. Clearly
the chances of one window, acquired at runtime being
matched to a number of images from the a priori set
is high. This could be due, for example, to having
many ambiguous regions within an image. Thus, it is
highly desirable that only the most effective windows
are selected from each acquired image, and that only
these chosen windows be matched to the a priori set.

As a solution to this problem, Ohba and Ikeuchi
propose using three criteria to eliminate the redun-
dant windows, namely: detectability, uniqueness and
reliability. Colin de Verdière and Crowley reformulate
the problem as a question of whether to use the set of
eigen windows selected by a particular interest opera-

tor or to use those windows selected from a predefined
grid.

Interest points are local features where the signal
changes two-dimensionally. Schmid and Mohr [18]
used a Harris detector [5] to determine where to com-
pute local grayvalue invariants in addressing the prob-
lem of image retrieval from a large database. Juges-
sur and Dudek [8] use a symmetry based context free
attention operator from [16] to detect windows that
contain a number of interest points above a certain
threshold. Unfortunately, for such an approach to be
effective, the images are required to be highly tex-
tured. Our a priori images do not exhibit such a prop-
erty, as they were acquired along a corridor where the
environment consists of plain white walls and brown
doors. Additionally, with interest operators stability
is hard to guarantee when changes in illumination oc-
cur.

As an alternative to using interest operators, one
may use windows chosen from a pre-defined grid [2].
The first stage of this approach involves projecting all
of the eigen windows into the eigenspace. Since an
image will contain a number of windows, an image is
represented in the eigenspace as a surface and a set of
image by a set of surfaces. Naturally, on projection
of an eigen window many matches will occur. Thus,
suppression of redundant windows is required. This is
usually achieved by noting that a search for the closest
point in the eigenspace produces too many matches.
Alternatively, suppression can occur at the training
stage by noting that a redundant window is one that
is projected many times. Nevertheless, this approach
still requires enough space and computational power
to store and search all of the eigen windows.

1.2 Our Approach

Our approach to this problem is somewhat different
from those outlined above and is based on a method by
Rendas and Perrone [17]. We noticed that the above
approaches do not make use of the inherent informa-
tion available from the a priori set of images. In the
case of [15, 2] all the eigen windows from entire im-
ages are first collected, from which the interesting data
must be found. In the case of [18, 8] their approaches
require extraction of features from images before being
able to proceed and solve their problem.

In contrast, our approach termed Information Sam-
pling [21] selects the most interesting data from a set
of images without using eigenspace analysis or need-
ing to apply interest operators. Theoretically, it can
be applied on a pixel-by-pixel basis to any type of im-
age, as outlined in Section 3.1. In this paper, for com-



putational reasons, we use windows instead of pixels,
extracted from omnidirectional images. Essentially,
we can reconstruct an image using only the data se-
lected by Information Sampling and then minimize
the error associated with this reconstruction. We can
rank the selected data and choose how much of it we
wish to utilize for matching. Information Sampling
selects quality image data as distinct from other meth-
ods which rely on a quantity of data. It is only after
the ranking stage that we employ a local eigenspace
approach to perform the qualitative recognition of a
robot’s position within an indoor environment, i.e. its
position on a topological map.

The outline of this paper is as follows: Section 2
briefly presents the Topological Navigation method-
ology. Section 3 presents the Information Sampling
method and underlying statistics. In Section 4, we
show how to use a local eigenspace approach for robot
navigation while in Section 5, we present our experi-
mental results and discuss the complexity of our method.
Finally, in Section 6 we conclude and give the future
directions of our research.

2 Topological Navigation

Topological Navigation is the mode used to travel
long distances in the environment and does not require
accurate control of the robot position along a path.
Typically, it corresponds to commands such as “fol-
low the corridor” or “turn left”. To be able to adopt
this navigation strategy we need a suitable represen-
tation, since the traditional metric mapping approach
is extremely inadequate. We represent the environ-
ment as a Topological Map, described by a graph struc-
ture. Nodes in the graph correspond to recognizable
scene sites (landmarks) where specific actions may be
elicited, such as entering a door, turning left, etc.
Links connecting nodes in the topological map cor-
respond to regions where some environmental struc-
ture can be used to control the robot. It is interesting
to note that since the robot only navigates between
nodes, global errors do not accumulate [1].

Topological Maps have proved beneficial in many
research works [10, 20]. Previously, some researchers
[9, 11] chose to detect nodes in the environment by
the use of sonar readings. Unfortunately, using this
approach one tends to have to deal with situations
where nodes are relatively indistinguishable due to
the nature of the obtained data. In our approach,
nodes are represented by Attention Windows (see Sec-
tion 3.2) and links by sequences of such windows. We
use Attention Windows (selected from omnidirectional

Figure 1: Left: the omnidirectional camera. Right:
the camera mounted on the mobile robot.

images), projected into a local appearance space (see
Section 4) as an implicit topological representation of
the environment. Progression towards the goal is ob-
tained by comparing the most interesting attention
widow from the current view with attention windows
acquired a priori.

Topological maps are a parsimonious representa-
tion of the environment that can be easily scaled, sim-
ply by connecting various subgraphs. Often the Topo-
logical Map can be associated with some qualitative
structural elements of the environment, that can be
used to control locally the robot trajectory.

3 The Information Sampling Method

As previously noted, our approach requires the use
of a priori image data. We wish to make it clear that
our method is independent of image type. For the ex-
periments outlined in this paper images acquired from
an omnidirectional camera with a spherical mirror,
built in-house at the Instituto de Sistemas e Robótica,
Lisboa were used. This camera was mounted on a
Labmate mobile platform and images were captured
as it traversed through a corridor environment. The
system is shown in Figure 1. Once the images were
captured, we determined which regions contained the
most interesting information by applying Information
Sampling. As a first step in explaining this process,
Section 3.1 outlines the procedure for reconstructing
an image, given only a small amount of data.

3.1 Image Reconstruction

We assume that the images captured by the robot’s
camera can be modeled as a random vector I, char-
acterized by a Gaussian distribution with mean Ī and
covariance ΣI :

I ∼ N (Ī ,ΣI) = p(I)



Usually, one can take an ensemble of images of the
environment [I1 . . . Im], which can be utilized for com-
puting Ī and ΣI , so that p(I) can be computed a pri-
ori. When the robot is navigating, we assume that the
observations, d, consist of a selection of (noisy) image
pixels (or sub-regions), rather than the entire image.
Accordingly, the observation model can be expressed
as:

d = SI + η (1)

where d stands for the observed data and the measure-
ment noise η is assumed to follow a Gaussian distri-
bution with zero mean and covariance Σn. We further
assume that I and η are independent. The selection
matrix, S, is composed of a series of ones and zeros,
the ones corresponding to the data points extracted
from an image. We select a number of pixels to test
by moving the set of ones in the selection matrix.

Having prior knowledge of I, in the form of a sta-
tistical distribution, p(I), the problem now consists
of estimating the (entire) image based on a partial
(noisy) observations of a few pixels, d. This problem
can be formulated as a Maximum a Posteriori estima-
tion of I. The posterior probability can be determined
from Bayes rule as:

p(I|d) = p(d|I)p(I)
p(d)

(2)

where p(d|I) is the likelihood of a pixel (or set of pix-
els) given a known image, I; the prior distribution is
denoted by p(I) and is assumed to have been learnt a
priori. With this information we calculate the maxi-
mum a posteriori estimate of an image, ÎMAP as fol-
lows:

ÎMAP = argmax
I

p(I|d)

ÎMAP = (Σ−1
I + STΣ−1

n S)−1(Σ−1
I Ī + STΣ−1

n d) (3)

Thus, ÎMAP is the reconstructed image obtained using
the pixel (or set of pixels), d. Notice that by combin-
ing the prior image distribution with the statistical
observation model, we can estimate the entire image
based on the observation of a limited number of pixels.

3.2 Choosing the Best Data: Attention
Windows

Once we have reconstructed an image using the
selected data, we can compute the error associated
with this reconstruction. The error covariance matrix,
Σerror is given by:

Σerror = Cov(I − ÎMAP ) = (Σ−1
I + STΣ−1

n S)−1 (4)

Of course, the quality of the estimate, and the “size”
of Σerror depend not only on the observation noise, η
but also on the observed image pixels, as described
by the selection matrix S. Equation (4) quantifies the
quality of an estimate obtained from using a particu-
lar set of image pixels. In theory, we can evaluate the
information content of any individual image pixel or
combinations of pixels, simply by selecting an appro-
priate selection matrix, S, and determining the asso-
ciated Σerror.

The problem could be formulated as an experiment
design process, in which we look for the optimal se-
lection matrix S∗ that minimizes (in some sense) the
error covariance matrix. If we take the determinant of
Σerror as an indication of the “size” of the error, the
optimal selection of image pixels would be given by:

S∗ = argmin
S

{ det((Σ−1
I + STΣ−1

n S)−1) } (5)

In practice, to avoid computing the inverse we de-
fine the following equivalent optimization problem in
terms of a modified uncertainty metric, U :

U = − log{ det((Σ−1
I + STΣ−1

n S)) }

S∗ = argmin
S

U (6)

So far, we have described Information Sampling as
a process for (i) reconstructing an entire image from
the observation of a few (noisy) pixels and (ii) deter-
mining the most interesting image pixels, S∗, in the
sense that they convey the most information about the
image set.

Unfortunately, determining S∗ is computationally
impractical since we would have to compute Σerror for
all possible combinations of pixels scattered through-
out the image. Instead, we partition the image into
non-overlapping square windows of (l × l) pixels. We
term these regions Attention Windows, denoted by
w = [w1 . . .wn].

By using equation (6), we can rank Attention Win-
dows or combinations of such windows, in terms of
their information content. Again, as searching all pos-
sible combinations of windows within the image to
minimize equation (6) would be computationally in-
tensive, so instead we use two sub-optimal (greedy)
algorithms. These algorithms are described in Section
5.1.

Notice that the information criterion is based on the
entire set of images and not, as with other methods, on
an image-by-image basis. For instance, a highly tex-
tured image region would only be selected if it varied
significantly from one image to the next.
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Figure 2: The input (left) and retrieved (right) omni-
directional images are very similar.

4 Local Appearance Space

We wish to use only the best Attention Windows,
w = [w1, ...,wn] obtained from Information Sampling
to visually guide a mobile robot through a simple in-
door environment. While conceivable this could be
achieved by matching the reconstructed image, ÎMAP

to the set of omnidirectional images, this would be
computationally expensive.

Instead, to determine the robot position, this match-
ing can be achieved in real time by reducing the amount
of data using Principal Component Analysis (PCA).
When using PCA, it is usual for entire omnidirectional
images to be utilized in building the eigenspace. They
are also used in the projection, i.e. a global approach.
This was the approach taken in our previous work
[3, 19, 20]. Figure 2 shows an image acquired by the
robot on a run down a corridor and the reconstruc-
tion of the closest image from the a priori set. As one
can see, the correct qualitative position of the robot
within its environment was calculated.

We wish to improve upon this method by project-
ing only the most interesting information obtained by
Information Sampling into a local appearance space.
In this way we significantly reduce the number of pro-
jected windows, thus immediately reducing the level
of possible ambiguity. Additionally we reduce even
further the amount of data used for matching. The
local appearance space has an orthonormal basis of
eigenvectors of size (l2 × 1), where l is the length of
the side of a square Attention Window.

Following the standard PCA approach, and using
Singular Value Decomposition (SVD) we can deter-
mine the eigenvectors (sometimes called eigen win-
dows), ej, and eigenvalues, λj , of the covariance ma-
trix Σlocal of the windows selected from the set of om-
nidirectional images, Iw. We denote the selected win-
dows from each image, w = [w1 . . .wm]. We denote

αj as the vector of co-efficients obtained by projecting
each window from Iw into the local eigenspace. We
can reconstruct an entire unknown image, ÂMAP by
replacing d in equation (3) by wk and reconstruct its
associated window, ĝ from PCA as follows:

ĝ = [e1 . . . eq]αj (7)

5 Experimental Results

Information Sampling has been tested on images
acquired by a mobile robot in a simple indoor office
environment. Processing was carried out off-line on
a Celeron 333MHz PC using Matlab. Our goal was
to show that by using Information Sampling to focus
upon attentive regions within the environment, effec-
tive navigation is possible. In the near term on-line
experimentation shall be undertaken.

The a priori set of ninety omnidirectional images
were obtained every 50 cm and ordered according to
the direction of motion of a Labmate mobile platform.
Each image was acquired at a resolution of 768× 576
pixels using a Tekram acquition board. Once each im-
age was acquired it was filtered and subsampled to an
image resolution of 16×16 pixels. The reason for such
a small image size relates to the complexity of deter-
mining the error covariance matrix, Σerror in equation
(4). If one wished to use image sizes of 128×128 pixels,
the computation of Σerror would require the calcula-
tion of a matrix of 16, 384 × 16, 384 elements in size,
a prohibitively large computation.

Each Attention Window was chosen to be 4×4 pix-
els in size, thus giving 16 non-overlapping Attention
Windows per omnidirectional image. For image re-
construction using equation (3), these windows were
of adequate size. As described in Section 4, we use
a local appearance space to determine the qualitative
position of a mobile robot within its environment. Ad-
ditional positioning experiments were undertaken us-
ing eigen windows of 32 × 32 pixels in size, extracted
from omnidirectional images of 128×128 pixels in size.
In order to locate the 32 × 32 pixel sized Attention
Windows, we used the ratio: 16:256 = 1,024:16,384.

5.1 Ranking the Attention Windows

We tested two algorithms to rank the Attention
Windows: Combinatorial Search and Simple Search.

1. Combinatorial Search We first search for the
best Attention Window. Then, the search for
the next best window is made keeping the first
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Figure 3: Left: The 16 non-overlapping Attention
Windows. Right: Those windows ranked according to
the amount of information they contain using Simple
Search.

window fixed, thus locating the best pair of win-
dows. As the method continues it determines
the best triplet of windows, etc. If we denote n
as the number of windows within an image, this
method requires the evaluation of equation (6),
n! times. The method automatically groups the
Attention Windows into a single window, a pair
of windows, a triplet of windows etc.

2. Simple Search This is a quicker search algo-
rithm. We rank the best information windows
independently. In this case, equation (6) has
only to be evaluated n times. As distinct from
the combinatorial method, if we wish to group
the best (single, pair, triplet etc. of) windows we
must do it manually based on the initial ranking.

These methods were chosen given the complexity of
searching for the optimal solution. Figure 3 (left)
shows the Attention Windows available for selection
and (right) these AttentionWindows, individually ranked
from the most (number 1) to the least informative
(number 16) using simple search.

As can be seen from any of the omnidirectional im-
ages in this paper, the robot is in the centre of each
image. Any information window which contains the
robot is not a discriminating one and so it follows
that such a window should have a lower ranking. As
shown in Figure 3 (right), this proves to be the case:
the four Attention Windows which contain the robot
are ranked from numbers ten to fifteen. Additionally,
the four windows at the periphery of the image also
have a low ranking, since they only contain a portion
of the omnidirectional image itself.

It should be noted that the corridor in which the
a priori set of images were acquired has a number of
offices on one side (the top half of the omnidirectional

images) and only a single door and notice-board on
the other (the bottom half of the omnidirectional im-
ages). Thus, as the robot travels down the corridor
more information change occurs in the top half of the
omnidirectional images. Again, this is borne out by
the window ranking, where the three highest ranking
Attention Windows are all in the top half of the om-
nidirectional image.

Figure 4 shows the graphs of the information win-
dows ranked using simple search (top) and combinato-
rial search (bottom). In both cases, the x-axis corre-
sponds to the window ranking, from first to sixteenth
and the y-axis corresponds to the uncertainty metric,
U calculated using equation (6). The numbers along
the graph line correspond to the 16 non-overlapping
Attention Windows per omnidirectional image. For
example, using simple search the left graph tells us
that the eighth Attention Window exhibits the low-
est uncertainty value and so is individually ranked in
first position, while the third window, having a higher
uncertainty value, is individually ranked in second po-
sition etc.

Using combinatorial search the right graph tells us
that the eighth window is ranked in first position. This
window is then fixed and the best pair of windows, in
this case the eighth plus the third, is found. Thus,
the third window contains the next best amount of
information and is ranked in second position. Using
combinatorial search the next best window added at
each stage matches the window rank chosen by simple
search.

Combinatorial search continues until all windows
have been combined. As can be see in Figure 4 (bot-
tom) each combination of Attention Windows exhibits
a lower uncertainty measure than the previous one, i.e.
the uncertainty decreases per n best windows. Intu-
itively, this makes sense as the more information avail-
able, the better the image reconstruction should be.
However, the payoff for using many Attention Win-
dows is not significant as can be seen from the small
drop in uncertainty. This result is also borne out by
Figure 7, as detailed in Section 5.2. Clearly, the fact
that the highest ranking Attention Window is not only
the most interesting, but is the most interesting by an
significant factor, is the reason why we need use only
it for topological position estimation and additionally,
for reconstruction. Figure 4 (top) shows how the un-
certainty increases when each lower ranking window is
used alone.

In terms of computation time, simple search took
an average of 6.2 seconds to rank the Attention Win-
dows while combinatorial search took an average of
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Figure 4: Graphs of the information contained in each
eigen window versus the window rank when using sim-
ple search (top) and combinatorial search (bottom).
The numbers along the graph line are the windows
numbers.

63.9 seconds to determine the same information. The
trade-off is accuracy versus computational power.

5.2 Window Results

We can divide our results into two main categories:
Position Estimation using Eigen Windows and Recon-
struction using Attention Windows.

1. Position Estimation using Eigen Windows

Having previously selected the best Attention
Window using Information Sampling, we built
a local appearance space using only the data se-
lected with this window from each a priori im-
age. This further compressed our data to only
approximately one thousandth of the original
128 × 128 image data. Successful position es-
timation has been achieved using windows as
small as 4× 4 pixels in size.

We projected only the selected best Attention
Window from each image into the eigenspace.
This is an improvement on previous approaches,
where all windows first had to be projected. Thus,
we were able to immediately reduce the ambigu-
ity associated with projection. The images in
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Figure 5: Top: Close-up of the 32 × 32 Attention
Windows: unknown (left), closest (middle) and re-
constructed (right). Bottom: The position of the un-
known and closest images in their respective omnidi-
rectional images.

Figure 5 show the results obtained using win-
dows of 32× 32 pixels in size.

The top row, from left to right shows the most
interesting Attention Window from an unknown
image, its closest match from the a priori set
of omnidirectional images and its reconstruction
using equation (7). The bottom row, shows the
Attention Window in the unknown 128×128 im-
age (left) and its closest match from the a priori
set obtained by projecting only the most inter-
esting Attention Window (right). We note here
that we could in principle, given enough com-
puting power, use equation (3) to reconstruct a
128× 128 image using only the most interesting
window.

Figure 6 shows the distance between images ac-
quired at run time and those acquired a priori.
The global minimum is the correct estimate of
the robot’s current topological position. Local
minima correspond to similar images to the cur-
rent one some distance away from the robot’s
current position. Figure 6 (top) shows the graph
obtained using 16 × 16 images, while Figure 6
(bottom) that obtained using the most interest-
ing 4 × 4 image window. While different local
minima are obtained, it can clearly be seen the
global minimum using both methods is main-
tained. Thus, we have shown that effective nav-
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Figure 6: A 3D plot of image acquired at run time ver-
sus those acquired a priori using (top) 16× 16 images
and (bottom) 4× 4 Attention Windows, respectively.

igation can be undertaken using only the most
informative 16 pixels from each image.

2. Reconstruction using Attention Windows

The reconstruction results obtained using Atten-
tion Windows of size 4× 4 pixels, selected from
omnidirectional images of 16 × 16 pixels in size
and of using 4×4 windows from images of 32×32
pixels in size, respectively are shown in Figure
7. The top row of Figure 7 (Top left) shows a
16 × 16 omnidirectional image from the a pri-
ori set, Figure 7 (Top middle) its reconstruction
using only the most informative 4 × 4 Atten-
tion Window and 7 (Top right) its reconstruc-
tion using all of the Attention Windows. Recon-
struction was achieved using equation (3). The
bottom row of Figure 7 shows the same results
obtained using 8×8 Attention Windows selected
from 32× 32 omnidirectional images. As can be
seen from the images, a very good reconstruc-
tion is obtained using only the best Attention
Window. This is an indication of the power of
Information Sampling.
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Figure 7: Top: (Left) A 16×16 omnidirectional image
acquired at runtime, (Middle) its reconstruction using
the most informative Attention Window and (Right)
its reconstruction using all of the Attention Windows.
Each Attention Window is 4×4 pixels in size. Bottom:
Results obtained using 32×32 omnidirectional images
and 8× 8 Attention Windows.

6 Conclusions and Future Work

This paper presented a statistical method termed
Information Sampling to aid in the visual guidance of
a mobile robot through an indoor environment. This
was achieved by focusing attention on the most inter-
esting data from a set of images. These could be a
single pixel or groups of pixels and for computational
reasons, Information Sampling selected the most in-
teresting data as Attention Windows. We showed how
to use only these windows to determine the qualita-
tive position of a mobile robot within its environment.
This position estimation technique was an improve-
ment over existing approaches since we only needed to
project the best data, thus reducing ambiguity. Ad-
ditionally, we detailed two methods for ranking the
Attention Windows. By focusing using the highest
ranking Attention Window, the robot makes the best
use of its computational resources.

Our future work will be directed towards under-
taking on-line experiments and extending the imple-
mentation of Information Sampling. The possibility of
rebuilding the local appearance space in real time, as
a robot explores new regions of its environment shall
be investigated.
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